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Introduction



Factorization Problem
Find all prime factors of natural numbers N.

The theoretical study of this problem concerns...

• ...algorithms for deterministic Turing machines.

• ...rigorous proofs for the worst-case runtime.

Credit: https://commons.wikimedia.org/wiki/File:Model_of_a_Turing_machine.jpg
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Deterministic Integer Factorization

• Until 1974: Trial Division, Õ(N1/2)

• 1974: Method of Lehman, Õ(N1/3)

• 1974-1977: Pollard-Strassen approach, Õ(N1/4)

• 2020-2022: Combining Lehman and Pollard-Strassen,
Õ(N1/5)

Q: What about divisors of certain shape?
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r-Power Factorization Problem
For r,N ∈ N, find all positive integers p such that pr | N.

Previously best (rigorous) result due to Pollard and Strassen:

• All divisors of N less than B can be found in O(B1/2+ε)

• If N = prq, then either p ≤ N1/(r+1) or q ≤ N1/(r+1)

• Hence: Problem can be solved in time O(N1/2(r+1)+ε)

For example: Square divisors (r = 2) can be found in O(N1/6+ε)
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Coppersmith and BDHG

Our improvement is based on Coppersmith’s method:

1. Find all divisors of N in an interval via lattice methods

2. Choose a sequence of intervals that covers [1,N1/2]

Boneh, Durfee and Howgrave-Graham: N = prq with p ≈ q

1. Adaptation of Coppersmith’s method

2. Faster than ECM when r ≈ (lg p)1/2

Our goal: Estimate worst-case complexity for arbitrary p, q, r
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Main Result

Theorem 1
Let N ≥ 2 and r ≤ log2 N =: lgN.
We can find all positive integers p with pr | N in time

O
(
N1/4r (lgN)10+ε

r3

)
.

Our method finds square divisors (r = 2) in O(N1/8+ε)
The space complexity is negligible
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Searching one interval



Let H, P ∈ N with H < P ≤ N1/r.
We first discuss an algorithm that outputs a list of all integers p
with pr | N and

P− H ≤ p ≤ P+ H.

Strategy
1. Construct polynomials fi, i = 0, . . . , d− 1, such that

fi(p− P) ≡ 0 mod prm. Here we need rm ≤ d.

2. Compute g ∈ spanZ(fi) with |g(p− P)| < prm.

3. We get g(p− P) = 0, hence p− P is an integer root of g.
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A key tool to achieve this:

LLL lattice reduction
Let v0, . . . , vd−1 ∈ Zd be linearly independent. We may find a
nonzero w ∈ L := spanZ(v0, . . . , vd−1) such that

||w||2 ≤ 2(d−1)/4(det L)1/d.

• We may take w as the first vector in a reduced basis for L

• The runtime complexity is polynomial w.r.t. the input size
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Consider the polynomials f0, . . . , fd−1 defined by

fi(x) :=

{
Nm−⌊i/r⌋(P+ x)i, 0 ≤ i < rm,

(P+ x)i, rm ≤ i < d.

Let f̃i(y) := fi(Hy). Let vi be the coefficient vector of f̃i.

For L := spanZ(v0, . . . , vd−1), we now compute det L:

• Consider the dxd-matrix with the vi as its rows

• Since deg fi = i, this is a lower triangular matrix

• Diagonal entries . . .

{
Nm−⌊i/r⌋Hi, 0 ≤ i < rm,

Hi, rm ≤ i < d.
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det L = H1+2+···+(d−1) (Nm · · ·Nm)︸ ︷︷ ︸
r terms

(Nm−1 · · ·Nm−1)︸ ︷︷ ︸
r terms

· · · (N · · ·N)︸ ︷︷ ︸
r terms

= H1+2+···+(d−1)(N1+2+···+m)r

= Hd(d−1)/2Nrm(m+1)/2

Applying LLL reduction to the vi, we obtain w ∈ L with

||w||2 ≤ 2(d−1)/4H(d−1)/2Nrm(m+1)/2d =: Λ.

This vector corresponds to a nonzero g̃(y) = g̃0 + · · ·+ g̃d−1yd−1.
Define g(x) := g̃(x/H).
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If d1/2 · Λ < (P− H)rm, then x0 := p− P is a root of g.

Proof.
We first show that prm | g(x0) by proving prm | fi(x0) for all i:

• For 0 ≤ i < rm, we have fi(x0) = Nm−⌊i/r⌋pi ≡ 0 mod prm.

• For i ≥ rm, we have fi(x0) = pi ≡ 0 mod prm.

Now−H ≤ x0 ≤ H implies that

|g(x0)| ≤ |h0|+ · · ·+ |hd−1|Hd−1 = |g̃0|+ · · ·+ |g̃d−1|
≤ d1/2||w||2 < (P− H)rm ≤ prm.

We obtain g(x0) = 0.
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Root-finding step

The last step of this section is about finding all integer roots of g.

Theorem 2
For b, n ∈ N, let f ∈ Z[x] with deg f = n and ||f||∞ ≤ 2b.
We may find all integer roots of f in time O(n2+εb1+ε).

This is proved in the appendix of our paper.
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Proof of the main result



• In our proof above, we assumed d1/2 · Λ < (P− H)rm.

• Hence, it only works for small intervals [P− H, P+ H].

• For proving Theorem 1, we want to cover the range [1,N1/r].

Strategy
1. Consider a general interval T ≤ p ≤ T′.

2. Cover it with a sequence of subintervals [P− H, P+ H].

3. Minimize the number of subintervals by maximizing

H <
1

d1/(d−1)21/2
· T2rm/(d−1)

Nrm(m+1)/d(d−1) =: H̃.

One finds that H̃ is largest form/d ≈ lg T/ lgN.
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Let T = Nθ/r > 4
√

lgN/r, where θ ∈ [0, 1].

• Set d := ⌈lgN⌉+ 1 andm := ⌊(d− 1) lg T/ lgN⌋.
One can show that this implies

H̃ >
Nθ2/rN−1/ lgN

3
=

Nθ2/r

6
> 2.

Compute H := ⌈H̃⌉ − 1.

• Invoke the algorithm of the previous section for
P = T + H, P = T + 3H, . . . until [T, T′] is covered.

• The number of subintervals dominates the complexity:⌈
T′ − T
2H

⌉
∈ O

(
T′ − T
Nθ2/r

)
= O

(
T′ − T
T

· Nθ(1−θ)/r
)

16



To finish the proof, we now do the following:

• Check the numbers up to 4
√

lgN/r for p with pr | N.

• The remaining range [4
√

lgN/r,N1/r] is divided into intervals
of the form [T, T′] = [2k, 2k+1].

• Each of this intervals can be searched in

O
(
T′ − T
T

· Nθ(1−θ)/r+ε

)
⊆ O(N1/4r+ε),

where we have used that θ(1− θ) ≤ 1/4.

• The number of intervals is bounded by ⌈lg(N1/r)⌉.
All other steps are negligible.
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Discussion

• The maximum value 1/4 of θ(1− θ) is reached for θ = 1/2.
Hence, the “hardest” case is p ≈ N1/2r.

• θ(1− θ) is much smaller than 1/4 for most θ ∈ [0, 1].
We may thus improve the logarithmic factors in the bound.

• Our result on integer root finding yields an explicit power
of logN in the bound of Coppersmith’s method.

• We wanted to apply ideas from the N1/5-improvement to
r-power factorization, but without success.
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