
A deterministic algorithm
for finding r-power divisors

15th ANTS, 12.08.2022, Bristol, UK

D. Harvey (UNSW), M. Hittmeir (SBA Research)

Introduction

Factorization Problem
Find all prime factors of natural numbers N.

The theoretical study of this problem concerns...

• ...algorithms for deterministic Turing machines.

• ...rigorous proofs for the worst-case runtime.

Credit: https://commons.wikimedia.org/wiki/File:Model_of_a_Turing_machine.jpg
2

https://commons.wikimedia.org/wiki/File:Model_of_a_Turing_machine.jpg

Deterministic Integer Factorization

• Until 1974: Trial Division, Õ(N1/2)

• 1974: Method of Lehman, Õ(N1/3)

• 1974-1977: Pollard-Strassen approach, Õ(N1/4)

• 2020-2022: Combining Lehman and Pollard-Strassen,
Õ(N1/5)

Q: What about divisors of certain shape?

3

r-Power Factorization Problem
For r,N ∈ N, find all positive integers p such that pr | N.

Previously best (rigorous) result due to Pollard and Strassen:

• All divisors of N less than B can be found in O(B1/2+ε)

• If N = prq, then either p ≤ N1/(r+1) or q ≤ N1/(r+1)

• Hence: Problem can be solved in time O(N1/2(r+1)+ε)

For example: Square divisors (r = 2) can be found in O(N1/6+ε)

4

Coppersmith and BDHG

Our improvement is based on Coppersmith’s method:

1. Find all divisors of N in an interval via lattice methods

2. Choose a sequence of intervals that covers [1,N1/2]

Boneh, Durfee and Howgrave-Graham: N = prq with p ≈ q

1. Adaptation of Coppersmith’s method

2. Faster than ECM when r ≈ (lg p)1/2

Our goal: Estimate worst-case complexity for arbitrary p, q, r

5

Main Result

Theorem 1
Let N ≥ 2 and r ≤ log2 N =: lgN.
We can find all positive integers p with pr | N in time

O
(
N1/4r (lgN)10+ε

r3

)
.

Our method finds square divisors (r = 2) in O(N1/8+ε)
The space complexity is negligible

6

Searching one interval

Let H, P ∈ N with H < P ≤ N1/r.
We first discuss an algorithm that outputs a list of all integers p
with pr | N and

P− H ≤ p ≤ P+ H.

Strategy
1. Construct polynomials fi, i = 0, . . . , d− 1, such that

fi(p− P) ≡ 0 mod prm. Here we need rm ≤ d.

2. Compute g ∈ spanZ(fi) with |g(p− P)| < prm.

3. We get g(p− P) = 0, hence p− P is an integer root of g.

8

A key tool to achieve this:

LLL lattice reduction
Let v0, . . . , vd−1 ∈ Zd be linearly independent. We may find a
nonzero w ∈ L := spanZ(v0, . . . , vd−1) such that

||w||2 ≤ 2(d−1)/4(det L)1/d.

• We may take w as the first vector in a reduced basis for L

• The runtime complexity is polynomial w.r.t. the input size

9

Consider the polynomials f0, . . . , fd−1 defined by

fi(x) :=

{
Nm−⌊i/r⌋(P+ x)i, 0 ≤ i < rm,

(P+ x)i, rm ≤ i < d.

Let f̃i(y) := fi(Hy). Let vi be the coefficient vector of f̃i.

For L := spanZ(v0, . . . , vd−1), we now compute det L:

• Consider the dxd-matrix with the vi as its rows

• Since deg fi = i, this is a lower triangular matrix

• Diagonal entries . . .

{
Nm−⌊i/r⌋Hi, 0 ≤ i < rm,

Hi, rm ≤ i < d.

10

det L = H1+2+···+(d−1) (Nm · · ·Nm)︸ ︷︷ ︸
r terms

(Nm−1 · · ·Nm−1)︸ ︷︷ ︸
r terms

· · · (N · · ·N)︸ ︷︷ ︸
r terms

= H1+2+···+(d−1)(N1+2+···+m)r

= Hd(d−1)/2Nrm(m+1)/2

Applying LLL reduction to the vi, we obtain w ∈ L with

||w||2 ≤ 2(d−1)/4H(d−1)/2Nrm(m+1)/2d =: Λ.

This vector corresponds to a nonzero g̃(y) = g̃0 + · · ·+ g̃d−1yd−1.
Define g(x) := g̃(x/H).

11

If d1/2 · Λ < (P− H)rm, then x0 := p− P is a root of g.

Proof.
We first show that prm | g(x0) by proving prm | fi(x0) for all i:

• For 0 ≤ i < rm, we have fi(x0) = Nm−⌊i/r⌋pi ≡ 0 mod prm.

• For i ≥ rm, we have fi(x0) = pi ≡ 0 mod prm.

Now−H ≤ x0 ≤ H implies that

|g(x0)| ≤ |h0|+ · · ·+ |hd−1|Hd−1 = |g̃0|+ · · ·+ |g̃d−1|
≤ d1/2||w||2 < (P− H)rm ≤ prm.

We obtain g(x0) = 0.

12

Root-finding step

The last step of this section is about finding all integer roots of g.

Theorem 2
For b, n ∈ N, let f ∈ Z[x] with deg f = n and ||f||∞ ≤ 2b.
We may find all integer roots of f in time O(n2+εb1+ε).

This is proved in the appendix of our paper.

13

Proof of the main result

• In our proof above, we assumed d1/2 · Λ < (P− H)rm.

• Hence, it only works for small intervals [P− H, P+ H].

• For proving Theorem 1, we want to cover the range [1,N1/r].

Strategy
1. Consider a general interval T ≤ p ≤ T′.

2. Cover it with a sequence of subintervals [P− H, P+ H].

3. Minimize the number of subintervals by maximizing

H <
1

d1/(d−1)21/2
· T2rm/(d−1)

Nrm(m+1)/d(d−1) =: H̃.

One finds that H̃ is largest form/d ≈ lg T/ lgN.

15

Let T = Nθ/r > 4
√

lgN/r, where θ ∈ [0, 1].

• Set d := ⌈lgN⌉+ 1 andm := ⌊(d− 1) lg T/ lgN⌋.
One can show that this implies

H̃ >
Nθ2/rN−1/ lgN

3
=

Nθ2/r

6
> 2.

Compute H := ⌈H̃⌉ − 1.

• Invoke the algorithm of the previous section for
P = T + H, P = T + 3H, . . . until [T, T′] is covered.

• The number of subintervals dominates the complexity:⌈
T′ − T
2H

⌉
∈ O

(
T′ − T
Nθ2/r

)
= O

(
T′ − T
T

· Nθ(1−θ)/r
)

16

To finish the proof, we now do the following:

• Check the numbers up to 4
√

lgN/r for p with pr | N.

• The remaining range [4
√

lgN/r,N1/r] is divided into intervals
of the form [T, T′] = [2k, 2k+1].

• Each of this intervals can be searched in

O
(
T′ − T
T

· Nθ(1−θ)/r+ε

)
⊆ O(N1/4r+ε),

where we have used that θ(1− θ) ≤ 1/4.

• The number of intervals is bounded by ⌈lg(N1/r)⌉.
All other steps are negligible.

17

Discussion

• The maximum value 1/4 of θ(1− θ) is reached for θ = 1/2.
Hence, the “hardest” case is p ≈ N1/2r.

• θ(1− θ) is much smaller than 1/4 for most θ ∈ [0, 1].
We may thus improve the logarithmic factors in the bound.

• Our result on integer root finding yields an explicit power
of logN in the bound of Coppersmith’s method.

• We wanted to apply ideas from the N1/5-improvement to
r-power factorization, but without success.

18

References

1. R. S. Lehman, Factoring Large Integers, Math. Comp. 28, 1974, 637-646.
2. J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos.

Soc. 76, 1974, 521–528.
3. V. Strassen, Einige Resultate über Berechnungskomplexität, Jber. Deutsch. Math.-Verein.

78(1), 1976/77, 1-8.
4. D. Harvey, M. Hittmeir, A log-log speedup for exponent one-fifth deterministic integer

factorization, Math. Comp. 91, 2022, 1367-1379.
5. D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA

vulnerabilities, J. Cryptology 10(4), 1997, 233–260.
6. D. Boneh, G. Durfee, and N. Howgrave-Graham, Factoring N = prq for large r, Advances

in cryptology—CRYPTO ’99 (Santa Barbara, CA), Lecture Notes in Comput.Sci. 1666,
1999, 326–337.

Questions?
mhittmeir@sba-research.org

19

	Introduction
	Searching one interval
	Proof of the main result

