Definite orthogonal modular forms: Computations, Excursions and Discoveries

E. Assaf, D. Fretwell, C. Ingalls, A. Logan, S. Secord, J. Voight

Fifteenth Algorithmic Number Theory Symposium, University of Bristol

August 2022

LANGLANDS CHO presents OHO - FUN- WITH L-FUNCTIONS

Fun with *L*-functions

Lattice Λ magic \rightsquigarrow orthogonal modular forms ϕ_i .

Example $(n = 4, D = 37^2)$ For Λ with Gram matrix $\begin{pmatrix} 2 & 0 & 1 & 1 \\ 0 & 4 & 1 & 2 \\ 1 & 1 & 10 & 1 \\ 1 & 2 & 1 & 20 \end{pmatrix}$ we get $L_p(\phi_1, T) = (1 - T)(1 - pT)^2(1 - p^2T)$ $L_p(\phi_2, T) = (1 - (a_p^2 - 2p)T + p^2T^2)(1 - pT)^2$ $L_p(\phi_2, T) = (1 - (b_p^2 - 2p)T + p^2T^2)(1 - pT)^2$

$$L_p(\phi_4, T) = (1 - pb_p T + p^3 T^2)(1 - b_p T + pT^2)$$

where a_p , b_p are coefficients of 37.2.a.a and 37.2.a.b.

time (p < 100): 109.15s (2.3GHz 8-Core Intel Core i9)

Symmetric Square *L*-functions

Lattice Λ magic \rightsquigarrow orthogonal modular forms ϕ_i .

Example $(n = 4, D = 37^2)$

For Λ with Gram matrix $\begin{pmatrix} 2 & 0 & 1 & 1 \\ 0 & 4 & 1 & 2 \\ 1 & 1 & 10 & 1 \\ 1 & 2 & 1 & 20 \end{pmatrix}$ we get

$$L_{p}(\phi_{1}, T) = (1 - T)(1 - pT)^{2}(1 - p^{2}T)$$

$$L_{p}(\phi_{2}, T) = (1 - pT)L_{p}(Sym^{2}(f), T)$$

$$L_{p}(\phi_{3}, T) = (1 - pT)L_{p}(Sym^{2}(g), T)$$

$$L_{p}(\phi_{4}, T) = L_{p}(E \otimes f, T)$$

where $f, g \in S_2(37)$ are 37.2.a.a and 37.2.a.b.

time (p < 20): 1.75s (2.3GHz 8-Core Intel Core i9) time (p < 100): 109.15s (2.3GHz 8-Core Intel Core i9)

Fun with *L*-functions (Rank 6)

Example (n = 6, D = 39)For $\Lambda = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix}$ we find a ϕ with $L_{p}(\phi_{1}, T) = (1 - \chi(p)p^{2}T) \prod_{i=0}^{4} (1 - p^{i}T)$ $L_{p}(\phi_{2}, T) = L_{p}(\chi \otimes \text{Sym}^{2}(f), T) \prod_{i=0}^{3} (1 - p^{i}T)$ where $f \in S_3(39, \chi)$ is 39.3.d.c and $\chi = \chi_{-39}$.

time (p < 20): 4281.50s (2.3GHz 8-Core Intel Core i9)

Example (n = 8, D = 53)

For Λ of rank 8 and discriminant 53 we get

$$L_{p}(\phi, T) = (1 - \chi(p)p^{3}T) \prod_{i=2}^{4} (1 - p^{i}T)G_{p}(T)$$

where $G_p(T)$ is irreducible with deg $G_p(T) = 4$ and $\chi = \chi_{53}$.

time (p < 10): 354957.51 (2.3GHz 8-Core Intel Core i9)

- How do we prove the identities in the first two examples?
- Where does $G_p(T)$ come from?

The **genus** of $\Lambda \subseteq V$ is

$$gen(\Lambda) := \{\Pi \subseteq V : \Lambda_p \simeq \Pi_p \text{ for all } p\}.$$

The class set $cls(\Lambda) = gen(\Lambda)/\simeq$ is the set of (global) isometry classes in $gen(\Lambda)$.

Kneser's theory of p^k -neighbors gives an effective method to compute the class set; it also gives a Hecke action! Let $p \nmid \operatorname{disc}(\Lambda)$ be a prime; p = 2 is OK. We say that an integral lattice $\Pi \subseteq V$ is a p^k -neighbor of Λ , and write $\Pi \sim_{p^k} \Lambda$ if

$$\Lambda/(\Lambda \cap \Pi) \simeq (\mathbb{Z}/p\mathbb{Z})^k \simeq \Pi/(\Lambda \cap \Pi),$$

If $\Lambda \sim_{p^k} \Pi$ then $\Pi \in \text{gen}(\Lambda)$. Moreover, there exists S such that every $[\Pi] \in \text{cls}(\Lambda)$ is an **iterated** *S*-neighbor of Λ .

$$\Lambda \sim_{p_1} \Lambda_1 \sim_{p_2} \cdots \sim_{p_r} \Lambda_r \simeq \Pi$$

with $p_i \in S$. Typically may take $S = \{p\}$.

Let

$$\Lambda = \left(\begin{array}{rrrr} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 6 \end{array} \right)$$

Thus disc(Λ) = 29. We have $\# \operatorname{cls}(\Lambda) = 2$, with the nontrivial class represented by the 2-neighbor

$$\Lambda'=rac{1}{2}\mathbb{Z}(e_2+e_4)+2\mathbb{Z}e_3+\mathbb{Z}e_1+\mathbb{Z}e_4.$$

The space of **orthogonal modular forms** of level Λ is

$$M(\Lambda) := \{\phi : \mathsf{cls}(\Lambda) \to \mathbb{C}\} \simeq \mathbb{C}^{h(\Lambda)}$$

For $p \nmid \operatorname{disc}(\Lambda)$ define the **Hecke operator**

$$egin{aligned} T_{p,k} &: M(\Lambda) & o M(\Lambda) \ & \phi &\mapsto \left([\Lambda'] &\mapsto \sum_{\Pi' \sim_{p^k} \Lambda'} \phi([\Pi'])
ight) \end{aligned}$$

The Hecke operators commute and are self-adjoint, hence there is a basis of simultaneous eigenvectors - eigenforms. (Gross, 1999)

Let Λ be as before with discriminant 29. By checking isometry we compute w.r.t. basis $[\Lambda'], [\Lambda]$

$$[T_2] = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}, [T_3] = \begin{pmatrix} 4 & 3 \\ 6 & 7 \end{pmatrix}, [T_5] = \begin{pmatrix} 18 & 9 \\ 18 & 27 \end{pmatrix}, \dots$$

The constant function $\phi_1 = [\Lambda] + [\Lambda']$ is an **Eisenstein series** with $T_p(\phi_1) = (p^2 + (1 + \chi_{29}(p)) + 1)\phi_1$. Another eigenvector is $\phi_2 = [\Lambda] - 2[\Lambda']$, with $T_p(\phi_2) = \lambda_p \phi_2$

$$\lambda_2 = -1, \lambda_3 = 1, \lambda_5 = 9, \lambda_7 = 4, \lambda_{11} = 17, \dots$$

We match them with the **Hilbert modular form** labeled 2.2.29.1-1.1-a in the LMFDB.

Back to *L*-functions

Letting $D^* = (-1)^{\frac{n}{2}}D$ there is a natural family of theta maps:

$$\theta^{(g)}: M(\Lambda) \to M_{\frac{n}{2}}(\Gamma_0^{(g)}(D), \chi_{D^*}).$$

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022), consequence of Rallis (1982))

If n is even, ϕ is an eigenform and $f = \theta^{(g)}(\phi) \neq 0$ with 2g < n:

$$L(\phi, s) = L\left(\chi_{D^*} \otimes f, \underline{std}, s - \left(\frac{n}{2} - 1\right)\right) \prod_{i=g-\left(\frac{n}{2}-1\right)}^{\left(\frac{n}{2}-1\right)-g} \zeta\left(s + i - \left(\frac{n}{2}-1\right)\right).$$

If g = 1, then obtain $L(\chi_D \otimes \operatorname{Sym}^2(f), s)$ and zeta factors so

$$\lambda_{p,1} = a_p^2 - \chi_{D^*}(p)p^{\frac{n}{2}-1} + p\left(\frac{p^{n-3}-1}{p-1}\right)$$

where a_p are the eigenvalues of f.

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022)) Let $\Lambda = A_6 \oplus A_2$. There are 3 eigenforms in $M(\Lambda)$ with eigenvalues $\frac{p^7 - 1}{p - 1} + \chi(p)p^3$, $\frac{p(p^5 - 1)}{p - 1} + a_p^2 - \chi(p)p^3$, $\frac{p(p^5 - 1)}{p - 1} + b_p^2 - \chi(p)p^3$ for T_p with $p \neq 3, 7$, where $\chi = \chi_{21}$, and a_p, b_p are the eigenvalues of 21.4.c.a and 21.4.c.b, respectively. Equivalently, there are explicit $A_1, A_2, A_3 \in M_3(\mathbb{Q})$ such that

$$T_p = \lambda_p^{(1)} A_1 + \lambda_p^{(2)} A_2 + \lambda_p^{(3)} A_3.$$

Higher depth

The **depth** d_{ϕ} of $\phi \in M(\Lambda)$ is the smallest integer such that $\theta^{(d_{\phi})}(\phi) \neq 0$.

Example (r = 6, D = 75)

For $\Lambda = A_4 \oplus \Lambda_{15}$ there is a ϕ such that $d_{\phi} = 2$. It **appears** that

$$\lambda_{p,1} = (p+1)a_p + p^2(1+\chi_{-3}(p))$$

with a_p coming from $f \in S_4(5)$ (5.4.a.a).

It turns out that $\theta^{(2)}(\phi)$ is the Saito-Kurokawa lift of f so that

$$L(\phi, \mathbf{s}) = L(\chi_{-3}, \mathbf{s} - 2)L(\chi_{-3} \otimes f, \mathbf{s})L(\chi_{-3} \otimes f, \mathbf{s} - 1)\zeta(\mathbf{s} - 2)$$

In general, Ikeda lifts write $L(\phi, s)$ as a product of GL_1 and GL_2 *L*-functions, i.e. $\lambda_{p,k}$ has a formula in terms of modular forms and Dirichlet characters. Recall we have

$$L_{p}(\phi, T) = (1 - \chi(p)p^{3}T) \prod_{i=2}^{4} (1 - p^{i}T)G_{p}(T)$$

where $G_p(T)$ is irreducible with deg $G_p(T) = 4$ and $\chi = \chi_{53}$. Moreover, $F = \theta^{(2)}(\phi) \neq 0$, so that

$$(1-\chi(p)p^3T)G_p(T) = L_p(\chi \otimes F, \operatorname{std}, p^3T).$$

Since $G_p(T)$ is irreducible, F is a non-lift Siegel modular form and

$$\lambda_{p,1} = b_{1,p^2} + p^3 + p^2 \left(rac{p^3-1}{p-1}
ight)$$

where b_{1,p^2} is the T_{1,p^2} eigenvalue of F.

Example (Chenevier and Lannes (2019))

Consider $\Lambda = E_8 \oplus E_8$. Then $cls(\Lambda) = \{[E_8 \oplus E_8], [E_{16}]\}$ and we compute

$$T_{2,1} = \left(\begin{array}{rrr} 20025 & 18225 \\ 12870 & 14670 \end{array}\right)$$

The constant function $\phi_1 = [E_8 \oplus E_8] + [E_{16}]$ is an **Eisenstein** series with $T_p(\phi_1) = \left(p^7 + \frac{p^{15}-1}{p-1}\right)\phi_1$. Another eigenvector is $\phi_2 = 405[E_8 \oplus E_8] - 286[E_{16}]$, with $T_p(\phi_2) = \lambda_p \phi_2$ where

$$\lambda_p = au(p)\left(rac{p^4-1}{p-1}
ight) + p^7 + p^4\left(rac{p^7-1}{p-1}
ight)$$

Since $286\phi_1 + \phi_2 \equiv 0 \mod 691$, for all p we have

$$\lambda_{p}\equiv\left(p^{7}+rac{p^{15}-1}{p-1}
ight) ext{ mod 691} \Rightarrow au(p)\equiv1+p^{11} ext{ mod 691}$$

Example (r = 8, D = 53)

We find ϕ_1 of depth $d_{\phi_1} = 1$ and ϕ_2 of depth $d_{\phi_2} = 2$ such that

 $273\phi_1 + \phi_2 \equiv 0 \bmod \mathfrak{q}$

with $\mathfrak{q} \mid 397$. This implies $\lambda_{p,k} \equiv \mu_{p,k} \mod \mathfrak{q}$ for all p, k.

$$\begin{split} b_{1,p^2} + p^3 + p^2 \left(\frac{p^3 - 1}{p - 1}\right) &\equiv a_p^2 - \chi(p)p^3 + p\left(\frac{p^5 - 1}{p - 1}\right) \bmod \mathfrak{q}' \\ b_{1,p^2} &\equiv a_p^2 - (1 + \chi(p))p^3 + p + p^5 \bmod \mathfrak{q}' \end{split}$$

It appears that

$$\operatorname{Nm}\left(\frac{L(\operatorname{Sym}^2(f),1)}{\pi^2 L(\operatorname{Sym}^2(f),3)}\right) = \frac{24250736770795028}{2197125} \equiv 0 \mod 397,$$

suggesting that $\operatorname{ord}_{\mathfrak{q}}(L_{\operatorname{alg}}(\operatorname{Sym}^2(f), 6)) > 0$

Conjectural genus 2 congruences of Mizumoto-Kurokawa type:

$$b_p \equiv a_p(1+p^{k-2}) \mod \mathfrak{q},$$

with $\operatorname{ord}_{\mathfrak{q}}(L_{\operatorname{alg}}(\operatorname{Sym}^2(f), j+2k-2)) > 0.$

We see the " Λ^2 - triv" of a non-trivial character version! (*F* contributes via "standard" GL₅ *L*-function, not the spinor one).

Our data allowed us to conjecture new congruences of the shape:

$$b_{1,p^2} \equiv a_p^2 - \chi(p) p^{j+k-1} - p^{j+2k-5} + p^{j+2k-3} + p^{j+1} mod q',$$

with χ quadratic, $f \in S_{j+k}(\Gamma_0(N), \chi)$, $F \in S_{j,k}(\Gamma_0^{(2)}(N), \chi)$ and q as above.

- Main workhorse computing $T_{p^k}([\Lambda])$.
 - Naive complexity $O(hp^{k(n-k-1)})$ isometry tests.
 - Theoretically, O(p^{k(n-k-1)}) using a canonical form. (Sikirić, Haensch, Voight, and van Woerden, 2020)
 - In practice, better to cache via theta series.
 - Time/Memory Trade-Off use orbits under $O(\Lambda)$.
- Computing $L_p(f)$ is dominated by $O(hp^{n(n-2)/4})$.
- Genus enumeration
 - Computing $O(\Lambda)$ is done by enumerating short vectors.
 - Problem when $\Lambda' \subseteq \Lambda$ has $\# \, O(\Lambda')$ large.
 - Solved by directly finding root sublattices.

Magma code is available at https://github.com/assaferan/ModFrmAlg.

Sikirić, Mathieu Dutour, Anna Haensch, John Voight, and Wessel P. J. van Woerden. 2020. *A canonical form for positive definite matrices*, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 4, Math. Sci. Publ., Berkeley, CA, pp. 179–195, DOI 10.2140/obs.2020.4.179.

Chenevier, Gaëtan and Jean Lannes. 2019. *Automorphic forms and even unimodular lattices*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 69, Springer, Cham. Kneser neighbors of Niemeier lattices; Translated from the French by Reinie Erné.

Freitag, Eberhard. 1991. *Singular modular forms and theta relations*, Lecture Notes in Mathematics, vol. 1487, Springer-Verlag, Berlin.

A., Dan Fretwell, Colin Ingalls, Adam Logan, Spencer Secord, and John Voight. 2022. *Orthogonal modular forms attached to quaternary lattices*.

Gross, Benedict H. 1999. *Algebraic modular forms*, Israel J. Math. **113**, 61–93, DOI 10.1007/BF02780173. MR1729443

Rallis, Stephen. 1982. Langlands' functoriality and the Weil representation, Amer. J. Math. 104, no. 3, 469–515, DOI 10.2307/2374151.