On binary quartics and the Cassels-Tate pairing

Tom Fisher

University of Cambridge

Algorithmic Number Theory Symposium, ANTS-XV, Bristol 9th August 2022

Tom Fisher On binary quartics and the Cassels-Tate pairing

A brief review of 2-descent

$$\begin{split} E/K : & y^2 = x^3 - 27lx - 27J, \quad \text{elliptic curve/number field} \\ L &= K[\varphi] = K[x]/(x^3 - 3lx + J), \quad \text{cubic étale algebra} \\ E(K)/2E(K) & \stackrel{\delta}{\hookrightarrow} \ker \left(L^{\times}/(L^{\times})^2 \stackrel{N_{L/K}}{\longrightarrow} K^{\times}/(K^{\times})^2 \right) \\ & (x, y) \mapsto x + 3\varphi \mod (L^{\times})^2 \end{split}$$

Definition. $S^{(2)}(E/K)$ = the subgroup of the RHS consisting of elements that are everywhere locally in the image of δ .

Given $\xi \in S^{(2)}(E/K)$ we consider the equation

$$x+3\varphi=\xi(u_0+u_1\varphi+u_2\varphi^2)^2$$

Comparing coefficients of φ and φ^2 and homogenising gives

$$3y^2 = Q_1(u_0, u_1, u_2),$$

 $0 = Q_2(u_0, u_1, u_2).$

Binary quartics and their invariants

Parametrising the conic $Q_2 = 0$ and substituting into Q_1 gives $y^2 = g(x, z)$ where g is a binary quartic. The binary quartic

$$g(x,z) = ax^4 + bx^3z + cx^2z^2 + dxz^3 + ez^4$$

has invariants

$$I = 12ae - 3bd + c^{2},$$

$$J = 72ace - 27ad^{2} - 27b^{2}e + 9bcd - 2c^{3}.$$

Lemma.

$$S^{(2)}(E/K) = \left\{ \begin{array}{c} \text{ELS binary quartics} \\ \text{with the same} \\ \text{invariants as } E \end{array} \right\} / (\text{proper } K\text{-equivalence}).$$

Defⁿ. Binary quartics g_1 and g_2 are properly K-equivalent if

$$g_2(x,z) = \lambda^2 g_1(\alpha x + \gamma z, \beta x + \delta z)$$

for some $\lambda, \alpha, \beta, \gamma, \delta \in K$ with $\lambda(\alpha \delta - \beta \gamma) = \pm 1$.

Converting back to an element of $L^{\times}/(L^{\times})^2$

The binary quartic

$$g(x,z) = ax^4 + bx^3z + cx^2z^2 + dxz^3 + ez^4$$

has Hessian

$$\begin{split} h(x,z) &= (3b^2 - 8ac)x^4 + 4(bc - 6ad)x^3z \\ &+ 2(2c^2 - 24ae - 3bd)x^2z^2 + 4(cd - 6be)xz^3 + (3d^2 - 8ce)z^4. \end{split}$$

The pencil spanned by g(x, z) and h(x, z) has 3 "singular fibres". More precisely, with $L = K[\varphi]$ as above,

$$rac{4arphi g(x,z)+h(x,z)}{3}= ext{constant}\cdot(ext{binary quadratic form})^2$$

The "constant" represents the class in $L^{\times}/(L^{\times})^2$ corresponding to *g*.

Remark. The procedure for adding two binary quartics in the Selmer group involves solving a conic.

The Cassels-Tate pairing

From the commutative diagram with exact rows

$$\begin{array}{ccc} E(K) \xrightarrow{\times 4} E(K) \longrightarrow S^{(4)}(E/K) \\ & & \downarrow^{\times 2} & & \downarrow^{\alpha} \\ E(K) \xrightarrow{\times 2} E(K) \longrightarrow S^{(2)}(E/K) \end{array}$$

we see that

$$E(K)/2E(K) \subset \operatorname{Im}(\alpha) \subset S^{(2)}(E/K)$$

The Cassels-Tate pairing is an alternating bilinear pairing of \mathbb{F}_2 -vector spaces

$$\langle \ , \
angle : \mathcal{S}^{(2)}(E/K) imes \mathcal{S}^{(2)}(E/K)
ightarrow \mathbb{F}_2$$

whose kernel is $Im(\alpha)$.

Methods for computing $\langle \;,\; \rangle$

- Cassels, Second descents for elliptic curves, (Crelle 1998) – has to solve a conic over the field of definition of each 2-torsion point of *E*.
- Donnelly, Algorithms for the Cassels-Tate pairing, (preprint 2015) only has to solve a conic over *K*.

Observation. The conic appearing in Donnelly's method for computing $\langle [g_1], [g_2] \rangle$ is the same as that needed to add $[g_1]$ and $[g_2]$.

Idea. Give a simplified formula for the pairing, taking as input binary quartics g_1, g_2, g_3 with $[g_1] + [g_2] + [g_3] = 0$.

N.B. We expect a "simplified formula" since there are no longer any conics to solve.

Recent developments.

- Jiali Yan wrote her PhD thesis (2021) extending some of these ideas to Jacobians of genus 2 curves.
- Bill Allombert has implemented our method for computing the pairing in pari/gp.

Method in outline. Let $C_i = \{y^2 = g_i(x, z)\}$ for i = 1, 2, 3, represent elements of $S^{(2)}(E/K)$ with $[C_1] + [C_2] + [C_3] = 0$. If $g_2(x, z) = ax^4 + \dots$ then $[C_2]$ determines an element

$$\mathcal{A} = (\mathcal{K}(\sqrt{a})/\mathcal{K}, \gamma) \in \mathsf{Br}(\mathcal{C}_1)$$

and the pairing is given by

$$\langle [C_1], [C_2] \rangle = \sum_{\nu} \operatorname{inv}_{\nu} \mathcal{A}(P_{\nu}) = \sum_{\nu} (a, \gamma(P_{\nu}))_{\nu}$$

where for each place *v* of *K* we pick $P_v \in C_1(K_v)$ avoiding the zeros and poles of γ . **Question.** How to compute $\gamma \in K(C_1)$?

The (2, 2, 2)-forms

Untwisted version.

$$E \times E \times E \xrightarrow{\mu} E$$

$$\downarrow^{\pi}$$

$$\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$$

 $\mathcal{S} = \pi(\mu^{-1}(0_{\mathcal{E}})) \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ is defined by a (2,2,2)-form.

Twisted version. Let $C_i = \{y^2 = g_i(x, z)\}$ for i = 1, 2, 3, represent elements of $S^{(2)}(E/K)$ with $[C_1] + [C_2] + [C_3] = 0$.

$$C_1 \times C_2 \times C_3 \xrightarrow{\mu} E$$

$$\downarrow^{\pi}$$

$$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

 $\mathcal{S} = \pi(\mu^{-1}(0_E)) \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ is defined by a (2,2,2)-form.

Twisted version. Let $C_i = \{y^2 = g_i(x, z)\}$ for i = 1, 2, 3, represent elements of $S^{(2)}(E/K)$ with $[C_1] + [C_2] + [C_3] = 0$.

$$C_1 \times C_2 \times C_3 \xrightarrow{\mu} E$$

$$\downarrow^{\pi}$$

$$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

 $S = \pi(\mu^{-1}(0_E)) \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ is defined by a (2,2,2)-form F_2 .

We can compute F_2 using

$$\sqrt{\prod_{i=1}^{3} \left(\frac{4\varphi g_i(x_i, z_i) + h_i(x_i, z_i)}{3}\right)} = F_0 + F_1 \varphi + F_2 \varphi^2$$

We can compute \langle , \rangle by taking

$$\gamma(x,z) = F_2(x,z;1,0;1,0)/z^2.$$

THE END

Tom Fisher On binary quartics and the Cassels-Tate pairing