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Once upon a time, there were elliptic curves

We consider the Legendre family of elliptic curves
E, : v* =x(x — D(x — 1)

for a parameter t = 0, 1, oo.

e Cyclic covers of | I branched at 4 points.
 Parametrization by the modular curve

X?2) =Pl
* \We can consider additional level structure.

Example: specify a cyclic N-isogeny

(Xo(IN)) or an N-torsion point (X;(V)).
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Fundamental domain of I'(2). By Paul Kainberger.



Generalizing elliptic curves

We consider the family of curves:
X, y" =x%x — 1)1(x — 1)~
with ¢ £ 0, 1, 0.

e Cyclic covers of | I that are branched at 4 points.

» X, has a cyclic group of automorphisms of order m defined over Q({,).

» Prym(X) an isogeny factor of Jac(X,).

The family Prym(X)) extends to a family of abelian varieties over P!



Why triangular modular curves?

* [Cohen & Wolfart 90, Archinard ’03]. The extension of the family
Prym(X)) is parameterized by triangular modular curves.

 [Darmon ’04]. Darmon’s program: there is a dictionary between finite

index subgroups of the triangle group A(a, b, ¢) and approaches to
solve the generalized Fermat equation

x4+ 9P +7¢=0.



Main theorem

i, Theorem [DR & Voight ’'22] +
|

”} Forany g &€ Z>o there are finitely many Borel-type (
| triangular modular curves X,(a, b, c; p) of genus g |

| with nontrivial prime level p. The number of curves !
i Xo(a b, c; p) of genus g < 2 are as follows: i

|

|

|
» 56 curves of genus 0 1
|

|

;
‘l » 180 curves of genus 2.
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» 130 curves of genus 1 {

> time countBoundedGenus(2):;
[ 56, 130, 180 ]

Time: 0.130

We have a similar result
for X,(a, b, c; p)



Triangle groups

Definition

_— e ———— —_—

e —e e = E— — —

%’ Let a, b C E Z>2 U 100 }. The trlangle group is :

} a group with presentation: |

A(abc)—( éb,éléa— = 0. =0,0,0. = 1)

e ————— — —— —_ = — — . —_. | - _— —
P m—E —_ =

= = >

We only consider hyperbolic triangles. This is the triple
(a, b, ¢) is hyperbolic:

1 1 1
ya,b,c) =—+—+—-1<0
a b c
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Triangular modular curves

Construction

There Is an embedding
A < PSL,(R)

That can be explicitly given by square roots,
sin(z/s) and cos(xz/s) for s € {a, b, c}.

e e

;:A trianghlér modular curve TMC is :
| given by the quotient “‘

X(1) =X(a,b,c; 1) := A\H Rh A
e ———— e - — — ——— — — = — =0 = - Triang|e
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Triangular modular curves

Construction

There Is an embedding
A < PSL,(R)

That can be explicitly given by square roots,
sin(z/s) and cos(xz/s) for s € {a, b, c}.

*A trlangular modular curve TMC IS ‘
”} given by the quotient n‘

‘X(l)—X(abc 1) A\?/

)_____d___-__-‘




Level structure

Let p be a prime with p 1 2abc. We consider the number field

(o (5) o (5) o (F) eon(F)eos(F) ()
E=E@a,b,c):=Q(cos|— ), cos{— ), cos{ — ), cos| —)cos|—]cos| — .
a b C a b C

Let p/p be a prime of E. There is a homomorphism

m, » A = PXL,(Zg/p).

We can decide between PSL., and PGL, from the behavior of p in an extension of L.



Level structure

my, + A — PXLy(Zg/p).

- e _ ———— — —_
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The prlnmpal congruence subgroup of level p IS:
['(p) .= kerytp < A.

The TMC of level } is: {t

J X(p) = X(a b C; P) = F(P)\% {

!
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Isomorphic curves

Example. Consider the triples (2,3,c) with

c =p* k> 1andp > 5 prime. Then

E, = E2,3,c) = Q) = Q5)"

The prime p is totally ramified in £ so [-pk

for p, | p. Thus

X(2,3.p% ) = X(12,3.p; py).

~ [F




Isomorphic curves

|
:
X(2,3,p% po) ,admissible for D if the order of %‘

—_— . ——

‘A hyperbolic triple (a, b, ¢) is

| ()]

XC35:9) ﬂp(és) is s foralls € {a,b,c}. B
| -
pl For the rest of this talk

(a, b, ¢) represents a

hyperbolic admissible triple.



Congruence subgroups
Borel kind

Let Hy, < PXL,(Zy/p) be the image of the upper triangular matrices in XL,(Z/p).
Co(p) = Tyla, b, c; p) := m, ' (Hy).

= _ _ — S ——————— —_— - — —

1; We define the TMC with level p: 3 = ‘ } X (P)
W |
|

X(p) = Xo(p) — X(D) '

__-*
The maps to X(1) are Belyi maps! ;!/Bé sé XO(F)




Ramification

Lemma. Let G = PXLZ([:q) with g = p' for p prime. (a, b, ¢) is a hyperbolic
admissible triple. Let 6, € G have order s > 2 and if s = 2 suppose p = 2.
Then the action of 6, on G/H), has:

0 fixed pointsif s | (g + 1),

orbits of length s and < 1 fixed point if s = p,
2 fixed points if § \ (q - 1).

_— - — — —_—
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f» In partlcular s must d|V|de one between ¢ + 1 P, q+ 1 for aII ) E {a b c}
| and we understand the ramification of the cover




A bound on the number of TMCs of bounded genus

(Theorem [DR & Voight *22]. Let g, > 0 be the genus of
XO(a, b, c; p). Recall that g := #[,,. Then 4
i

p

2(gy+ 1

| ~ |x(a,b,0)]
In partlcular the number of T|\/|CS Xo(a b C; p) of genus go S flnlte

\ - — —_— — e e
=

We obtain an explicit formula for the genus
g(X()(aa ba C, ‘p))
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Enumeration algorithm

Main algorithm

—

e —— e —

IﬂpUt go = Z>O *
A

k()utput Alist of (a, b, c; p) such that X,(a, b, c; p) has genus ‘
'bounded by gy where p is a prime of E(a, b, ¢) of norm p. l

_

(
| 1. Generate a list of possible g values. g
- - L |

2. For each ¢ find all g-admissible hyperbolic triples (a, b, ¢). '
3. Compute the genus g of X(a, b, c; p) by checking divisibility. :‘

|4. Ifg < go add (a b C; p) to the list lowGenus.
=




Magma implementation

i .

Scan me!

> time countBoundedGenus(100);

[ 56, 130, 180, 206, 232, 254, 245, 285, 289, 320, 298, 335, 308, 363, 329, 320,
362, 398, 309, 428, 365, 389, 398, 422, 366, 442, 412, 440, 392, 489, 353, 502,
432, 467, 455, 402, 500, 461, 494, 417, 531, 369, 520, 469, 445, 491, 566, 438,
459, 507, 485, 568, 472, 558, 485, 500, 499, 595, 369, 574, 515, 506, 534, 562,

600, 496, 590, 503, 685, 469, 598, 562, 570, 617, 637, 510, 699, 581, 590, 595,
552, 657, 583, 619, 549, 691, 485, 659, 600, 621, 605, 611, 463, 682, 574, 617,

]
Time: 77.310




Main theorem

‘Theorem [DR & Voight ’22]
ﬂ“ Forany g &€ Zzo there are finitely many Borel-type triangular modular curves ;

| Xy(a, b, c; p) of genus g with nontrivial prime level p. The number of curves |
Xo(a, b, c; p) of genus g < 2 are as follows:

|

« 56 curves of genus 0
|

|

__e

e 130 curves of genus 1 |
« 180 curves of genus 2.




Future work

Compute explicit lists for composite level.

Find models using Belyi maps and compute rational points of TMCs of low
genus.

Example: the curve X(3,3,4; p-) is defined over the number field k with
defining polynomial x* — 2x° + x? — 2x + 1. We have

7 _ - =y e — S — ——

= J— _—— _— —
—————— — = —  — — —— — —— -
—_—

» Conjecture For aII g E Z>O, there are only flnltely many adm|SS|bIe
trlangular modular curves of genus g of nontrivial level )¢ # (1) with
} A(a D, C) maximal.

— = —_— *_)n
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p) of genus 0

b

Output for X,(a, b, ¢

Scan me!
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