Triangular modular curves of low genus Juanita Duque-Rosero

Joint work with John Voight

August 2022

Once upon a time, there were elliptic curves We consider the Legendre family of elliptic curves $E_t: y^2 = x(x-1)(x-t)$

for a parameter $t \neq 0, 1, \infty$.

- Cyclic covers of \mathbb{P}^1 branched at 4 points.
- Parametrization by the modular curve $X(2) = \mathbb{P}^{1}.$
- We can consider additional level structure. **Example:** specify a cyclic *N*-isogeny $(X_0(N))$ or an N-torsion point $(X_1(N))$.

Fundamental domain of $\Gamma(2)$. By Paul Kainberger.

Generalizing elliptic curves

We consider the family of curves:

$$X_t: y^m = x^{e_0}(x-1)^{e_1}(x-t)^{e_t}$$

with $t \neq 0, 1, \infty$.

- Cyclic covers of \mathbb{P}^1 that are branched at 4 points.
- X_t has a cyclic group of automorphisms of order m defined over $\mathbb{Q}(\zeta_m)$.
- $Prym(X_t)$ an isogeny factor of $Jac(X_t)$.

The family $Prym(X_t)$ extends to a family of abelian varieties over \mathbb{P}^1 .

Why triangular modular curves?

- [Cohen & Wolfart '90, Archinard '03]. The extension of the family $Prym(X_t)$ is parameterized by triangular modular curves.
- [Darmon '04]. Darmon's program: there is a dictionary between finite index subgroups of the triangle group $\Delta(a, b, c)$ and approaches to solve the generalized Fermat equation

 $x^a + y^b + z^c = 0.$

Main theorem

Theorem [DR & Voight '22]

For any $g \in \mathbb{Z}_{>0}$ there are finitely many Borel-type triangular modular curves $X_0(a, b, c; \mathfrak{p})$ of genus g with nontrivial prime level \mathfrak{p} . The number of curves $X_0(a, b, c; \mathfrak{p})$ of genus $g \leq 2$ are as follows:

- 56 curves of genus 0
- 130 curves of genus 1
- 180 curves of genus 2.

time countBoundedGenus(2); 56, 130, 180] Time: 0.130

We have a similar result for $X_1(a, b, c; \mathfrak{p})$

Triangle groups Definition

Let
$$a, b, c \in \mathbb{Z}_{\geq 2} \cup \{\infty\}$$
. The **triang**
a group with presentation:
$$\Delta(a, b, c) := \langle \delta_a, \delta_b, \delta_c | \delta_a^a = \delta_b^b = \delta_c^c = \delta_c^c$$

We only consider hyperbolic triangles. This is the triple (a, b, c) is hyperbolic:

$$\chi(a, b, c) := \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < \frac{1}{a}$$

< 0

Triangle groups Definition

Let
$$a, b, c \in \mathbb{Z}_{\geq 2} \cup \{\infty\}$$
. The **triang**
a group with presentation:
$$\Delta(a, b, c) := \langle \delta_a, \delta_b, \delta_c | \delta_a^a = \delta_b^b = \delta_c^c = \delta_c^c$$

We only consider hyperbolic triangles. This is the triple (a, b, c) is hyperbolic:

$$\chi(a, b, c) := \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < \frac{1}{a}$$

< 0

Triangular modular curves Construction

There is an embedding $\Delta \hookrightarrow \mathrm{PSL}_2(\mathbb{R})$ That can be explicitly given by square roots, $sin(\pi/s)$ and $cos(\pi/s)$ for $s \in \{a, b, c\}$.

A triangular modular curve TMC is given by the quotient $X(1) = X(a, b, c; 1) := \Delta \setminus \mathcal{H}$

Triangular modular curves Construction

There is an embedding $\Delta \hookrightarrow \mathrm{PSL}_2(\mathbb{R})$ That can be explicitly given by square roots, $sin(\pi/s)$ and $cos(\pi/s)$ for $s \in \{a, b, c\}$.

A triangular modular curve TMC is given by the quotient $X(1) = X(a, b, c; 1) := \Delta \setminus \mathcal{H}$

Level structure

Let p be a prime with $p \nmid 2abc$. We consider the number field

$$E = E(a, b, c) := \mathbb{Q}\left(\cos\left(\frac{2\pi}{a}\right), \ \cos\left(\frac{2\pi}{b}\right), \ \cos\left(\frac{2\pi}{c}\right), \ \cos\left(\frac{\pi}{a}\right)\cos\left(\frac{\pi}{b}\right)\cos\left(\frac{\pi}{c}\right)\right)$$

Let \mathfrak{p}/p be a prime of E. There is a homomorphism

We can decide between PSL₂ and PGL₂ from the behavior of \mathfrak{p} in an extension of E.

 $\pi_{\mathfrak{p}}: \Delta \to \mathrm{PXL}_2(\mathbb{Z}_E/\mathfrak{p}).$

Level structure

Note: we can extend this definition to primes \mathfrak{P} relatively prime to $\beta(a, b, c) \cdot \mathfrak{d}_{F|E}$.

 $\pi_{\mathfrak{p}}: \Delta \to \mathrm{PXL}_2(\mathbb{Z}_E/\mathfrak{p}).$

 $\Gamma(\mathfrak{p}) := \ker \pi_{\mathfrak{p}} \trianglelefteq \Delta.$

$X(\mathfrak{p}) = X(a, b, c; \mathfrak{p}) := \Gamma(\mathfrak{p}) \setminus \mathcal{H}$

Isomorphic curves

Example. Consider the triples (2,3,c) with $c = p^k, k \ge 1$ and $p \ge 5$ prime. Then $E_k := E(2,3,c) = \mathbb{Q}(\lambda_{2c}) = \mathbb{Q}(\zeta_{2c})^+.$ The prime p is totally ramified in E so $\mathbb{F}_{\mathfrak{p}_{k}} \simeq \mathbb{F}_{p}$ for $\mathfrak{p}_k \mid p$. Thus $X(2,3,p^k;\mathbf{p}_k) \simeq X(2,3,p;\mathbf{p}_1).$

 $X(2,3,p^{k};\mathbf{p}_{k})$ *X*(2,3,*p*; **p**) \mathbb{D}_{1}

Isomorphic curves

 $X(2,3,p^{k};\mathbf{p}_{k})$ X(2,3,p;p) \mathbb{P}

A hyperbolic triple (a, b, c) is admissible for p if the order of $\pi_{\mathfrak{v}}(\delta_s)$ is s for all $s \in \{a, b, c\}$.

For the rest of this talk (a, b, c) represents a hyperbolic admissible triple.

Congruence subgroups **Borel kind**

We define the TMC with level \mathfrak{p} : $X_0(\mathfrak{p}) = X_0(a, b, c; \mathfrak{p}) := \Gamma_0(\mathfrak{p}) \setminus \mathscr{H}.$

 $X(\mathfrak{p}) \to X_0(\mathfrak{p}) \to X(1)$

The maps to X(1) are Belyi maps!

We can also construct $X_1(a, b, c; \mathfrak{p})$ and we get

 $X(\mathfrak{p}) \to X_1(\mathfrak{p}) \to X_0(\mathfrak{p}) \to X(1)$

Let $H_0 \leq PXL_2(\mathbb{Z}_E/\mathfrak{p})$ be the image of the upper triangular matrices in $XL_2(\mathbb{Z}_E/\mathfrak{p})$. $\Gamma_0(\mathfrak{p}) = \Gamma_0(a, b, c; \mathfrak{p}) := \pi_{\mathfrak{p}}^{-1}(H_0).$

Ramification

admissible triple. Let $\sigma_s \in G$ have order $s \ge 2$ and if s = 2 suppose p = 2. Then the action of σ_{s} on G/H_{0} has:

and we understand the ramification of the cover

Lemma. Let $G = PXL_2(\mathbb{F}_q)$ with $q = p^r$ for p prime. (a, b, c) is a hyperbolic

- orbits of length *s* and $\begin{cases} 0 \text{ fixed points if } s \mid (q+1), \\ 1 \text{ fixed point if } s = p, \\ 2 \text{ fixed points if } s \mid (q-1). \end{cases}$

In particular *s* must divide one between q + 1, p, q + 1 for all $s \in \{a, b, c\}$

 $X_0(\mathfrak{p}) \to \mathbb{P}^1.$

A bound on the number of TMCs of bounded genus

Theorem [DR & Voight '22]. Let $g_0 \ge 0$ be the genus of

 $X_0(a, b, c; \mathfrak{p})$. Recall that $q := \#\mathbb{F}_{\mathfrak{p}}$. Then

In particular the number of TMCs $X_0(a, b, c; \mathfrak{p})$ of genus g_0 is finite.

We obtain an explicit formula for the genus

 $g(X_0(a, b, c; \mathfrak{p})).$

 $q \le \frac{2(g_0 + 1)}{|\chi(a, b, c)|} + 1.$

A bound on the number of TMCs of bounded genus

Theorem [DR & Voight '22]. Let $g_0 \ge 0$ be the genus of

 $X_0(a, b, c; \mathfrak{p})$. Recall that $q := \#\mathbb{F}_{\mathfrak{p}}$. Then

We obtain an explicit formula for the genus

- $q \le \frac{2(g_0 + 1)}{|-1/42|} + 1.$
- In particular the number of TMCs $X_0(a, b, c; \mathfrak{p})$ of genus g_0 is finite.

 $g(X_0(a, b, c; \mathfrak{p})).$

Enumeration algorithm Main algorithm

- Compute the genus g of $X_0(a, b, c; \mathfrak{p})$ by checking divisibility.

Magma implementation

> ti	<pre>> time countBoundedGenus(100);</pre>																
[56	5,	130,	, 180,	206,	232,	254,	245,	285,	289,	320,	298,	335,	308,	363,	329,	320,	
362,	, 3	398,	309,	428,	365,	389,	398,	422,	366,	442,	412,	440,	392,	489,	353,	502,	430
432,	, 4	67,	455,	402,	500,	461,	494,	417,	531,	369,	520,	469,	445,	491,	566,	438,	559
459,	, 5	507 ,	485,	568,	472,	558,	485,	500,	499,	595,	369,	574,	515,	506,	534,	562,	463
600,	, 4	96,	590,	503,	685,	469,	598,	562,	570,	617,	637,	510,	699,	581,	590,	595,	700
552,	, 6	557 ,	583,	619,	549,	691,	485,	659,	600,	621,	605,	611,	463,	682,	574,	617,	526
]																	
Time	9:	77.3	310														

Scan me!

Main theorem

Theorem [DR & Voight '22]

 $X_0(a, b, c; \mathfrak{p})$ of genus $g \leq 2$ are as follows:

- 56 curves of genus 0
- 130 curves of genus 1
- 180 curves of genus 2.

For any $g \in \mathbb{Z}_{>0}$ there are finitely many Borel-type triangular modular curves $X_0(a, b, c; \mathfrak{p})$ of genus g with nontrivial prime level \mathfrak{p} . The number of curves

Future work

Compute explicit lists for composite level.

genus.

defining polynomial $x^4 - 2x^3 + x^2 - 2x + 1$. We have

Conjecture. For all $g \in \mathbb{Z}_{>0}$, there are only finitely many admissible triangular modular curves of genus g of nontrivial level $\mathfrak{N} \neq (1)$ with $\Delta(a, b, c)$ maximal.

- Find models using Belyi maps and compute rational points of TMCs of low
- **Example:** the curve $X_0(3,3,4; \mathfrak{p}_7)$ is defined over the number field k with $X_0(3,3,4; p_7) \simeq \mathbb{P}^1_k.$

Output for $X_0(a, b, c; p)$ of genus 0

а	b	С	р		
2	3	7	7		
2	3	7	2		
2	3	7	13		
2	3	7	29		
2	3	7	43		
2	3	8	7		
2	3	8	3		
2	3	8	17		
2	3	8	5		
2	3	9	19		
2	3	9	37		
2	3	10	11		
2	3	10	31		
2	3	12	13		
2	3	12	5		

2	3	13	13
2	3	15	2
2	3	18	19
2	4	5	5
2	4	5	3
2	4	5	11
2	4	5	41
2	4	6	5
2	4	6	7
2	4	6	13
2	4	8	3
2	4	8	17
2	4	12	13
2	5	5	5
2	5	5	11
2	5	10	11

2	6	6	7
2	6	6	13
2	6	7	7
2	8	8	3
3	3	4	7
3	3	4	3
3	3	4	5
3	3	5	2
3	3	6	13
3	3	7	7
3	4	4	5
3	4	4	13
3	6	6	7
4	4	4	3
4	4	5	5
2	3	∞	2

Scan me!

2	3	∞	3
2	3	∞	5
2	4	∞	3
2	5	∞	3
2	∞	∞	3
3	3	∞	3
3	∞	∞	2
3	∞	∞	3
∞	∞	∞	3