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Review of prime level

Let p ≥ 5, N be primes. We consider weight 2 modular forms of level Γ0(N):

⋄ E2,N = E2(z)− E2(Nz), weight 2 Eisenstein series of level Γ0(N)

⋄ I = Ann(E2,N) = ⟨Tℓ − ℓ− 1 : ℓ prime, ℓ ̸= N⟩
⋄ T = the completion of the Hecke algebra at (I, p)
⋄ T0 = the cuspidal quotient of T
⋄ I0 = the image of I in T0

Theorem (Mazur, ’77). Assume that p ̸= N. Then,
1 T0 ̸= 0 ⇐⇒ p divides the numerator of N−1

12

2 T0 is Gorenstein
3 I0 is a principal ideal, and Tℓ − ℓ− 1 generates I0 if and only if

ℓ ̸≡ 1 (mod p) and ℓ is not a pth power mod N



Review of prime level (cont.)

Question (Mazur): What is the rank of T0 as a Zp-module? What
is the arithmetic significance of rank 1 vs. rank > 1?

Some results:
(i) Merel, ∼’96:

rkZp (T0) > 1 ⇐⇒

N−1
2∏

i=1

i i is a pth power mod N

(ii) Calegari-Emerton, ∼’05:

rkZp (T0) > 1 =⇒ dimFp

(
(Cl(Q(

p
√
N))[p]

)
> 1

(iii) Wake–Wang-Erickson, ∼’20:

rkZp (T0) > 1 ⇐⇒ some cup product in Galois
cohomology vanishes



R = T via Wiles’ numerical criterion

An “R = T Theorem” relates the arithmetic data of the following objects:

R : a universal Galois

deformation ring

T : a Hecke algebra acting

on modular forms

In particular, there is a standard argument to construct a surjection

R ↠ T.

To conclude R = T, Calegari–Emerton and Wake–Wake-Erickson apply
Wiles’ numerical criterion, which requires T to be a local complete
intersection (LCI) ring.

Today’s Goal: Outline a computational approach for counting rank of R
directly in order to establish R = T when T is not LCI



Our setup: Ribet’s newform setting (RNS)

With p ≥ 5 prime, we consider the following setting:
⋄ N = ℓ0ℓ1, with ℓi primes satisfying

◦ ℓ0 ≡ 1 (mod p) and rkZp (T0
ℓ0
) = 1

◦ ℓ1 ̸≡ ±1 (mod p) but ℓ1 is a pth power modulo ℓ0

⋄ E ε
2,N = the weight 2 Eisenstein series of level Γ0(N) with

Atkin-Lehner signature (−1,−1).

Theorem (Ribet): There is a newform f ∈ S2(Γ0(N)) such that

f ≡ E ε
2,N (mod p).

This means that rkZp (T) ≥ 3 since we have:
⋄ the Eisenstein series E ε

2,N
⋄ the cusp form of level ℓ0
⋄ the newform f of level N

We can check computationally that T is not LCI.



Main result

Q(ζp)

K L

M

⋄ K = Q(ζp, ℓ
1/p
1 )

⋄ L defined using ℓ0

K ′

M ′

⋄M ′/Q is Galois

⋄M ′/M is ω0-isotypic, unramified

⋄ primes over ℓ0 split in M ′/M

K ′′

M ′′

⋄M ′′/Q is Galois

⋄M ′′/M ′ is ω-isotypic, conductor∗

⋄ primes over ℓ0 split in M ′′/M ′

Theorem (H-W-WE): For (p, ℓ0, ℓ1) satisfying the RNS assumptions,

rkZp (T) > 3 =⇒
(i) all primes of K over ℓ1 split in K ′/K ,
(ii) there exists some prime of K over ℓ0 that

splits in both K ′/K and K ′′/K .
If either condition fails, the surjection R ↠ T is an isomorphism.



R = T via rank bounds

Following work of Wake–Wang-Erickson, we study a deformation ring R
of Galois pseudorep’ns of ρ = ω ⊕ 1. The input for this machinery is:

1 For (p, ℓ0, ℓ1) satisfying our RNS assumptions, we fix two cocycles:
⋄ b(1) represents the Kummer class of ℓ1 in H1(GQ,Fp(1))
⋄ c(1) represents a class in H1(GQ,Fp(−1)) ramified only at ℓ0

2 Since b(1) ∪ c(1) = 0, there exists a cochain a(1) satisfying

−δa(1) = b(1) ⌣ c(1).

3 With d (1) = b(1)c(1) − a(1), we check for a cochain b(2) satisfying

−δb(2) = a(1) ⌣ b(1) + b(1) ⌣ d (1).

Main Theoretical Output from HWWE Part I: For (p, ℓ0, ℓ1) as above,

dimFp (R/pR) > 3 ⇐⇒ (i) a(1)(Frℓ1) ∈ Fp vanishes
(ii) a special invariant α2 + β ∈ Fp(2) vanishes



Going from theory to computation
The key idea is to compute S-units that correspond to a(1)|GK

and b(2)|GK

via Kummer theory. We take a two-step approach to this computation:

1 Find candidate cochains that solve differential equations for a(1) and b(2)

2 Make local adjustments so candidate solutions satisfy local conditions

K ′ K ′′

K = Q(ζp, ℓ
1/p
1 )

Q(ζp)

a(1)
b(2)

b(1)

Using this construction, we prove
(i) a(1)(Frℓ1) = 0 ⇐⇒ all primes of K over ℓ1 split in K ′/K

(ii) α2 + β = 0 ⇐⇒ there exists some prime of K over ℓ0 that splits in
both K ′/K and K ′′/K



Computing an S-unit in K× for a(1)|GK

Any cochain a(1) satisfying −δa(1) = b(1) ⌣ c(1) gives a degree p3(p − 1)
twisted-Heisenberg extension of Q, cut out byω b(1) ωa(1)

0 1 ωc(1)

0 0 ω

 : GQ → GL3(Fp).

Q(ζp)

K L

MK ′

M ′ Sharifi’s theory gives the explicit formula

a
(1)
cand|GK

= D1
σ(γ) ∈ K×,

where
⋄ γ ∈ K× satisfies NmK/Q(ζp)(γ) = c(1), and

⋄ D1
σ =

∑p−1
i=0 iσi denotes a first-order Kolyvagin

derivative operator.

The local adjustment can be written a
(1)
adj = ζ jpa

k
0 .



Computing an S-unit in K× for b(2)|GK

Similarly, a cochain b(2) satisfying −δb(2) = a(1) ⌣ b(1) + b(1) ⌣ d (1)

gives a degree p4(p − 1) twisted-Heisenberg extension of Q, cut out by
ω b(1) ωa(1) b(2)

0 1 ωc(1) d (1)

0 0 ω b(1)

0 0 0 1

 : GQ → GL4(Fp).

Q(ζp)

K L

MK ′

M ′

K ′′

M ′′ Expressing the differential equation for b(2) in terms
of the triple Massey product (b(1), c(1), b(1)) gives

b
(2)
cand|GK

= (D2
σ(γ)D

1
σ(ξ))

−2a(1)|−1
GK

∈ K×,

where
⋄ ξ ∈ K× satisfies NmK/Q(ζp)(ξ) = a

(1)
adj, and

⋄ D2
σ =

∑p−1
i=0

(
i
2

)
σi .

The local adjustment can be written b
(2)
adj = pmℓn0.



Computational evidence for R = T

We have attempted to verify whether the conditions in our main result hold
for the triples (p, ℓ0, ℓ1) in the following ranges:

⋄ (5, ℓ0, ℓ1) with ℓ0 ≤ 100 and ℓ1 ≤ 1000,
⋄ (7, ℓ0, ℓ1) with ℓ0 ≤ 50 and ℓ1 ≤ 500.

To summarize, every example for which our algorithm completed is
consistent with our conjecture that R = T. Specifically, we either:
⋄ compute that (i) and (ii) of our main result are satisfied, and hence

dimFp (R/pR) > 3,

and independently compute that rkZp (T) > 3, or
⋄ compute that (ii) is not satisfied, and hence R = T.



Overview of implementation in Sage

⋄ Our program for checking the conditions in our main result, available
online at https://github.com/cmhsu2012/RR3, is written for Sage
Version 9.2 and uses the unit/S-unit interface, written by John Cremona,
to the unit/S-unit groups computed in PARI/GP.

⋄ All computations were carried out on the Strelka Computer Cluster or the
SMP Cluster with an allotted computing time of 3 days per example.

⋄ A particularly interesting computational observation is that condition (i)
in our main result, i.e., a(1)(Frℓ1) = 0, has been satisfied in every example
computed to date.

⋄ When translating the abstract conditions on Galois cochains into
implementable computations in number fields, a particularly challenging
aspect was determining which Kummer extension of Q(ζp) to use.

https://github.com/cmhsu2012/RR3


Example: p = 5, ℓ0 = 11, ℓ1 = 23

c = (3, 4, 4, 4, 1, 1)
γ = (2, 0, 1, 4, 0, 4, . . . , 0)

a
(1)
cand = (4, 1, 2, 1, 3, 0, . . . , 1)

b
(2)
cand = (2, 3, 2, 0, 2, 3, . . . , 0)

a
(1)
adj = ζ0

pa
1
0

= (2, 2, 0, 2, 1, 3, . . . , 4)

a(1) = a
(1)
cand + a

(1)
adj

= (1, 3, 2, 3, 4, 3, . . . , 0)

a(1)|ℓ1 = 0,
Condition (i) holds

ξ = (2, 0, 2, 1, 0, 0, . . . , 0)

with Nm(ξ) = a
(1)
adj

b̃
(2)
cand = (1, 1, 2, 2, 2, 3, . . . , 2)

b
(1)
adj = p3ℓ 4

0

= (0, 1, 2, 0, 3, 3, . . . , 4)

b(2) = b̃
(2)
cand + b

(2)
adj

= (1, 2, 4, 2, 0, 1, . . . , 1)

α2 + β ̸= 0,
Condition (ii) does not hold



Examples: p = 5, ℓ0 = 11

primes β difficulty factors adjustments to conclusion Hecke rank
a(1) ⇝ α b(2) ⇝ β

p ℓ0 ℓ1 p in K a(1)|p ζ ip aj0 pk ℓm0 α2 + β = 0? rk(T)
5 11 23 wild ̸= 0 0 1 3 4 no 3
5 11 43 tame ̸= 0 3 2 0 4 yes ≥ 4
5 11 67 wild ̸= 0 0 0 1 3 no 3
5 11 197 wild ̸= 0 0 2 1 4 yes ≥ 4
5 11 263 wild = 0 0 2 4 3 no 3
5 11 307 tame = 0 1 3 0 0 no 3
5 11 373 wild ̸= 0 0 4 0 3 no 3
5 11 397 wild ̸= 0 0 4 2 3 no 3
5 11 593 tame = 0 0 3 0 2 no 3
5 11 683 wild = 0 0 4 3 0 yes ≥ 4
5 11 727 wild ̸= 0 0 1 1 3 yes ≥ 4
5 11 857 tame ̸= 0 2 0 0 4 no 3
5 11 967 wild ̸= 0 0 0 2 2 no 3
5 11 1013 wild ̸= 0 0 3 3 1 no 3



Thanks for listening!


