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Fun with L-functions

Lattice Λ magic  orthogonal modular forms φi .

Example (n = 4,D = 372)

For Λ with Gram matrix


2 0 1 1
0 4 1 2
1 1 10 1
1 2 1 20

 we get

Lp(φ1,T ) = (1− T )(1− pT )2(1− p2T )

Lp(φ2,T ) = (1− (a2
p − 2p)T + p2T 2)(1− pT )2

Lp(φ3,T ) = (1− (b2
p − 2p)T + p2T 2)(1− pT )2

Lp(φ4,T ) = (1− pbpT + p3T 2)(1− bpT + pT 2)

where ap, bp are coefficients of 37.2.a.a and 37.2.a.b.

time (p < 100): 109.15s (2.3GHz 8-Core Intel Core i9)

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/b/


Symmetric Square L-functions

Lattice Λ magic  orthogonal modular forms φi .

Example (n = 4,D = 372)

For Λ with Gram matrix


2 0 1 1
0 4 1 2
1 1 10 1
1 2 1 20

 we get

Lp(φ1,T ) = (1− T )(1− pT )2(1− p2T )

Lp(φ2,T ) = (1− pT )Lp(Sym2(f ),T )

Lp(φ3,T ) = (1− pT )Lp(Sym2(g),T )

Lp(φ4,T ) = Lp(E ⊗ f ,T )

where f , g ∈ S2(37) are 37.2.a.a and 37.2.a.b.

time (p < 20): 1.75s (2.3GHz 8-Core Intel Core i9)
time (p < 100): 109.15s (2.3GHz 8-Core Intel Core i9)

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/b/


Fun with L-functions (Rank 6)

Example (n = 6,D = 39)

For Λ =



2 1 1 1 0 0
1 2 1 0 0 0
1 1 2 0 0 0
1 0 0 4 0 0
0 0 0 0 2 1
0 0 0 0 1 2

 we find a φ with

Lp(φ1,T ) = (1− χ(p)p2T )
4∏

i=0

(1− piT )

Lp(φ2,T ) = Lp(χ⊗ Sym2(f ),T )
3∏

i=1

(1− piT )

where f ∈ S3(39, χ) is 39.3.d.c and χ = χ−39.

time (p < 20): 4281.50s (2.3GHz 8-Core Intel Core i9)

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/39/3/d/c/


Fun with L-functions (Rank 8)

Example (n = 8,D = 53)

For Λ of rank 8 and discriminant 53 we get

Lp(φ,T ) = (1− χ(p)p3T )
4∏

i=2

(1− piT )Gp(T )

where Gp(T ) is irreducible with degGp(T ) = 4 and χ = χ53.

time (p < 10): 354957.51 (2.3GHz 8-Core Intel Core i9)

How do we prove the identities in the first two examples?

Where does Gp(T ) come from?



Genus and Class set

The genus of Λ ⊆ V is

gen(Λ) := {Π ⊆ V : Λp ' Πp for all p}.

The class set cls(Λ) = gen(Λ)/ ' is the set of (global) isometry
classes in gen(Λ).



Neighbors

Kneser’s theory of pk -neighbors gives an effective method to
compute the class set; it also gives a Hecke action!
Let p - disc(Λ) be a prime; p = 2 is OK.
We say that an integral lattice Π ⊆ V is a pk-neighbor of Λ, and
write Π ∼pk Λ if

Λ/(Λ ∩ Π) ' (Z/pZ)k ' Π/(Λ ∩ Π),

If Λ ∼pk Π then Π ∈ gen(Λ).
Moreover, there exists S such that every [Π] ∈ cls(Λ) is an
iterated S-neighbor of Λ.

Λ ∼p1 Λ1 ∼p2 · · · ∼pr Λr ' Π

with pi ∈ S . Typically may take S = {p}.



Example - Computing the class set

Let

Λ =


2 1 0 1
1 2 0 0
0 0 2 1
1 0 1 6


Thus disc(Λ) = 29. We have # cls(Λ) = 2, with the nontrivial
class represented by the 2-neighbor

Λ′ =
1

2
Z(e2 + e4) + 2Ze3 + Ze1 + Ze4.



Orthogonal modular forms

The space of orthogonal modular forms of level Λ is

M(Λ) := {φ : cls(Λ)→ C} ' Ch(Λ)

For p - disc(Λ) define the Hecke operator

Tp,k : M(Λ)→ M(Λ)

φ 7→

[Λ′] 7→
∑

Π′∼
pk

Λ′

φ([Π′])


The Hecke operators commute and are self-adjoint, hence there is
a basis of simultaneous eigenvectors - eigenforms. (Gross, 1999)



Example - Hecke action

Let Λ be as before with discriminant 29. By checking isometry we
compute w.r.t. basis [Λ′], [Λ]

[T2] =

(
1 2
4 3

)
, [T3] =

(
4 3
6 7

)
, [T5] =

(
18 9
18 27

)
, . . .

The constant function φ1 = [Λ] + [Λ′] is an Eisenstein series
with Tp(φ1) = (p2 + (1 + χ29(p)) + 1)φ1. Another eigenvector is
φ2 = [Λ]− 2[Λ′], with Tp(φ2) = λpφ2

λ2 = −1, λ3 = 1, λ5 = 9, λ7 = 4, λ11 = 17, . . .

We match them with the Hilbert modular form labeled
2.2.29.1-1.1-a in the LMFDB.

https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.29.1/holomorphic/2.2.29.1-1.1-a


Back to L-functions

Letting D∗ = (−1)
n
2 D there is a natural family of theta maps:

θ(g) : M(Λ)→ M n
2
(Γ

(g)
0 (D), χD∗).

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022),
consequence of Rallis (1982))

If n is even, φ is an eigenform and f = θ(g)(φ) 6= 0 with 2g < n:

L(φ, s) = L
(
χD∗ ⊗ f , std, s −

(n
2
− 1
)) ( n

2
−1)−g∏

i=g−( n
2
−1)

ζ
(
s + i −

(n
2
− 1
))

.

If g = 1, then obtain L(χD ⊗ Sym2(f ), s) and zeta factors so

λp,1 = a2
p − χD∗(p)p

n
2
−1 + p

(
pn−3 − 1

p − 1

)
where ap are the eigenvalues of f .



Application

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022))

Let Λ = A6⊕A2. There are 3 eigenforms in M(Λ) with eigenvalues

p7 − 1

p − 1
+χ(p)p3,

p(p5 − 1)

p − 1
+a2

p−χ(p)p3,
p(p5 − 1)

p − 1
+b2

p−χ(p)p3

for Tp with p 6= 3, 7, where χ = χ21, and ap, bp are the
eigenvalues of 21.4.c.a and 21.4.c.b, respectively.
Equivalently, there are explicit A1,A2,A3 ∈ M3(Q) such that

Tp = λ
(1)
p A1 + λ

(2)
p A2 + λ

(3)
p A3.

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/21/4/c/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/21/4/c/b/


Higher depth

The depth dφ of φ ∈ M(Λ) is the smallest integer such that
θ(dφ)(φ) 6= 0.

Example (r = 6,D = 75)

For Λ = A4 ⊕ Λ15 there is a φ such that dφ = 2.
It appears that

λp,1 = (p + 1)ap + p2(1 + χ−3(p))

with ap coming from f ∈ S4(5) (5.4.a.a).

It turns out that θ(2)(φ) is the Saito-Kurokawa lift of f so that

L(φ, s) = L(χ−3, s − 2)L(χ−3 ⊗ f , s)L(χ−3 ⊗ f , s − 1)ζ(s − 2)

In general, Ikeda lifts write L(φ, s) as a product of GL1 and GL2

L-functions, i.e. λp,k has a formula in terms of modular forms and
Dirichlet characters.

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5/4/a/a/


Back to rank 8, disc 53

Recall we have

Lp(φ,T ) = (1− χ(p)p3T )
4∏

i=2

(1− piT )Gp(T )

where Gp(T ) is irreducible with degGp(T ) = 4 and χ = χ53.
Moreover, F = θ(2)(φ) 6= 0, so that

(1− χ(p)p3T )Gp(T ) = Lp(χ⊗ F , std, p3T ).

Since Gp(T ) is irreducible, F is a non-lift Siegel modular form and

λp,1 = b1,p2 + p3 + p2

(
p3 − 1

p − 1

)
where b1,p2 is the T1,p2 eigenvalue of F .



Eisenstein Congruences

Example (Chenevier and Lannes (2019))

Consider Λ = E8 ⊕ E8. Then cls(Λ) = {[E8 ⊕ E8], [E16]} and we
compute

T2,1 =

(
20025 18225
12870 14670

)
The constant function φ1 = [E8 ⊕ E8] + [E16] is an Eisenstein

series with Tp(φ1) =
(
p7 + p15−1

p−1

)
φ1. Another eigenvector is

φ2 = 405[E8 ⊕ E8]− 286[E16], with Tp(φ2) = λpφ2 where

λp = τ(p)

(
p4 − 1

p − 1

)
+ p7 + p4

(
p7 − 1

p − 1

)
Since 286φ1 + φ2 ≡ 0 mod 691, for all p we have

λp ≡
(
p7 +

p15 − 1

p − 1

)
mod 691⇒ τ(p) ≡ 1 + p11 mod 691



Back to rank 8, disc 53 (yes, again!)

Example (r = 8,D = 53)

We find φ1 of depth dφ1 = 1 and φ2 of depth dφ2 = 2 such that

273φ1 + φ2 ≡ 0 mod q

with q | 397. This implies λp,k ≡ µp,k mod q for all p, k.

b1,p2 + p3 + p2

(
p3 − 1

p − 1

)
≡ a2

p − χ(p)p3 + p

(
p5 − 1

p − 1

)
mod q′

b1,p2 ≡ a2
p − (1 + χ(p))p3 + p + p5 mod q′



Why 397?

It appears that

Nm

(
L(Sym2(f ), 1)

π2L(Sym2(f ), 3)

)
=

24250736770795028

2197125
≡ 0 mod 397,

suggesting that ordq(Lalg(Sym2(f ), 6)) > 0



How did we know?

Conjectural genus 2 congruences of Mizumoto-Kurokawa type:

bp ≡ ap(1 + pk−2) mod q,

with ordq(Lalg(Sym2(f ), j + 2k − 2)) > 0.

We see the “Λ2 − triv” of a non-trivial character version! (F
contributes via “standard” GL5 L-function, not the spinor one).

Our data allowed us to conjecture new congruences of the shape:

b1,p2 ≡ a2
p − χ(p)pj+k−1 − pj+2k−5 + pj+2k−3 + pj+1 mod q′,

with χ quadratic, f ∈ Sj+k(Γ0(N), χ), F ∈ Sj ,k(Γ
(2)
0 (N), χ) and q

as above.



Algorithmic aspects

Main workhorse - computing Tpk ([Λ]).

Naive complexity - O(hpk(n−k−1)) isometry tests.
Theoretically, O(pk(n−k−1)) using a canonical form. (Sikirić,
Haensch, Voight, and van Woerden, 2020)
In practice, better to cache via theta series.
Time/Memory Trade-Off - use orbits under O(Λ).

Computing Lp(f ) is dominated by O(hpn(n−2)/4).

Genus enumeration

Computing O(Λ) is done by enumerating short vectors.
Problem when Λ′ ⊆ Λ has # O(Λ′) large.
Solved by directly finding root sublattices.



Thank you! Questions?

Magma code is available at
https://github.com/assaferan/ModFrmAlg.

> AttachSpec("ModFrmAlg.spec");

> Q := SymmetricMatrix([2,0,2,0,1,34,1,0,0,34]);

> M := OrthogonalModularForms(Q);

> vs := HeckeEigenforms(M);

> assert exists(v){v : v in vs |

HeckeEigenvalue(v,2) eq -1};

> B := 20;

> evs := HeckeEigensystem(v,1 : Precision := B);

> lpolys := [LPolynomial(v, p) : p in PrimesUpTo(B)];

> Theta1(v);

https://github.com/assaferan/ModFrmAlg
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