Explicit non-Gorenstein R=T via rank bounds II: Computation

Catherine M. Hsu

Swarthmore College

Fifteenth Algorithmic Number Theory Symposium University of Bristol August 2022

Joint with Preston Wake and Carl Wang-Erickson

Review of prime level

Let $p \ge 5$, N be primes. We consider weight 2 modular forms of level $\Gamma_0(N)$:

$$\diamond \ \mathcal{I} = \operatorname{Ann}(\mathcal{E}_{2,\mathsf{N}}) = \langle \mathcal{T}_{\ell} - \ell - 1 : \ell \text{ prime}, \ell \neq \mathsf{N} \rangle$$

- $\diamond \ \mathbb{T} = \text{the completion of the Hecke algebra at } (\mathcal{I}, p)$
- $\diamond \ \mathbb{T}^0 = \text{the cuspidal quotient of } \mathbb{T}$
- $\diamond \ \mathcal{I}^0 = \text{the image of } \mathcal{I} \text{ in } \mathbb{T}^0$

Theorem (Mazur, '77). Assume that $p \neq N$. Then,

1
$$\mathbb{T}^0 \neq 0 \iff p$$
 divides the numerator of $\frac{N-1}{12}$

- **2** \mathbb{T}^0 is Gorenstein
- **3** \mathcal{I}^0 is a principal ideal, and $T_{\ell} \ell 1$ generates \mathcal{I}^0 if and only if $\ell \not\equiv 1 \pmod{p}$ and ℓ is not a *p*th power mod *N*

Review of prime level (cont.)

Question (Mazur): What is the rank of \mathbb{T}^0 as a \mathbb{Z}_p -module? What is the arithmetic significance of rank 1 vs. rank > 1?

Some results:

(i) Merel, ~'96: $\operatorname{rk}_{\mathbb{Z}_p}(\mathbb{T}^0) > 1 \Longleftrightarrow \prod_{i=1}^{\frac{N-1}{2}} i^i \text{ is a } p \text{th power mod } N$

(ii) Calegari-Emerton, \sim '05:

$$\operatorname{rk}_{\mathbb{Z}_p}(\mathbb{T}^0)>1 \Longrightarrow \dim_{\mathbb{F}_p}\left((\mathit{Cl}(\mathbb{Q}(\sqrt[p]{N}))[p]\right)>1$$

(iii) Wake–Wang-Erickson, \sim '20:

 $\operatorname{rk}_{\mathbb{Z}_p}(\mathbb{T}^0)>1 \Longleftrightarrow \begin{array}{c} \text{some cup product in Galois} \\ \text{cohomology vanishes} \end{array}$

$R = \mathbb{T}$ via Wiles' numerical criterion

An " $R = \mathbb{T}$ Theorem" relates the arithmetic data of the following objects:

In particular, there is a standard argument to construct a surjection

 $R \twoheadrightarrow \mathbb{T}.$

To conclude $R = \mathbb{T}$, Calegari–Emerton and Wake–Wake-Erickson apply Wiles' numerical criterion, which requires \mathbb{T} to be a local complete intersection (LCI) ring.

Today's Goal: Outline a computational approach for counting rank of R directly in order to establish $R = \mathbb{T}$ when \mathbb{T} is **not** LCI

Our setup: Ribet's newform setting (RNS)

With $p \ge 5$ prime, we consider the following setting:

$$\diamond \ \textit{N} = \ell_0 \ell_1, \ \text{with} \ \ell_i \ \text{primes satisfying}$$

$$\circ \ \ell_0 \equiv 1 \pmod{p}$$
 and $\operatorname{rk}_{\mathbb{Z}_p}(\mathbb{T}^0_{\ell_0}) = 1$

- $\ell_1 \not\equiv \pm 1 \pmod{p}$ but ℓ_1 is a *p*th power modulo ℓ_0
- ♦ $E_{2,N}^{\varepsilon}$ = the weight 2 Eisenstein series of level $\Gamma_0(N)$ with Atkin-Lehner signature (-1, -1).

Theorem (Ribet): There is a newform $f \in S_2(\Gamma_0(N))$ such that $f \equiv E_{2,N}^{\varepsilon} \pmod{p}.$

This means that $\operatorname{rk}_{\mathbb{Z}_p}(\mathbb{T}) \geq 3$ since we have:

- ♦ the Eisenstein series $E_{2,N}^{\varepsilon}$
- $\diamond\,$ the cusp form of level ℓ_0
- \diamond the newform *f* of level *N*

We can check computationally that ${\mathbb T}$ is **not** LCI.

Main result

Theorem (H-W-WE): For (p, ℓ_0, ℓ_1) satisfying the RNS assumptions, $\operatorname{rk}_{\mathbb{Z}_p}(\mathbb{T}) > 3 \implies (i)$ all primes of K over ℓ_1 split in K'/K, (ii) there exists some prime of K over ℓ_0 that splits in both K'/K and K''/K. If either condition fails, the surjection $R \twoheadrightarrow \mathbb{T}$ is an isomorphism.

$R = \mathbb{T}$ via rank bounds

Following work of Wake–Wang-Erickson, we study a deformation ring R of Galois pseudorep'ns of $\overline{\rho} = \omega \oplus 1$. The input for this machinery is:

- For (p, ℓ₀, ℓ₁) satisfying our RNS assumptions, we fix two cocycles:
 b⁽¹⁾ represents the Kummer class of ℓ₁ in H¹(G_Q, F_p(1))
 c⁽¹⁾ represents a class in H¹(G_Q, F_p(-1)) ramified only at ℓ₀
- **2** Since $b^{(1)} \cup c^{(1)} = 0$, there exists a cochain $a^{(1)}$ satisfying

$$-\delta a^{(1)} = b^{(1)} \smile c^{(1)}$$

3 With $d^{(1)} = b^{(1)}c^{(1)} - a^{(1)}$, we check for a cochain $b^{(2)}$ satisfying

$$-\delta b^{(2)} = a^{(1)} \smile b^{(1)} + b^{(1)} \smile d^{(1)}.$$

Main Theoretical Output from HWWE Part I: For (p, ℓ_0, ℓ_1) as above, $\dim_{\mathbb{F}_p}(R/pR) > 3 \iff (i) a^{(1)}(\operatorname{Fr}_{\ell_1}) \in \mathbb{F}_p$ vanishes (ii) a special invariant $\alpha^2 + \beta \in \mathbb{F}_p(2)$ vanishes

Going from theory to computation

The key idea is to compute S-units that correspond to $a^{(1)}|_{G_K}$ and $b^{(2)}|_{G_K}$ via Kummer theory. We take a two-step approach to this computation:

- **1** Find candidate cochains that solve differential equations for $a^{(1)}$ and $b^{(2)}$
- 2 Make local adjustments so candidate solutions satisfy local conditions

Using this construction, we prove

(i)
$$a^{(1)}(\operatorname{Fr}_{\ell_1}) = 0 \iff$$
 all primes of K over ℓ_1 split in K'/K

(ii) $\alpha^2 + \beta = 0 \iff$ there exists some prime of K over ℓ_0 that splits in both K'/K and K''/K

Computing an S-unit in K^{\times} for $a^{(1)}|_{G_{K}}$

Any cochain $a^{(1)}$ satisfying $-\delta a^{(1)} = b^{(1)} \smile c^{(1)}$ gives a degree $p^3(p-1)$ twisted-Heisenberg extension of \mathbb{Q} , cut out by

$$\begin{pmatrix} \omega & b^{(1)} & \omega a^{(1)} \\ 0 & 1 & \omega c^{(1)} \\ 0 & 0 & \omega \end{pmatrix} : G_{\mathbb{Q}} \to GL_3(\mathbb{F}_p).$$

Sharifi's theory gives the explicit formula

$$a_{\mathrm{cand}}^{(1)}|_{\mathcal{G}_{\mathcal{K}}}=D^{1}_{\sigma}(\gamma)\in\mathcal{K}^{ imes},$$

where

- $\diamond \ \gamma \in {\mathcal K}^{ imes}$ satisfies ${
 m Nm}_{{\mathcal K}/{\mathbb Q}(\zeta_{
 ho})}(\gamma)={\it c}^{(1)}$, and
- ◊ $D_{\sigma}^{1} = \sum_{i=0}^{p-1} i\sigma^{i}$ denotes a first-order Kolyvagin derivative operator.

The local adjustment can be written $a_{adj}^{(1)} = \zeta_p^j a_0^k$.

Computing an S-unit in K^{\times} for $b^{(2)}|_{G_{K}}$

Similarly, a cochain $b^{(2)}$ satisfying $-\delta b^{(2)} = a^{(1)} \smile b^{(1)} + b^{(1)} \smile d^{(1)}$ gives a degree $p^4(p-1)$ twisted-Heisenberg extension of \mathbb{Q} , cut out by

$$\begin{pmatrix} \omega & b^{(1)} & \omega a^{(1)} & b^{(2)} \\ 0 & 1 & \omega c^{(1)} & d^{(1)} \\ 0 & 0 & \omega & b^{(1)} \\ 0 & 0 & 0 & 1 \end{pmatrix} : G_{\mathbb{Q}} \to GL_4(\mathbb{F}_p).$$

Expressing the differential equation for $b^{(2)}$ in terms of the triple Massey product $(b^{(1)}, c^{(1)}, b^{(1)})$ gives

$$b^{(2)}_{\mathrm{cand}}|_{\mathcal{G}_{\mathcal{K}}} = (D^2_{\sigma}(\gamma)D^1_{\sigma}(\xi))^{-2}a^{(1)}|_{\mathcal{G}_{\mathcal{K}}}^{-1} \in \mathcal{K}^{ imes}$$

where

◊ ξ ∈ K[×] satisfies Nm_{K/Q(ζ_ρ)}(ξ) = a⁽¹⁾_{adj}, and
 ◊ D²_σ = ∑^{p-1}_{i=0} (ⁱ₂)σⁱ.

The local adjustment can be written $b_{adj}^{(2)} = p^m \ell_0^n$.

Computational evidence for $R = \mathbb{T}$

We have attempted to verify whether the conditions in our main result hold for the triples (p, ℓ_0, ℓ_1) in the following ranges:

$$\diamond~(5,\ell_0,\ell_1)$$
 with $\ell_0 \leq 100$ and $\ell_1 \leq 1000$,

 \diamond (7, ℓ_0 , ℓ_1) with $\ell_0 \leq 50$ and $\ell_1 \leq 500$.

To summarize, every example for which our algorithm completed is consistent with our conjecture that $R = \mathbb{T}$. Specifically, we either:

 $\diamond\,$ compute that (i) and (ii) of our main result are satisfied, and hence

 $\dim_{\mathbb{F}_p}(R/pR) > 3,$

and independently compute that $\operatorname{rk}_{\mathbb{Z}_p}(\mathbb{T}) > 3$, or

 \diamond compute that (ii) is not satisfied, and hence $R = \mathbb{T}$.

Overview of implementation in Sage

- Our program for checking the conditions in our main result, available online at https://github.com/cmhsu2012/RR3, is written for Sage Version 9.2 and uses the unit/S-unit interface, written by John Cremona, to the unit/S-unit groups computed in PARI/GP.
- All computations were carried out on the Strelka Computer Cluster or the SMP Cluster with an allotted computing time of 3 days per example.
- ♦ A particularly interesting computational observation is that condition (i) in our main result, i.e., $a^{(1)}(Fr_{\ell_1}) = 0$, has been satisfied in every example computed to date.
- ♦ When translating the abstract conditions on Galois cochains into implementable computations in number fields, a particularly challenging aspect was determining which Kummer extension of $\mathbb{Q}(\zeta_p)$ to use.

Example: $p = 5, \ell_0 = 11, \ell_1 = 23$

Examples:
$$p=5, \ell_0=11$$

primes			β difficulty factors		adjustments to				conclusion	Hecke rank
					$a^{(1)} \rightsquigarrow \alpha$		$b^{(2)} \rightsquigarrow \beta$		conclusion	TICCKC TAILS
р	ℓ_0	ℓ_1	p in K	$a^{(1)} _{p}$	ζ_p^i	a_0^j	p^k	ℓ_0^m	$\alpha^2 + \beta = 0?$	$\operatorname{rk}(\mathbb{T})$
5	11	23	wild	\neq 0	0	1	3	4	no	3
5	11	43	tame	\neq 0	3	2	0	4	yes	\geq 4
5	11	67	wild	\neq 0	0	0	1	3	no	3
5	11	197	wild	\neq 0	0	2	1	4	yes	\geq 4
5	11	263	wild	= 0	0	2	4	3	no	3
5	11	307	tame	= 0	1	3	0	0	no	3
5	11	373	wild	\neq 0	0	4	0	3	no	3
5	11	397	wild	\neq 0	0	4	2	3	no	3
5	11	593	tame	= 0	0	3	0	2	no	3
5	11	683	wild	= 0	0	4	3	0	yes	\geq 4
5	11	727	wild	\neq 0	0	1	1	3	yes	\geq 4
5	11	857	tame	$\neq 0$	2	0	0	4	no	3
5	11	967	wild	\neq 0	0	0	2	2	no	3
5	11	1013	wild	$\neq 0$	0	3	3	1	no	3

Thanks for listening!