Definite orthogonal modular forms: Computations, Excursions and Discoveries

E. Assaf, D. Fretwell, C. Ingalls, A. Logan, S. Secord, J. Voight

Fifteenth Algorithmic Number Theory Symposium, University of Bristol

August 2022

LANGLANDS CHO presents GHO $\frac{1}{2}FUN\frac{1}{2}WTH$ $\frac{1}{2}FUNCTIONS$

Fun with L-functions

Lattice Λ magic \leadsto orthogonal modular forms $\phi_i.$

Example $(n = 4, D = 37^2)$ For Λ with Gram matrix $\sqrt{ }$ $\overline{}$ 2 0 1 1 0 4 1 2 1 1 10 1 1 2 1 20 \setminus we get $L_p(\phi_1, T) = (1 - T)(1 - pT)^2(1 - p^2T)$ $L_p(\phi_2, T) = (1 - (a_p^2 - 2p)T + p^2T^2)(1 - pT)^2$ $L_{\rho}(\phi_3,\,T)=(1-(b_{\rho}^2-2\rho)\,T+\rho^2\,T^2)(1-\rho\,T)^2$ $L_p(\phi_4, T) = (1 - pb_p T + p^3 T^2)(1 - b_p T + p T^2)$ where a_p , b_p are coefficients of [37.2.a.a](https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/a/) and [37.2.a.b.](https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/b/)

time $(p < 100)$: 109.15s (2.3GHz 8-Core Intel Core i9)

Symmetric Square L-functions

Lattice Λ magic \leadsto orthogonal modular forms $\phi_i.$

 $\sqrt{ }$

 $\overline{}$

Example $(n = 4, D = 37^2)$

For Λ with Gram matrix

$$
\begin{array}{cccc}\n2 & 0 & 1 & 1 \\
0 & 4 & 1 & 2 \\
1 & 1 & 10 & 1 \\
1 & 2 & 1 & 20\n\end{array}
$$
 we get

$$
L_p(\phi_1, T) = (1 - T)(1 - pT)^2(1 - p^2T)
$$

\n
$$
L_p(\phi_2, T) = (1 - pT)L_p(\text{Sym}^2(f), T)
$$

\n
$$
L_p(\phi_3, T) = (1 - pT)L_p(\text{Sym}^2(g), T)
$$

\n
$$
L_p(\phi_4, T) = L_p(E \otimes f, T)
$$

where $f, g \in S_2(37)$ are [37.2.a.a](https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/a/) and [37.2.a.b.](https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/b/)

time $(p < 20)$: 1.75s (2.3GHz 8-Core Intel Core i9) time $(p < 100)$: 109.15s (2.3GHz 8-Core Intel Core i9)

Fun with L-functions (Rank 6)

Example
$$
(n = 6, D = 39)
$$

\nFor $\Lambda = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix}$ we find a ϕ with
\n
$$
L_p(\phi_1, T) = (1 - \chi(p)p^2T) \prod_{i=0}^{4} (1 - p^i T)
$$
\n
$$
L_p(\phi_2, T) = L_p(\chi \otimes \text{Sym}^2(f), T) \prod_{i=1}^{3} (1 - p^i T)
$$

where $f \in S_3(39, \chi)$ is [39.3.d.c](https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/39/3/d/c/) and $\chi = \chi_{-39}$.

time $(p < 20)$: 4281.50s (2.3GHz 8-Core Intel Core i9)

Example ($n = 8, D = 53$)

For Λ of rank 8 and discriminant 53 we get

$$
L_p(\phi, T) = (1 - \chi(p)p^3 T) \prod_{i=2}^4 (1 - p^i T) G_p(T)
$$

where $G_p(T)$ is irreducible with deg $G_p(T) = 4$ and $\chi = \chi_{53}$.

time $(p < 10)$: 354957.51 (2.3GHz 8-Core Intel Core i9)

- How do we prove the identities in the first two examples?
- Where does $G_p(T)$ come from?

The **genus** of $\Lambda \subseteq V$ is

$$
\text{gen}(\Lambda):=\{\Pi\subseteq V:\Lambda_{p}\simeq\Pi_{p}\text{ for all }p\}.
$$

The **class set** $\text{cls}(\Lambda) = \text{gen}(\Lambda) / \simeq$ is the set of (global) isometry classes in gen(Λ).

Kneser's theory of p^k -neighbors gives an effective method to compute the class set; it also gives a Hecke action! Let $p \nmid \text{disc}(\Lambda)$ be a prime; $p = 2$ is OK. We say that an integral lattice $\Pi\subseteq V$ is a $\boldsymbol{p}^k\text{-neighbor}$ of Λ, and write $\sqcap\sim_{\rho^k}\Lambda$ if

$$
\Lambda/(\Lambda\cap\Pi)\simeq (\mathbb{Z}/p\mathbb{Z})^k\simeq \Pi/(\Lambda\cap\Pi),
$$

If $Λ \sim_{p^k} ∩$ then $Π ∈$ gen(Λ). Moreover, there exists S such that every $[\Pi] \in \text{cls}(\Lambda)$ is an iterated S-neighbor of Λ.

$$
\Lambda \sim_{p_1} \Lambda_1 \sim_{p_2} \cdots \sim_{p_r} \Lambda_r \simeq \Pi
$$

with $p_i \in S$. Typically may take $S = \{p\}$.

Let

$$
\Lambda = \left(\begin{array}{cccc} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 6 \end{array}\right)
$$

Thus disc(Λ) = 29. We have $\#$ cls(Λ) = 2, with the nontrivial class represented by the 2-neighbor

$$
\Lambda'=\frac{1}{2}\mathbb{Z}(e_2+e_4)+2\mathbb{Z}e_3+\mathbb{Z}e_1+\mathbb{Z}e_4.
$$

The space of **orthogonal modular forms** of level Λ is

$$
M(\Lambda):=\{\phi: \mathsf{cls}(\Lambda) \to \mathbb{C}\} \simeq \mathbb{C}^{h(\Lambda)}
$$

For $p \nmid \text{disc}(\Lambda)$ define the **Hecke operator**

$$
\mathcal{T}_{p,k}: M(\Lambda) \to M(\Lambda)
$$

$$
\phi \mapsto \left([\Lambda'] \mapsto \sum_{\Pi' \sim_{p^k} \Lambda'} \phi([\Pi']) \right)
$$

The Hecke operators commute and are self-adjoint, hence there is a basis of simultaneous eigenvectors - eigenforms. [\(Gross, 1999\)](#page-21-0)

Let Λ be as before with discriminant 29. By checking isometry we compute w.r.t. basis $[\Lambda'], [\Lambda]$

$$
[\mathcal{T}_2]=\left(\begin{array}{cc}1&2\\4&3\end{array}\right), [\mathcal{T}_3]=\left(\begin{array}{cc}4&3\\6&7\end{array}\right), [\mathcal{T}_5]=\left(\begin{array}{cc}18&9\\18&27\end{array}\right),\ldots
$$

The constant function $\phi_1 = [\Lambda] + [\Lambda']$ is an **Eisenstein series** with $\mathcal{T}_{\rho}(\phi_1)=(\rho^2+(1+\chi_{29}(\rho))+1)\phi_1.$ Another eigenvector is $\phi_2 = [\Lambda] - 2[\Lambda'],$ with $T_p(\phi_2) = \lambda_p \phi_2$

$$
\lambda_2=-1, \lambda_3=1, \lambda_5=9, \lambda_7=4, \lambda_{11}=17, \ldots
$$

We match them with the **Hilbert modular form** labeled [2.2.29.1-1.1-a](https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.29.1/holomorphic/2.2.29.1-1.1-a) in the LMFDB.

Back to L-functions

Letting $D^* = (-1)^{\frac{n}{2}}D$ there is a natural family of theta maps:

$$
\theta^{(g)}: M(\Lambda) \to M_{\frac{n}{2}}(\Gamma_0^{(g)}(D), \chi_{D^*}).
$$

Theorem [\(A., Fretwell, Ingalls, Logan, Secord, and Voight \(2022\)](#page-21-1), consequence of [Rallis \(1982\)](#page-21-2))

If n is even, ϕ is an eigenform and $f = \theta^{(\mathcal{g})}(\phi) \neq 0$ with $2 \mathcal{g} < n$:

$$
\mathsf L(\phi,s)=\mathsf L\left(\chi_{D^*}\otimes f, std, s-\left(\frac{n}{2}-1\right)\right)\prod_{i=g-\left(\frac{n}{2}-1\right)}^{\left(\frac{n}{2}-1\right)-g}\zeta\left(s+i-\left(\frac{n}{2}-1\right)\right).
$$

If $\displaystyle{g=1,}$ then obtain $\displaystyle{L(\chi_D\otimes \textsf{Sym}^2(f),s)}$ and zeta factors so

$$
\lambda_{p,1} = a_p^2 - \chi_{D^*}(p) p^{\frac{n}{2}-1} + p \left(\frac{p^{n-3} - 1}{p-1} \right)
$$

where a_p are the eigenvalues of f.

Theorem [\(A., Fretwell, Ingalls, Logan, Secord, and Voight \(2022\)](#page-21-1)) Let $\Lambda = A_6 \oplus A_2$. There are 3 eigenforms in $M(\Lambda)$ with eigenvalues p^7-1 $\frac{\rho^7-1}{\rho-1}+ \chi(\rho)\rho^3, \ \frac{\rho(\rho^5-1)}{\rho-1}$ $\frac{(p^5-1)}{p-1}+a^2_p-\chi(p)p^3,~\frac{p(p^5-1)}{p-1}$ $\frac{p-1}{p-1} + b_p^2 - \chi(p)p^3$ for T_p with $p \neq 3, 7$, where $\chi = \chi_{21}$, and a_p, b_p are the eigenvalues of [21.4.c.a](https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/21/4/c/a/) and [21.4.c.b](https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/21/4/c/b/), respectively. Equivalently, there are explicit $A_1, A_2, A_3 \in M_3(\mathbb{Q})$ such that

$$
T_p = \lambda_p^{(1)} A_1 + \lambda_p^{(2)} A_2 + \lambda_p^{(3)} A_3.
$$

Higher depth

The **depth** d_{ϕ} of $\phi \in M(\Lambda)$ is the smallest integer such that $\theta^{(d_{\phi})}(\phi) \neq 0.$

Example $(r = 6, D = 75)$

For $\Lambda = A_4 \oplus \Lambda_{15}$ there is a ϕ such that $d_{\phi} = 2$. It appears that

$$
\lambda_{\boldsymbol{\mathcal{p}},1}=(\boldsymbol{\mathcal{p}}+1)a_{\boldsymbol{\mathcal{p}}}+\boldsymbol{\mathcal{p}}^2(1+\chi_{-3}(\boldsymbol{\mathcal{p}}))
$$

with a_p coming from $f \in S_4(5)$ [\(5.4.a.a\)](https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5/4/a/a/).

It turns out that $\theta^{(2)}(\phi)$ is the Saito-Kurokawa lift of f so that

$$
L(\phi,s)=L(\chi_{-3},s-2)L(\chi_{-3}\otimes f,s)L(\chi_{-3}\otimes f,s-1)\zeta(s-2)
$$

In general, Ikeda lifts write $L(\phi, s)$ as a product of GL_1 and GL_2 L-functions, i.e. $\lambda_{p,k}$ has a formula in terms of modular forms and Dirichlet characters.

Recall we have

$$
L_p(\phi, T) = (1 - \chi(p)p^3 T) \prod_{i=2}^4 (1 - p^i T) G_p(T)
$$

where $G_p(T)$ is irreducible with deg $G_p(T) = 4$ and $\chi = \chi_{53}$. Moreover, $F=\theta^{(2)}(\phi)\neq 0$, so that

$$
(1 - \chi(p)p^{3}T)G_{p}(T) = L_{p}(\chi \otimes F, \text{std}, p^{3}T).
$$

Since $G_p(T)$ is irreducible, F is a non-lift Siegel modular form and

$$
\lambda_{\rho,1} = b_{1,\rho^2} + \rho^3 + \rho^2 \left(\frac{\rho^3 - 1}{\rho - 1} \right)
$$

where b_{1,p^2} is the \mathcal{T}_{1,p^2} eigenvalue of $\mathcal{F}.$

Example [\(Chenevier and Lannes \(2019\)](#page-21-3))

Consider $\Lambda = E_8 \oplus E_8$. Then $cls(\Lambda) = \{[E_8 \oplus E_8], [E_{16}]\}$ and we compute

$$
T_{2,1} = \left(\begin{array}{cc} 20025 & 18225 \\ 12870 & 14670 \end{array}\right)
$$

The constant function $\phi_1 = [E_8 \oplus E_8] + [E_{16}]$ is an **Eisenstein** series with $\mathcal{T}_{\rho}(\phi_{1})=\left(\rho^{7}+\frac{\rho^{15}-1}{\rho-1}\right)$ $\left(\frac{\rho^{15}-1}{\rho-1}\right)\phi_1.$ Another eigenvector is $\phi_2 = 405[E_8 \oplus E_8] - 286[E_{16}]$, with $T_p(\phi_2) = \lambda_p \phi_2$ where

$$
\lambda_{\rho} = \tau(p) \left(\frac{p^4 - 1}{p - 1} \right) + p^7 + p^4 \left(\frac{p^7 - 1}{p - 1} \right)
$$

Since $286\phi_1 + \phi_2 \equiv 0$ mod 691, for all p we have

$$
\lambda_{\rho} \equiv \left(\rho^7 + \frac{\rho^{15}-1}{\rho-1}\right) \text{ mod } 691 \Rightarrow \tau(\rho) \equiv 1+\rho^{11} \text{ mod } 691
$$

Example ($r = 8, D = 53$)

We find ϕ_1 of depth $d_{\phi_1} = 1$ and ϕ_2 of depth $d_{\phi_2} = 2$ such that

 $273\phi_1 + \phi_2 \equiv 0 \text{ mod } q$

with q | 397. This implies $\lambda_{p,k} \equiv \mu_{p,k}$ mod q for all p, k.

$$
b_{1,p^2} + p^3 + p^2 \left(\frac{p^3 - 1}{p - 1}\right) \equiv a_p^2 - \chi(p)p^3 + p\left(\frac{p^5 - 1}{p - 1}\right) \mod q'
$$

$$
b_{1,p^2} \equiv a_p^2 - (1 + \chi(p))p^3 + p + p^5 \mod q'
$$

It appears that

$$
\text{Nm}\left(\frac{L(\text{Sym}^2(f),1)}{\pi^2 L(\text{Sym}^2(f),3)}\right) = \frac{24250736770795028}{2197125} \equiv 0 \text{ mod } 397,
$$

suggesting that ord $_{\mathfrak{q}}(\mathsf{L}_{\mathsf{alg}}(\mathsf{Sym}^2(f),6))>0$

Conjectural genus 2 congruences of Mizumoto-Kurokawa type:

$$
b_p \equiv a_p(1+p^{k-2}) \bmod q,
$$

with $\operatorname{\mathsf{ord}}_{\mathfrak q}(\mathsf{L}_{\operatorname{\mathsf{alg}}}(\operatorname{\mathsf{Sym}}^2(f),j+2k-2))>0.$

We see the " Λ^2 – triv" of a non-trivial character version! (F contributes via "standard" GL_5 *L*-function, not the spinor one).

Our data allowed us to conjecture new congruences of the shape:

$$
b_{1,p^2} \equiv a_p^2 - \chi(p)p^{j+k-1} - p^{j+2k-5} + p^{j+2k-3} + p^{j+1} \bmod q',
$$

with χ quadratic, $f\in \mathcal{S}_{j+k}(\mathsf{\Gamma}_0(\mathcal{N}),\chi)$, $\mathcal{F}\in \mathcal{S}_{j,k}(\mathsf{\Gamma}_0^{(2)}(\mathcal{N}),\chi)$ and q as above.

- Main workhorse computing $\mathcal{T}_{p^k}([\Lambda]).$
	- Naive complexity $O(hp^{k(n-k-1)})$ isometry tests.
	- Theoretically, $O(p^{k(n-k-1)})$ using a canonical form. (Sikirić, [Haensch, Voight, and van Woerden, 2020\)](#page-21-4)
	- In practice, better to cache via theta series.
	- Time/Memory Trade-Off use orbits under O(Λ).
- Computing $L_p(f)$ is dominated by $O(hp^{n(n-2)/4})$.
- **•** Genus enumeration
	- Computing $O(\Lambda)$ is done by enumerating short vectors.
	- Problem when $\Lambda' \subseteq \Lambda$ has $\# O(\Lambda')$ large.
	- Solved by directly finding root sublattices.

Magma code is available at <https://github.com/assaferan/ModFrmAlg>.

```
> AttachSpec("ModFrmAlg.spec");
> Q := SymmetricMatrix([2,0,2,0,1,34,1,0,0,34]);
> M := OrthogonalModularForms(Q);
> vs := HeckeEigenforms(M);
> assert exists(v){v : v in vs |
                   HeckeEigenvalue(v,2) eq -1};
> B := 20;
> evs := HeckeEigensystem(v,1 : Precision := B);
> lpolys := [LPolynomial(v, p) : p in PrimesUpTo(B)];
> Theta1(v):
```
Sikirić, Mathieu Dutour, Anna Haensch, John Voight, and Wessel P. J. van Woerden. 2020. A canonical form for positive definite matrices, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 4, Math. Sci. Publ., Berkeley, CA, pp. 179–195, DOI 10.2140/obs.2020.4.179.

Chenevier, Gaëtan and Jean Lannes. 2019. Automorphic forms and even unimodular lattices, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 69, Springer, Cham. Kneser neighbors of Niemeier lattices; Translated from the French by Reinie Erné.

Freitag, Eberhard. 1991. Singular modular forms and theta relations, Lecture Notes in Mathematics, vol. 1487, Springer-Verlag, Berlin.

A., Dan Fretwell, Colin Ingalls, Adam Logan, Spencer Secord, and John Voight. 2022. Orthogonal modular forms attached to quaternary lattices.

Gross, Benedict H. 1999. Algebraic modular forms, Israel J. Math. 113, 61–93, DOI 10.1007/BF02780173. MR1729443

Rallis, Stephen. 1982. Langlands' functoriality and the Weil representation, Amer. J. Math. 104, no. 3, 469–515, DOI 10.2307/2374151.