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Abstract. We reduce the classification of finite extensions of function fields

(of curves over finite fields) with the same class number to a finite computation;
complete this computation in all cases except when both curves have base field

F2 and genus > 1; and give a conjectural answer in the remaining cases. The

conjecture will be resolved in subsequent papers.

1. Introduction

The relative class number one problem for function fields (of curves over finite
fields) is to classify finite extensions for which the relative class number equals 1,
or equivalently the class numbers of the two function fields coincide. In this paper,
we solve this problem in all cases except where both function fields have base field
F2, and to reduce that case to a feasible finite computation. This extends work of
numerous authors [2, 11, 18, 19, 22] but our arguments are independent of these.

Before continuing, we introduce some terminology and notation. By a function
field, we mean the field of rational functions on a curve over some finite field. Given a
finite extension F ′/F of function fields, we write C,C ′ for the curves corresponding
to F, F ′; qF , qF ′ for the orders of the base fields of C,C ′; gF , gF ′ for the genera of
C,C ′; and hF , hF ′ for the class numbers of F, F ′. We write J(C), J(C ′) for the
Jacobians of C,C ′, so that #J(C)(FqF ) = hF and #J(C ′)(FqF ′ ) = hF ′ .

The relative class number hF ′/F is the ratio hF ′/hF ; this can be interpreted as
the order of a certain finite group (see below), and hence is an integer. This implies
the following reduction: for E = F ·FqF ′ , hF ′/F = 1 if and only if hE/F = hF ′/E = 1.
We may thus focus on the cases where F ′ = E, in which case we say the extension
F ′/F is constant, and where E = F , in which case we say F ′/F is purely geometric.

In the case of a constant extension, the equality hF ′/F = 1 holds for trivial
reasons when F ′ = F and when gF = gF ′ = 0 (as in this case hF = hF ′ = 1).
Excluding these, we have the following result; see §3 for the proof.

Theorem 1.1. Let F ′/F be a constant extension of degree d > 1 of function fields
with gF > 0, qF ′ > qF , and hF ′/F = 1. Then (qF , d, gF , J(C)) is one of

(2, 2, 1, 1.2.c), (2, 2, 2, 2.2.c c), (2, 2, 2, 2.2.d f), (2, 2, 3, 3.2.e j p),

(2, 3, 1, 1.2.b), (2, 3, 1, 1.2.c), (3, 2, 1, 1.3.ad), (4, 2, 1, 1.4.ae),

where J(C) is specified up to isogeny by an LMFDB label.
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In the case of a purely geometric extension, the equality hF ′/F = 1 holds for
trivial reasons when F ′ = F and when gF = gF ′ ∈ {0, 1}. Moreover, when gF ∈
{0, 1}, for any fixed pair of isomorphism classes of F and F ′, the existence of a
single finite morphism F → F ′ implies the existence of infinitely many more. It is
thus natural to separate the cases gF ≤ 1 and gF > 1; see §6 and §8 for the proofs.

Theorem 1.2. Let F ′/F be a purely geometric extension of degree d of function
fields with gF ≤ 1, gF ′ > gF , and hF ′/F = 1. Then (qF , gF , g

′
F , J(C), J(C

′))
appears in Table 3. (Note that the tuple does not always uniquely determine F ′.)

When gF = 0, Theorem 1.2 recovers the solution of the absolute class number
one problem for function fields [20, 35, 25, 31].

Theorem 1.3. Let F ′/F be a purely geometric extension of degree d of function
fields with gF ′ > gF > 1 and hF ′/F = 1.

(a) If qF > 2, then qF ∈ {3, 4}, (gF , g′F ) ∈ {(2, 3), (2, 4), (3, 5)}, F ′/F is (Ga-
lois) cyclic, and (qF , gF , gF ′ , F ) appears in Table 4. In each listed case, the
tuple uniquely determines F ′.

(b) If qF = 2, then gF ≤ 7 and gF ′ ≤ 13. The isogeny classes of J(C) and the
Prym variety A (see below) form one of 208 pairs listed in Table 7.

(c) If qF = 2, then assuming that F ′/F is cyclic, there are exactly 61 tuples
(d, gF , gF ′ , F ) with gF /∈ {6, 7}, and at least 3 with gF ∈ {6, 7}; see Tables 5
and 6. In each listed case, the tuple uniquely determines F ′.

In Theorem 1.3(c), there are only two cases (3.2.ab a c and 5.2.b c e i i) where
F is not uniquely specified by d, gF , gF ′ , J(C). The scarcity of such examples re-
flects that curves with isogenous Jacobians can typically be distinguished by the
L-functions of their abelian covers [4].

By our earlier reduction, we recover the following corollary.

Corollary 1.4. Let F ′/F be an extension of degree d of function fields with gF ′ >
gF and hF ′/F = 1 which is neither constant nor purely geometric. Then qF = 2,
qF ′ = 4, and (gF , gF ′ , J(C), J(C ′)) ∈ {(0, 1, 0, 1.4.ae), (1, 2, 1.2.c, 2.4.ae i)}.

We now summarize the techniques used to prove Theorem 1.1, Theorem 1.2, and
Theorem 1.3. The extension F ′/F induces an injective morphism f from J(C) to
the Weil restriction of J(C ′) from FqF ′ to FqF , and hF ′/F can be interpreted as the
order of the group A(FqF ) where A is the cokernel of f ; we call A the Prym variety
of the covering C ′ → C. We restrict options for C and C ′ using the structure of
simple abelian varieties of order 1 over Fq: for q ≥ 5 there are none; for q = 3, 4
there are only elliptic curves; for q = 2 there is an infinite series described in work
of Madan–Pal [23] and Robinson [29].

The severe restrictions on A impose constraints in turn on the number of rational
points on C and C ′ over various finite extensions of their base fields. In the constant
case, the restrictions lead quickly to Theorem 1.1 because the zeta function of C ′

is uniquely determined by the zeta function of C and the degree of the extension.
By contrast, in the purely geometric case there is no obvious way to predict the
zeta function of C ′ from that of C; we instead argue that C is forced to have many
rational points, which for gF ≫ 0 will violate a “linear programming” bound [30,
Part II]. This yields effective upper bounds on gF and gF ′ ; we then obtain a list of
candidates for the Weil polynomials of F and F ′ by an exhaustion in SageMath
(as described in [12], and later used in LMFDB as per [7]). There is a loose parallel
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here with the Serre–Lauter method for refining upper bounds on rational points on
curves over finite fields [16].

To complete the proofs, we identify candidates for C with a given zeta function
using data from LMFDB [21], which includes a table of genus-4 curves by Xarles
[36], plus a similar table of genus-5 curves computed by Dragutinović [6]. We then
make a computation of abelian extensions of function fields in Magma.

The relative class number one problem is now reduced to the following.

Conjecture 1.5. Let F ′/F be a purely geometric extension of degree d > 1 with
qF = 2, gF > 1, and hF ′/F = 1. Then F appears in one of Tables 5 or 6

By Theorem 1.3, this further reduces to the following two logically independent
statements, which will be addressed in subsequent work [14, 15].

• Any extension as in Conjecture 1.5 is cyclic. This will follow from Theo-
rem 1.3(b) by extending the argument for qF > 2 (see Lemma 8.2).

• Table 6 is complete in genera 6 and 7. This will follow from a limited census
based on Mukai’s descriptions of canonical curves of these genera [27, 28];
the entries in Table 6 come from a preliminary version of this census.

We have not considered the relative class number m problem for m > 1, as in
[20]. This would require adapting Lemma 5.6 to abelian varieties over F2 of order
m. For each m it is known that there are infinitely many simple abelian varieties
of order m over F2 [13], but it seems hopeless to give a complete classification; a
better approach might be modeled on the use of resultants to prove statements
about small algebraic integers (see [33] for recent progress in this direction).

All computations in SageMath and Magma are documented in Jupyter note-
books available from a GitHub repository [17]; the computations take under 2 hours
on a single CPU (Intel i5-1135G7@2.40GHz) and generate an Excel spreadsheet of
the 208 pairs of Weil polynomials in Theorem 1.3(b). We use LMFDB labels for
isogeny classes of abelian varieties over finite fields, formatted as links into the site.

2. Abelian varieties of order 1

We say that an abelian variety A over a finite field Fq has order 1 if we have
#A(Fq) = 1; that is, the group of Fq-rational points of A is trivial. Recall that
#A(Fq) = P (1) where P (T ) ∈ Z[T ] is the Weil polynomial associated to A.

Lemma 2.1. Let A be a simple abelian variety of order 1 over some finite field Fq.

(a) We must have q ≤ 4.
(b) If q ∈ {3, 4}, then A is an elliptic curve with Weil polynomial T 2 − qT + q.
(c) If q = 2, then each root α of the Weil polynomial of A satisfies

(2.2) α2 + (η − 1)α− 2η = 0

for some root of unity η. The roots of unity η of order n give rise to two
irreducible Weil polynomials if n = 7, 30 and one otherwise. The resulting
A is ordinary unless n is a power of 2, in which case it has p-rank 0.

Proof. This follows from [23, Theorem 4], [29] (for the second assertion of (c)), [5,
Lemma 5.1] (for the description in (2.2)), and [5, Lemma 4.3] (for the p-rank). □

We deduce some consequences for the Frobenius traces of abelian varieties of
order 1; for q = 2 we establish a stronger result later (Lemma 5.6). For A an
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abelian variety over a finite field Fq and n a positive integer, let TA,qn be the trace
of the qn-power Frobenius on A; we also write TC,qn in case A = J(C).

Lemma 2.3. Let A be a simple abelian variety of order 1 over F2. Choose α, η as
in (2.2) and assume that the order of η is not in {1, 2, 7, 30}. For

(2.4) ti = TraceQ(η)/Q(η
i) =

ϕ(n)

ϕ(n/ gcd(n, i))
µ

(
n

gcd(n, i)

)
(where µ is the Möbius function), we have

TA,2 = TraceQ(η)/Q(1− η) = ϕ(n)− t1

TA,4 = TraceQ(η)/Q(1 + 2η + η2) = ϕ(n) + 2t1 + t2

TA,8 = TraceQ(η)/Q(1 + 3η − 3η2 − η3) = ϕ(n) + 3t1 − 3t2 − t3

TA,16 = TraceQ(η)/Q(1 + 4η − 2η2 + 4η3 + η4) = ϕ(n) + 4t1 − 2t2 + 4t3 + t4.

Proof. Our assumption on n ensures that Q(α) is a quadratic extension of Q(η).
From (2.2), we see that

TA,2 = TraceQ(α)/Q(α) = TraceQ(η)/Q(1− η) = ϕ(n)− t1.

Similarly, from (2.2) we deduce that

0 = α4 + (−1− 2η − η2)α2 + 4η2

= α6 + (−1− 3η + 3η2 + η3)α3 − 8η3

= α8 + (−1− 4η + 2η2 − 4η3 − η4)α4 + 16η4,

from which we read off the expressions for TA,4, TA,8, TA,16. □

Lemma 2.5. Let A be an abelian variety of order 1 and dimension g over Fq.

(a) If q = 4, then TA,q = 4g, TA,q2 = 8g.
(b) If q = 3, then TA,q = 3g, TA,q2 = 3g.
(c) If q = 2 and A is simple, then TA,2 + TA,4 ≥ 2. This is strict if g ≥ 4.

Proof. Parts (a) and (b) are apparent from Lemma 2.1. To check (c), we check for
g ≤ 6 using LMFDB;1 see Table 2 for the detailed results. For g > 6, Lemma 2.3
and (2.4) yield TA,2 + TA,4 = 2g + t1 + t2 ≥ 2g − 1− 2 ≥ 2, as desired. □

3. Constant extensions

In this section, we prove Theorem 1.1. We recall a point from the introduction:
for any abelian variety A over Fq and any positive integer d, the Weil restriction of
A from Fqd to Fq is isogenous to the product of A with the “Prym variety” A′.

Lemma 3.1. Let A be an abelian variety over Fq such that #A(Fq) = #A(Fqd)
for some prime d > 2. Then q = 2, d = 3, and the Weil polynomial of every simple
isogeny factor of A belongs to {T 2 + T + 2, T 2 + 2T + 2}.
Proof. Since [A(Fqd) : A(Fq)] = #A′(Fq) is an integer, the hypothesis that #A(Fq) =
#A(Fqd) implies the same for the isogeny factors of A; we may thus assume that
A is simple. Let P (T ) be the Weil polynomial of A. Then the Weil polynomial of

A′ is
∏d−1

i=1 P (ζ
i
dT ), and hence has roots α1, . . . , αd−1 such that

α1ζd = · · · = αd−1ζ
d−1
d ;

1On an LMDFB page, the entry “Point counts of the curve” lists qi+1−TA,qi for i = 1, . . . , 10.
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by Lemma 2.1, this is impossible if q > 2. If q = 2, then by (2.2) there must exist
roots of unity η1, . . . , ηd−1 with

α2
i + (ηi − 1)αi − 2ηi = 0 (i = 1, . . . , d− 1).

For 1 ≤ i < j ≤ d − 1, applying [5, Lemma 5.2, Lemma 7.2] to the equation αi =

αjζ
j−i
d shows that (ηi, ηj , ζ

j−i
d ) either appears in one of the parametric solutions in

[5, (7.2.1)] or is a sporadic solution fitting a pattern listed in [5, Table 2].
If only parametric solutions occur, then from [5, (7.2.1)] we have η1 = · · · = ηd−1,

leaving only two distinct values for α1, . . . , αd−1. Hence d = 3; from [5, (7.2.1)]
again, η1 = η2 = −ζ3 has order 6. This yields the Weil polynomial T 2 + T + 2.

If we get a sporadic solution for some i, j, then [5, Table 2] indicates that ζj−i
d

has order dividing 21, 24, or 30; this forces d ≤ 7. For d ∈ {5, 7}, the ηi must all
have order 30 or 7, respectively; however, if α satisfies (2.2) for some root of unity η
of this order, then at most two of the quantities {αζid : i = 1, . . . , d−1} do likewise,
and this leaves no options for A′. Hence d = 3; from [5, Table 2] (taking η3 = ζ3),
η1 = η2 has order 4. This yields the Weil polynomial T 2 + 2T + 2. □

Lemma 3.2. Let C be an algebraic curve of genus g > 0 over Fq such that
#J(C)(Fq) = #J(C)(Fqd) for some integer d > 1. Then

(q, d, g) ∈ {(2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 3, 1), (3, 2, 1), (4, 2, 1)}.

Proof. It suffices to prove the claim when d is prime, as the result will then rule
out composite values of d. By Lemma 2.1, q ≤ 4. By Lemma 3.1 applied with
A = J(C), if d > 2 then (q, d, g) = (2, 3, 1).

Assume now that d = 2. Then the Prym variety A′ is the quadratic twist of
J(C), so TA′,qi = (−1)iTC,qi . If q ∈ {3, 4}, then by Lemma 2.5,

0 ≤ #C(Fq2)−#C(Fq) = (q2 + 1− TA′,q)− (q + 1 + TA′,q)

= q2 − q − TA′,3 − TA′,9 = q2 − q − q(q − 1)g

and so g ≤ 1. If q = 2, then

0 ≤ #C(F4)−#C(F2) = (22 + 1− T4)− (2 + 1 + T2) = 2− T2 − T4 ≤ 0

with the last inequality strict unless A′ is simple of dimension at most 3. □

Lemma 3.3. Let C be a curve over Fq such that #J(C)(Fq) = #J(C)(Fqd) for
some d > 1. Then C appears in Theorem 1.1.

Proof. As this property only depends on the isogeny class of J(C), it suffices to
search over the isogeny classes in LMFDB permitted by Lemma 3.2. □

4. Bounds on rational points on curves

We next compile some explicit upper bounds for the number of rational points
on a curve over Fq. For g ≤ 10, we reproduce in Table 1 some data from [24] (see
therein for underlying references). For larger g, we use the “linear programming”
method of Oesterlé. (All decimal expansions herein refer to exact rational numbers.)

Lemma 4.1. Let C be a curve of genus g over Fq with q ∈ {2, 3, 4}. Then

#C(Fq) ≤


0.6272g + 9.562 (q = 2)

1.153g + 11.67 (q = 3)

1.435g + 21.75 (q = 4).
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g 1 2 3 4 5 6 7 8 9 10
q = 2 5 6 7 8 9 10 10 11 12 13

q = 22 9 10 14 15 17 20 21 23 26 27

q = 23 25 33 38 45 53 65 69 75 81 86
q = 3 7 8 10 12 13 14 16 18 19 21

q = 32 16 20 28 30 35 38 43 46 50 54

Table 1. Upper bounds on #C(Fq) for a genus-g curve C from [24].

Proof. For q = 2, this is the “third choice” bound of [30, (7.1.4)]. For q = 3, 4,
we adapt the proof of the “first choice” bound of [30, (7.1.1)]). For x1, x2, . . . ≥ 0,
define c = 1 + 2x21 + 2x22 + · · · and consider the function

f(θ) =
1

c
(1 + 2x1 cos(θ) + 2x2 cos(2θ) + · · · )2 = 1 + 2

∑
n≥1

cn cos(nθ).

By construction, f(θ) ≥ 0 for all θ ∈ R and cn ≥ 0 for all n (that is, f is doubly pos-
itive in the sense of Serre). Define ψ(t) =

∑∞
n=1 cnt

n; then by [30, Theorem 5.3.3].

#C(Fq)ψ(q
−1/2) ≤ g + ψ(q−1/2) + ψ(q1/2),

or in other words

#C(Fq) ≤
1

ψ(q−1/2)
g + 1 +

ψ(q1/2)

ψ(q−1/2)
.

For x1 = 1, x2 = 0.7, x3 = 0.2, x4 = · · · = 0, this yields the indicated results. □

The bounds produced by linear programming also include some correction terms
counting points over extension fields. We make one such bound explicit for q = 2.

Lemma 4.2. Let C be a curve of genus g over F2. For d = 1, 2, . . . , let ad be the
number of closed points of degree d on C. Then

(4.3) a1 + 2a2(0.3366) + 3a3(0.1382) + 4a4(0.0537) ≤ 0.8042g + 5.619.

Proof. With notation as in the proof of Lemma 4.1, define ψd(t) =
∑∞

n=1 cdnt
dn.

Then by [30, Theorem 5.3.3] again,

∞∑
d=1

dadψd(q
−1/2) ≤ g + ψ(q−1/2) + ψ(q1/2),

or in other words

(4.4) a1 +

∞∑
d=2

dad
ψd(q

−1/2)

ψ(q−1/2)
≤ 1

ψ(q−1/2)
g + 1 +

ψ(q1/2)

ψ(q−1/2)
.

We apply this with x1 = 1, x2 = 0.85, x3 = 0.25, x4 = · · · = 0. This yields (4.3) by
discarding the terms d ≥ 5 in (4.4). □

5. Numerical estimates

We next apply the bounds on rational points to bound the genera of function
fields occurring in a purely geometric extension with relative class number 1. We
will later take a closer account of the degree of the extension; see §7.

For the remainder of the paper, let F ′/F be a purely geometric extension of
degree d such that gF ′ > gF and hF ′/F = 1. For brevity, we write q, g, g′ in place
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of qF , gF , gF ′ . Let A be the Prym variety of C ′ → C; then A has order 1, so
Lemma 2.1 implies q ≤ 4. By Riemann–Hurwitz,

(5.1) dim(A) = g′ − g = (d− 1)(g − 1) + δ with δ ≥ 0,

with equality if and only if C ′ → C is étale. Since TC′,qi = TC,qi + TA,qi , we have

(5.2) 0 ≤ #C ′(Fqi) = qi + 1− TC′,qi = qi + 1− TC,qi − TA,i = #C(Fqi)− TA,qi

for each positive integer i, and hence

(5.3) TA,qi ≤ #C(Fqi) (i = 1, 2, . . . ).

Lemma 5.4. If q > 2, then g ≤ 6.

Proof. By combining Lemma 2.5, Lemma 4.1, (5.1), and (5.3), we obtain

(5.5) q(g − 1) ≤ q(g′ − g) ≤ #C(Fq) ≤

{
1.153g + 11.67 (q = 3)

1.435g + 21.75 (q = 4).

Comparing the ends of this equation yields

g ≤

{
(11.67 + 3)/(3− 1.153) ≤ 7.95 (q = 3)

(21.75 + 4)/(4− 1.435) ≤ 10.04 (q = 4);

hence g ≤ 7 if q = 3 and g ≤ 10 if q = 4. Replacing the right-hand side of (5.5)
with the explicit bounds given in Table 1, we may eliminate the case g = 7. □

For q = 2, it is not enough to control #C(F2) because there exists a simple
abelian variety of order 1 with trace 0 (namely 2.2.a ae). Instead, we use a bound
modeled on Lemma 4.2. For A an abelian variety over F2, define its excess as

1.3366TA,2 + 0.3366TA,4 + 0.1137(TA,8 − TA,2) + 0.0537(TA,16 − TA,4)− 1.5612g.

Lemma 5.6. For A an abelian variety of order 1 and dimension g over F2, the
excess of A is nonnegative.

Proof. We may assume that A is simple; define n as in Lemma 2.1. We again treat
the case g ≤ 6 using LMFDB; see Table 2. For g ≥ 7, we have g = ϕ(n); per
Lemma 2.3 we can write the excess as

0.112g − 0.1012t1 − 0.1656t2 + 0.1011t3 + 0.0537t4.

For g ∈ {7, 8}, we have n ∈ {15, 16, 20, 24, 30}; we compute the excess using (2.4)
to obtain a lower bound of 0.4807. For g ≥ 9, we apply (2.4) to deduce that |td| ≤ d
and then obtain a lower bound of 0.112g−0.9505 ≥ 0.112 ·9−0.9505 ≥ 0.0575. □

Lemma 5.7. For q = 2, we have

g′ ≤ 0.4313#C(F2) + 1.5152g + 3.6.

http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_ae
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A n TA,2 TA,4 TA,8 TA,16 TA,2 + TA,4 excess

1.2.ac 2 2 0 −4 −8 2 0.0002
2.2.a ae 1 0 8 0 16 8 0.0000
2.2.ad f 3 3 −1 0 7 2 0.6393
2.2.ac c 4 2 0 8 8 2 0.6626
2.2.ab ab 6 1 3 10 −1 4 0.0325
3.2.ad c b 7 3 5 6 −11 8 0.4911
3.2.ae j ap 7 4 −2 1 10 2 0.2929

4.2.af m au bd 5 5 1 5 −3 6 0.5600
4.2.ae g ae c 8 4 4 4 0 8 0.2332
4.2.ad c a b 10 3 5 9 13 8 0.5598
4.2.ae f c al 12 4 6 −2 −2 10 0.0094
4.2.ae e h av 30 4 8 −5 4 12 0.5563
4.2.af n az bn 30 5 −1 5 7 4 0.5312

6.2.ag p av y abn cn 9 6 6 9 −6 12 0.3687
6.2.af j ah d ab ab 14 5 7 11 15 12 0.7838
6.2.ag p at g bb acj 18 6 6 3 18 12 0.9753

Table 2. Simple abelian varieties over F2 of order 1 and dimension
at most 6, from LMFDB. For the definitions of n and the excess,
see Lemma 2.1 and Lemma 5.6.

Proof. We combine Lemma 4.2, (5.3), and Lemma 5.6 to obtain

1.5612(g′ − g) ≤ 1.3366TA,q + 0.3366TA,q2 + 0.1137(TA,q3 − TA,q)

+ 0.0537(TA,q4 − TA,q2)

= (1.3366− 0.1137)TA,q + (0.3366− 0.0537)TA,q2

+ 0.1137TA,q3 + 0.0537TA,q4

≤ (1.3366− 0.1137)#C(Fq) + (0.3366− 0.0537)#C(Fq2)

+ 0.1137#C(Fq3) + 0.0537#C(Fq4)

= 1.3366a1 + 0.3366(a1 + 2a2) + 0.1137(3a3) + 0.0537(4a4)

= 1.6732a1 + 0.3366(2a2) + 0.1137(3a3) + 0.0537(4a4)

≤ 0.6732#C(F2) + 0.8042g + 5.619,

which yields the claimed inequality. □

Corollary 5.8. For q = 2, we have g ≤ 40. Moreover, if d ≥ 3 then g ≤ 6; if
d ≥ 4 then g ≤ 4; if d ≥ 5 then g ≤ 3; and if d ≥ 6 then g ≤ 2.

Proof. By (5.1) and Lemma 5.7,

(d− 1.5152)g ≤ 0.4313#C(F2) + (d+ 2.6).

Taking d = 2 and using the bound on #C(F2) from Lemma 4.1 yields g ≤ 40. For
d ≥ 3 we obtain g ≤ 8; we then use Table 1 to obtain the remaining bounds. □

6. Exhaustion over Weil polynomials

We next describe an exhaustive search over Weil polynomials which rules out
some additional pairs (g, g′); compare [30, Theorem 7.2.1] for an example in the
context of bounding rational points on curves. This will yield Theorem 1.2; for
g > 1, we will do better with constraints depending on d (see §7).

We first make a list of candidate Weil polynomials for A. For q > 2 this consists
of the single polynomial (T 2 − qT + q)g

′−g. For q = 2, we identify isogeny classes
of simple abelian varieties A of order 1 such that for i = 1, 2, TA,2i and TA,4 is at

http://www.lmfdb.org/Variety/Abelian/Fq/1.2.ac
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_ae
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ad_f
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ac_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ab_ab
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_c_b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ae_j_ap
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.af_m_au_bd
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_g_ae_c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ad_c_a_b
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_f_c_al
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_e_h_av
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.af_n_az_bn
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.ag_p_av_y_abn_cn
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.af_j_ah_d_ab_ab
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.ag_p_at_g_bb_acj
https://www.lmfdb.org/Variety/Abelian/Fq/?q=2&simple=yes&g=1-6&abvar_point_count=%5B1%5D&search_type=List
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most the value listed in Table 1 for the pair (g, 2i), and moreover

TA,2 + 0.3366(TA,4 − TA,2) + 0.1137(TA,8 − TA,2) + 0.0537(TA,16 − TA,4)

≤ 0.8042g + 5.619;

these are all necessary conditions by Lemma 4.2 and (5.3).
We next identify candidate Weil polynomials for C for which the resulting values

of #C(Fq) (and #C(Fq2) for q = 2) are consistent with at least one choice of A,
and eliminate those that are ruled out by any of the following.

• Bounds on point counts from Table 1.
• The positivity condition: the number of degree-i places on C must be non-
negative for all i ≥ 1.

• Data from LMFDB (genus ≤ 3), [36] (genus 4), and [6] (genus 5) indicating
which curves have a particular Weil polynomial.

• The resultant-1 and resultant-2 criteria of Serre [30, Theorem 2.4.1] as
extended by Howe–Lauter [10, Proposition 2.8]. The resultant-2 criterion
forces C to occur as a double cover of another curve, whose Weil polynomial
can sometimes be ruled out. (Compare Corollary 9.3.)

Finally, we exhaust over pairs of candidate Weil polynomials for C and A to confirm
that the resulting Weil polynomial for C ′ is not ruled out. This yields the following.

Lemma 6.1. For q = 2, for g = 0, . . . , 6 we have g′ ≤ 4, 6, 8, 10, 12, 14, 16, respec-
tively. Hence by (5.1), if d ≥ 4 then g ≤ 3; and if d ≥ 5 then g ≤ 2.

Proof. From Lemma 5.7, for g = 0, . . . , 6 we obtain g′ ≤ 4, 7, 9, 11, 13, 15, 17, respec-
tively. We rule out the pairs (g, g′) ∈ {(1, 7), (2, 9), (3, 11), (4, 13), (5, 15), (6, 17)} by
exhausting over Weil polynomials as described above. □

We can now prove Theorem 1.2 as follows. By (5.5), Lemma 6.1, and Table 1,
for (q, g) = (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1) we have respectively

g′ ≤ 4, 6, 1, 3, 1, 3.

We may settle all cases by table lookups except (q, g, g′) = (2, 1, 6), which we settle
as follows.

• The isogeny class 6.2.ad c a a m abg can be ruled out by the following ar-
gument from [8]. By the resultant-2 criterion (compare Remark 10.3), C ′

is a double cover of a curve C0 with real Weil polynomial T 2 − 2T − 2; this
is inconsistent with #C0(F2) = 1,#C ′(F4) = 0.

• The isogeny class 6.2.ad c a f am q occurs for a cyclic étale quintic cover of
a genus-2 curve listed in Table 5 (see also Remark 6.2).

Remark 6.2. Table 3 includes a column counting Jacobians in the isogeny class
of J(C ′). This can be obtained by table lookups except for 6.2.ad c a f am q, for
which Table 3 reports a unique Jacobian; this will be proved in [14].

7. Additional constraints on Weil polynomials

We assume hereafter that g > 1 and introduce constraints on the Weil polyno-
mials of C and C ′ based on d. Note that none of these presumes hF ′/F = 1, and
so may be applicable in other cases of interest.

http://www.lmfdb.org/Variety/Abelian/Fq/6.2.ad_c_a_a_m_abg
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.ad_c_a_f_am_q
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.ad_c_a_f_am_q
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We start with the full form of Riemann–Hurwitz:

(7.1) 2g′ − 2 = d(2g − 2) + 2δ, 2δ =
∑
P

(eP − 1)

where P runs over geometric points of C ′ and eP is the ramification index at P .
Let t denote the number of geometric ramification points, i.e., the number of P

for which eP > 1. Then t = 0 iff δ = 0, and t ≤ 2δ in general. If q is even, then eP
can never equal 2, so t ≤ δ; in particular,

(7.2) δ = 1 =⇒ t = 1 =⇒ #C ′(Fq) ≥ 1

because the unique ramification point of C ′ is Fq-rational, and similarly

(7.3) δ = 2 =⇒ #C ′(Fq2) ≥ 1, t = 2 =⇒ #C ′(Fq2) ≥ 2.

If C ′ → C is cyclic of prime degree d = p | q, then the Deuring–Shafarevich
formula holds (e.g., see [32]): for γC , γC′ the p-ranks of C,C ′,

(7.4) γC′ − 1 = d(γC − 1) + t

If δ = 0 and C ′ → C is cyclic (e.g., if d = 2), then by class field theory,

(7.5) #J(C)(Fq) ≡ 0 (mod d).

For small d, we have the following additional constraints (building on [9, Lemma 8]).

• When d = 2, every Fqi-rational point of C lifts to either an Fqi-rational
ramification point or two Fq2i-rational points of C

′. Hence

(7.6) #C ′(Fq2i) ≥ 2#C(Fqi)− t;

by (5.2) and (5.3), this yields

(7.7) 2TA,qi + TA,q2i − t ≤ 2#C(Fqi) + TA,q2i − t ≤ #C(Fq2i).

For i = 2j − 1 odd, every degree i-place of C ′ projects to a degree-i place
of C. If t ≤ 2, then for i > 1 these points occur in pairs in fibers, and so

(7.8) t ≤ 2 =⇒ #C ′(Fq2j−1) ≡ #C ′(Fq) (mod 2) (j > 0).

• When d = 3, every Fqi -rational point of C lifts to either at least one
Fqi -rational point or three Fq3i -rational points of C ′. Hence #C ′(Fq3i) −
#C ′(Fqi) ≥ 3(#C(Fqi)−#C ′(Fqi)); by (5.3), this yields

(7.9) #C(Fqi) + 2TA,qi + TA,q3i ≤ #C(Fq3i).

• When d = 4, every Fqi-rational point of C lifts to at least one Fqi-rational
point, two Fq2i-rational ramification points, or four Fq4i-rational points of
C ′. Hence #C ′(Fq4i) ≥ 4(#C(Fqi)−#C ′(Fqi))− 2t; by (5.3), this yields

(7.10) 4TA,qi + TA,q4i − 2δ ≤ 4TA,qi + TA,q4i − 2t ≤ #C(Fq4i).

Remark 7.11. For d = 2, the compositum F ′ · Fq2 contains another purely geo-
metric quadratic extension F ′′/F . We call the corresponding cover C ′′ → C the
relative quadratic twist of C ′ → C; it also obeys the conditions listed in §6.
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8. Purely geometric extensions: q > 2

We settle Theorem 1.3(a) as follows. For q > 2, Lemma 5.4 implies g ≤ 6. If
d = 2, then by Lemma 2.5 plus (7.7),

(8.1) #C(Fq2) ≥ 2TA,q+TA,q2−c(g′−2g+1) = q2(g′−g)−c(g′−2g+1) ≥ q2(g−1).

Combining (8.1) with Table 1, we deduce that

(q, g, g′) ∈ {(3, 2, 3), (3, 2, 4), (3, 3, 5), (3, 3, 6), (3, 4, 7), (4, 2, 3), (4, 2, 4), (4, 3, 5)}.

If d > 2, then by upgrading (5.5) using Table 1, we deduce that (d, g, g′) = (3, 2, 4).
We also have the following.

Lemma 8.2. If q > 2, g = 2, and d = 3, then C ′ → C is cyclic.

Proof. Suppose first that C ′ → C is a non-Galois cover which becomes Galois
after a quadratic constant field extension. By Lemma 2.5, the quadratic twist
C̃ of C admits a cyclic cubic étale cover C̃ ′ whose Prym has Weil polynomial
(T 2 + qT + q)2. Since each Fq-point of C̃ lifts to at most three Fq-points of C̃

′, we

have #C̃(Fq) + 2q = C̃ ′(Fq) ≤ 3#C̃(Fq) and so C̃(Fq) ≥ q. However, #C(Fq) ≥ 2q
by (5.3), yielding the impossibility

2q + 2 = #C(Fq) + #C̃(Fq) ≥ 3q.

Suppose next that C ′ → C is geometrically non-Galois. In this case, the Galois
closure F ′′ of F ′/F is itself the function field of a curve C ′′ with qF ′′ = qF . The
abelian variety J(C ′′) is isogenous to J(C)×A2 × E for some elliptic curve E, so

#C ′′(Fq) = #C(Fq)− 2TA,q − TE,q = #C(Fq)− 4q − TE,q ≤ #C(Fq)− 3q;

this yields #C(Fq) ≥ 3q, which is inconsistent with Table 1. □

We now know that in all cases C ′ → C is cyclic, so we may proceed as follows.

• We again exhaust over Weil polynomials for C and A, but this time account-
ing for (7.4), (7.5), (7.7), (7.9), (8.1). At this point the cases (q, d, g, g′) =
(3, 2, 3, 6), (4, 2, 2, 4) drop out.

• For each candidate Weil polynomial for C, we consult LMFDB to find all
candidates for C. At this point the case (q, d, g, g′) = (3, 2, 4, 7) drops out:
the only isogeny class for J(C) is 4.3.f v ca eg, which contains no Jacobian.

• We then use Magma to compute all cyclic extensions of F with the desired
degree and ramification behavior and check the resulting Weil polynomial
for A. At this point the case (q, d, g, g′) = (4, 2, 3, 5) drops out.

This yields Theorem 1.3(a).

9. A refined resultant criterion

In preparation for the case q = 2, we next introduce a refinement of the resultant
criteria, modeled on [10, Proposition 2.8] (applicable over any finite base field).

Lemma 9.1. Let f : C ′ → C be a finite flat morphism of degree d between smooth
projective curves over an arbitrary field k. Let f∗ : J(C) → J(C ′) denote the
pullback map and let f∗ : J(C ′) → J(C) denote the pushforward map. Let A
be the Prym variety of f , defined as the reduced closed subscheme of the identity
component of ker(f∗). Then there is an exact sequence

(9.2) 0 → ∆ → J(C)×k A→ J(C ′) → 0

http://www.lmfdb.org/Variety/Abelian/Fq/4.3.f_v_ca_eg
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where the map J(C) → J(C ′) is f∗ and ∆ is a finite flat group scheme killed by d.

Proof. The composition J(C)
f∗

→ J(C ′)
f∗→ J(C) equals the isogeny [d]; conse-

quently, f∗ is surjective (as a morphism of group schemes) and J(C)
f∗

→ J(C ′) →
J(C ′)/ ker(f∗) is surjective. The latter implies that J(C)×kker(f∗) → J(C ′) is sur-
jective, as then is ker(f∗) → coker(f∗); since the target is connected and reduced,
A→ coker(f∗) is surjective, as then is J(C)×k A→ J(C ′).

Let S be an arbitrary k-scheme and suppose x ∈ (J(C) ×k A)(S) maps to zero
to J(C ′). Write x = (x1, x2) with x1 ∈ J(C)(S) and x2 ∈ A(S). By definition,
x1 and −x2 have the same image in J(C ′)(S); that is, f∗(x1) = −x2. Applying
f∗, we deduce that f∗f

∗(x1) = 0, and so [d](x1) = 0; it follows that [d](x) =
([d](x1), [d](x2)) = (0, [d](x2)) maps to zero in J(C ′), and hence [d](x2) = 0. □

Corollary 9.3. In Lemma 9.1, let h1 and h2 be the radicals of the real Weil poly-
nomials associated to J(C) and A. Let r̃es(h1, h2) be the modified reduced resultant
of h1 and h2 in the sense of [10, Proposition 2.8]. Then

(9.4) gcd(d, r̃es(h1, h2)) > 1.

Proof. In (9.2), ∆ cannot be trivial: otherwise, J(C ′) would be decomposable as
a principally polarized abelian variety, violating Torelli [26, Theorem 12.1]. The
exponent of ∆ divides d by Lemma 9.1 and r̃es(h1, h2) by [10, Proposition 2.8]. □

10. Purely geometric extensions: q = 2

To conclude, we establish parts (b) and (c) of Theorem 1.3.

Lemma 10.1. If q = 2 and d = 2, then g ≤ 9. Moreover, for g = 2, . . . , 9 we have
respectively g′ ≤ 7, 9, 10, 11, 13, 14, 15, 17.

Proof. Combining (5.1), Lemma 5.6,and (7.7) yields

1.5612(g − 1) ≤ 1.5612(g′ − g)− 0.3366δ

≤ TA,q + 0.3366(TA,q + TA,q2 − δ)

+ 0.1137(TA,q3 − TA,q) + 0.0537(TA,q4 − TA,q2)

≤ (1− 0.3366− 0.1137 + 0.0537)TA,q

+ (0.3366− 0.0537)(TA,q + TA,q2 − t) + 0.1137TA,q3 + 0.0537TA,q4

≤ (1− 0.3366− 0.1137 + 0.0537)#C(Fq)

+ (0.3366− 0.0537)(#C(Fq2)−#C(Fq))

+ 0.1137#C(Fq3) + 0.0537#C(Fq4)

= a1 + 0.3366(2a2) + 0.1137(3a3) + 0.0537(4a4) ≤ 0.8042g + 5.619.

This yields the claimed results. □

Lemma 10.2. Suppose that q = 2 and g > 1.

(a) If d = 2, then

(g, g′) ∈ {(2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 7), (4, 8), (5, 9), (6, 11), (7, 13)}.
(b) If d = 3, then (g, g′) ∈ {(2, 4), (2, 6), (3, 7), (4, 10)}.
(c) If d = 4, then (g, g′) ∈ {(2, 5), (2, 6), (3, 9)}.
(d) If d > 4, then g = 2 and (d, g′) ∈ {(5, 6), (6, 7), (7, 8)}.
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Proof. We run an exhaustive search over Weil polynomials as in §6, but also ac-
counting for (7.2), (7.3), (7.5) (for d = 2), (7.6) (taking i = 1, 2, 3), (7.9) (taking
i = 1, 2), (7.10) (taking i = 1), and (9.4). This rules out

(d, g, g′) ∈ {(2, 2, 6), (2, 2, 7), (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 4, 9), (2, 4, 10), (2, 4, 11),
(2, 5, 10), (2, 5, 11), (2, 6, 12), (2, 6, 13), (2, 7, 14), (2, 8, 15), (2, 9, 17),

(3, 2, 5), (3, 2, 7), (3, 2, 8), (3, 3, 8), (3, 3, 9), (3, 3, 10), (3, 4, 11), (3, 4, 12),

(3, 5, 13), (3, 5, 14), (3, 6, 16), (4, 2, 7), (4, 2, 8), (4, 3, 10), (5, 2, 7), (5, 2, 8), (6, 2, 8)}.

(The runtime is dominated by the cases (d, g, g′) = (2, 8, 15), (2, 9, 17).) We may
thus deduce (a) from (5.1) and Lemma 10.1, (b) from Lemma 5.8 and Lemma 6.1,
and (c) and (d) from Lemma 6.1. □

We obtain Theorem 1.3(b) by a similar calculation which also accounts for (7.8)
(taking j = 2), Remark 7.11, and the following Remark 10.3.

Remark 10.3. If C ′ → C is étale and geometrically cyclic (i.e., cyclic after base
extension from F2 to an algebraic closure), we can upgrade Lemma 9.1 to say that
∆ has exponent exactly d (because ker(f∗) is étale and cyclic of order d; compare
(7.5)), and Corollary 9.3 to say that r̃es(h1, h2) must be divisible by d.

If we drop these conditions on C ′ → C, we can still say something when
gcd(d, r̃es(h1, h2)) = 2: as in [10, Theorem 2.2] there must be a degree-2 map
from C ′ to another curve D whose Jacobian is isogenous to J(C) or A. By (5.1),
the second option cannot occur if g′ > 2g+1; in characteristic 2, (7.4) also applies.

In the context of Theorem 1.3(b), the condition that gcd(d, r̃es(h1, h2)) = 2 rules
out some cases with (d, g, g′) ∈ {(4, 2, 6), (4, 3, 9), (6, 2, 7)}: there would have to be
a double cover C ′ → D with J(D) isogenous to J(C), but this is forbidden by
Lemma 10.2(a). Similarly, if (d, g, g′) = (4, 2, 5), then J(D) cannot be isogenous to
A: otherwise D would admit an étale double cover while #J(D)(F2) = 1. Hence
J(C), J(C ′) must occur in Theorem 1.3(c) with (d, g, g′) = (2, 2, 5).

Remark 10.4. When d = 2 and δ ≤ 1, A admits a principal polarization; over C
this is classical [3, Theorem 12.3.3], and a characteristic-free argument will appear
in [1]. Our formulation of Theorem 1.3(b) does not account for this constraint; it
would rule out a further 16 pairs, which are marked with stars in Table 7.

To obtain Theorem 1.3(c), we use table lookups to find candidates for C with a
given Weil polynomial (see §6), then use Magma to enumerate cyclic extensions.
As a consistency check, for each triple (d, g, g′) listed in Lemma 10.2 with g ≤ 5, we
enumerated cyclic extensions for all curves C of genus g; this took about 14 hours
and yielded no new results.
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Appendix A. Extensions of relative class number 1

qF gF gF ′ J(C) J(C′) #C′

2 0 1 0 1.2.ac 1
2 0 2 0 2.2.ad f 1
2 0 2 0 2.2.ac c 1
2 0 3 0 3.2.ad c b 1
2 0 3 0 3.2.ad d ac 1
2 0 4 0 4.2.ad c a b 1
2 1 2 1.2.a 2.2.ac e 1
2 1 2 1.2.b 2.2.ab c 1
2 1 2 1.2.c 2.2.a a 1
2 1 3 1.2.ac 3.2.ad d ac 1
2 1 3 1.2.ab 3.2.ad g ak 1
2 1 3 1.2.ab 3.2.ac c ad 1
2 1 3 1.2.b 3.2.ad g ai 1
2 1 3 1.2.b 3.2.ac e ah 1
2 1 4 1.2.a 4.2.ad e af i 1
2 1 4 1.2.a 4.2.ad f ai m 2

qF gF gF ′ J(C) J(C′) #C′

2 1 4 1.2.c 4.2.ad f ag i 1
2 1 4 1.2.c 4.2.ac c ae i 2
2 1 5 1.2.b 5.2.ad c d ag h 3
2 1 5 1.2.b 5.2.ad c e ai i 3
2 1 5 1.2.b 5.2.ad e ag k ao 3
2 1 6 1.2.c 6.2.ad c a f am q 1∗

3 0 1 0 1.3.ab 1
3 1 2 1.3.ab 2.3.ae j 1
3 1 2 1.3.a 2.3.ad g 1
3 1 2 1.3.b 2.3.ac d 2
3 1 2 1.3.c 2.3.ab a 1
3 1 3 1.3.c 3.3.ae g ag 1
3 1 3 1.3.d 3.3.ad a j 2

4 0 1 0 1.4.ae 1
4 1 2 1.4.a 2.4.ae i 1

Table 3. Purely geometric extensions with gF ≤ 1, gF ′ > gF .
The column #C ′ counts Jacobians in the isogeny class. The star
indicates a conjectural value; see Remark 6.2.

qF d gF gF ′ J(C) F

3 2 2 3 2.3.ab c y2 + x5 + 2x2 + x

3 2 2 3 2.3.ab e y2 + x6 + x4 + 2x3 + x2 + 2x

3 2 2 3 2.3.b c y2 + 2x5 + x2 + 2x

3 2 2 3 2.3.b e y2 + 2x6 + 2x4 + x3 + 2x2 + x

3 2 2 4 2.3.c h y2 + 2x6 + x4 + 2x3 + x2 + 2

3 2 3 5 3.3.c g i y2 + 2x8 + x7 + x5 + x3 + 2x2 + 2x

3 2 3 5 3.3.c g m y2 + x7 + 2x5 + x4 + x3 + x2 + 2

3 3 2 4 2.3.c d y2 + 2x6 + 2x4 + x3 + x + 2

3 3 2 4 2.3.c g y2 + 2x6 + 2x5 + x4 + x3 + x2 + 2x + 2

4 2 2 3 2.4.ab e y2 + xy + x5 + x

4 2 2 3 2.4.b e y2 + xy + x5 + ax2 + x

4 3 2 4 2.4.d h y2 + (x3 + x + 1)y + ax5 + ax4 + ax3 + ax

Table 4. Purely geometric extensions with qF > 2 and gF > 1.

d gF gF ′ J(C) F

3 2 4 2.2.ac e y2 + y + x5 + x4 + 1

3 2 4 2.2.b b y2 + (x3 + x + 1)y + x6 + x3 + x2 + x

3 2 6 2.2.a c y2 + y + x5 + x4 + x3

3 2 6 2.2.b c y2 + xy + x5 + x3 + x2 + x

3 2 6 2.2.b d y2 + (x3 + x + 1)y + x6 + x5 + x4 + x2

3 3 7 3.2.a b a y4 + (x3 + 1)y + x4

3 3 7 3.2.a b d y3 + x2y2 + x3y + x4 + x3 + x

3 3 7 3.2.b b b y3 + xy2 + (x3 + 1)y + x4

3 3 7 3.2.b b e y3 + (x2 + x)y2 + y + x3

3 3 7 3.2.b c b xy3 + xy2 + y + x3

3 3 7 3.2.b c e y4 + xy2 + y + x4

3 3 7 3.2.b e e y3 + x2y2 + xy + x4 + x

3 4 10 4.2.d f k s x2y3 + (x4 + x2 + 1)y + x4 + x2 + x + 1

3 4 10 4.2.e j q z xy3 + (x2 + x + 1)y2 + (x4 + x)y + x5 + x4

4 2 5 2.2.ab c y2 + xy + x5 + x3 + x

5 2 6 2.2.a a y2 + y + x5

5 2 6 2.2.b c y2 + xy + x5 + x3 + x2 + x

5 2 6 2.2.c e y2 + y + x5 + x4

7 2 8 2.2.c d y2 + (x2 + x + 1)y + x5 + x4 + x2 + x

Table 5. Cyclic purely geometric extensions with qF = 2, gF > 1,
d > 2. Conjecture 1.5 asserts that no noncyclic extensions occur.

http://www.lmfdb.org/Variety/Abelian/Fq/1.2.ac
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ad_f
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ac_c
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_c_b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_d_ac
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ad_c_a_b
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.a
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ac_e
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.b
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ab_c
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_a
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.ac
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_d_ac
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.ab
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_g_ak
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.ab
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ac_c_ad
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_g_ai
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ac_e_ah
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.a
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ad_e_af_i
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.a
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ad_f_ai_m
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ad_f_ag_i
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ac_c_ae_i
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.b
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.ad_c_d_ag_h
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.b
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.ad_c_e_ai_i
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.b
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.ad_e_ag_k_ao
http://www.lmfdb.org/Variety/Abelian/Fq/1.2.c
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.ad_c_a_f_am_q
http://www.lmfdb.org/Variety/Abelian/Fq/1.3.ab
http://www.lmfdb.org/Variety/Abelian/Fq/1.3.ab
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.ae_j
http://www.lmfdb.org/Variety/Abelian/Fq/1.3.a
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.ad_g
http://www.lmfdb.org/Variety/Abelian/Fq/1.3.b
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.ac_d
http://www.lmfdb.org/Variety/Abelian/Fq/1.3.c
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.ab_a
http://www.lmfdb.org/Variety/Abelian/Fq/1.3.c
http://www.lmfdb.org/Variety/Abelian/Fq/3.3.ae_g_ag
http://www.lmfdb.org/Variety/Abelian/Fq/1.3.d
http://www.lmfdb.org/Variety/Abelian/Fq/3.3.ad_a_j
http://www.lmfdb.org/Variety/Abelian/Fq/1.4.ae
http://www.lmfdb.org/Variety/Abelian/Fq/1.4.a
http://www.lmfdb.org/Variety/Abelian/Fq/2.4.ae_i
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.ab_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.ab_e
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.b_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.b_e
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.c_h
http://www.lmfdb.org/Variety/Abelian/Fq/3.3.c_g_i
http://www.lmfdb.org/Variety/Abelian/Fq/3.3.c_g_m
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.c_d
http://www.lmfdb.org/Variety/Abelian/Fq/2.3.c_g
http://www.lmfdb.org/Variety/Abelian/Fq/2.4.ab_e
http://www.lmfdb.org/Variety/Abelian/Fq/2.4.b_e
http://www.lmfdb.org/Variety/Abelian/Fq/2.4.d_h
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ac_e
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_b
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_d
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.a_b_a
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.a_b_d
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_b_b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_b_e
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_c_b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_c_e
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_e_e
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.d_f_k_s
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.e_j_q_z
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ab_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_a
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.c_e
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.c_d
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gF gF ′ J(C) F

2 3 2.2.ab c y2 + xy + x5 + x3 + x

2 3 2.2.b c y2 + xy + x5 + x3 + x2 + x

2 4 2.2.a a y2 + y + x5

2 4 2.2.a c y2 + y + x5 + x4 + x3

2 4 2.2.b b y2 + (x3 + x + 1)y + x6 + x3 + x2 + x

2 5 2.2.b d y2 + (x3 + x + 1)y + x6 + x5 + x4 + x2

2 5 2.2.c e y2 + y + x5 + x4

3 5 3.2.ad g ai y2 + (x4 + x2 + 1)y + x8 + x + 1

3 5 3.2.ab a c xy3 + (x2 + x)y2 + y + x4

3 5 3.2.ab a c xy3 + x2y2 + (x2 + 1)y + x4

3 5 3.2.ab c ac y2 + xy + x7 + x5 + x

3 5 3.2.a a f xy3 + y + x3

3 5 3.2.a c ab y2 + (x4 + x2 + x + 1)y + x6 + x5 + x2 + 1

3 5 3.2.a c b y2 + (x4 + x2 + x + 1)y + x8 + x6 + x5 + x4

3 5 3.2.b c c y2 + xy + x7 + x5 + x2 + x

3 5 3.2.b c e y2 + (x4 + x2)y + x2 + x

3 6 3.2.b d c y3 + x2y2 + x2y + x4 + x3 + x2 + x

3 6 3.2.b d e xy3 + (x + 1)y2 + x4 + x3 + x

3 6 3.2.b e d y3 + x2y2 + (x3 + x2)y + x4 + x

3 6 3.2.c d d (x + 1)y3 + y + x3

4 7 4.2.a c ab c x3y3 + (x3 + x2)y + x6 + x3 + 1

4 7 4.2.a c ab g (x2 + 1)y4 + (x3 + x2 + x + 1)y3 + (x5 + x4)y + x6 + x3 + x2

4 7 4.2.a c b c x2y4 + (x3 + 1)y2 + (x3 + x2 + x + 1)y + x6 + x5 + x3 + x2

4 7 4.2.a c d c (x2 + x + 1)y4 + (x3 + x2)y3 + (x4 + x3 + 1)y2 + (x4 + x3 + x2)y +

x5 + x4 + x3 + x

4 7 4.2.a d b f x3y3 + (x3 + x2)y + x6 + x5 + 1

4 7 4.2.a d b h (x2 + x + 1)y4 + x3y3 + (x4 + x2 + 1)y2 + x5 + x3 + x

4 7 4.2.b b c f (x + 1)y3 + (x2 + x)y2 + (x3 + x)y + x5

4 7 4.2.b c a a y2 + x2y + x9 + x7 + x + 1

4 7 4.2.c e h k y2 + (x3 + x + 1)y + x9 + x7

4 8 4.2.d i o x (x + 1)y3 + (x3 + x2 + 1)y2 + xy + x4

5 9 5.2.ab d b b j (x4+x3+x2)y4+(x5+x3+x)y3+(x3+1)y2+(x7+x+1)y+x7+x4+x+1

5 9 5.2.b c e i i y2 + x3y + x11 + x9 + x5 + x3 + x2 + x

5 9 5.2.b c e i i y4 + (x4 + x2)y2 + (x4 + x2 + 1)y + x8 + x6 + x4 + x

5 9 5.2.b f f p l (x4 +x3 +x2)y4 +(x5 +x3 +x2)y3 +(x6 +x3 +x2 +x+1)y2 +(x7 +

x5 + x4 + x3 + 1)y + x5 + x4 + x3 + x2 + x + 1

5 9 5.2.b f f p p y4 + x2y3 + (x4 + x3 + x)y2 + (x5 + 1)y + x3 + x2 + x + 1

5 9 5.2.c e f k o y2 + (x3 + x + 1)y + x12 + x11 + x10 + x7 + x5 + x3

5 9 5.2.c f i n r y4+(x2+x)y3+(x4+x3+x2+1)y2+(x6+x5+x4+1)y+x7+x6+x+1

5 9 5.2.c f i p t (x4 + x2 + x)y4 + (x4 + x3 + x+1)y3 + (x6 + x2)y2 + (x6 + x3 + x2 +

x)y + x6 + x5 + 1

5 9 5.2.c f i p v (x2 + x + 1)y6 + xy5 + (x4 + x)y4 + (x5 + x4 + x3 + x2 + x + 1)y3 +

(x5 +x3 +1)y2 +(x6 +x4 +x2)y+x8 +x7 +x6 +x5 +x4 +x3 +x2 +x

5 9 5.2.c g j q u y4 + y3 + (x4 + x3 + x2)y2 + (x3 + x2 + 1)y + x6 + 1

5 9 5.2.d h n z bl y2 + (x6 + x5 + x4 + x3 + x2 + x + 1)y + x10 + x6 + x4 + x3

5 9 5.2.d i q bc bs y4 + (x4 + x2)y2 + (x4 + x2 + 1)y + x6 + x5

6 11 6.2.c h k z bd cg x2y5 + (x3 + x)y4 + x4y3 +(x5 + x4 + x3 + x2 + x+1)y2 +(x6 + x3 +

x2)y + x7 + x3 + x + 1

6 11 6.2.d j t bn cl du (x2 + x + 1)y4 + (x3 + x + 1)y3 + (x4 + x2 + 1)y2 + (x5 + x4 + 1)y +

x5 + x4 + x3 + x

7 13 (6, 18, 12, 18, 6, 60, 174) y4+(x6+x4+x3+x2+1)y2+(x6+x4+x3+x2)y+x10+x9+x7+x6

Table 6. Purely geometric extensions with qF = 2, gF > 1, d = 2.
Completeness of the list is confirmed above the below line and
conjectural below it (Conjecture 1.5). For gF = 7, J(C) does not
appear in LMFDB, so we list J(C)(F2i) for i = 1, . . . , 7.

http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ab_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_a
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_b
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_d
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.c_e
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_g_ai
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ab_a_c
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ab_a_c
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ab_c_ac
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.a_a_f
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.a_c_ab
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.a_c_b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_c_c
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_c_e
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_d_c
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_d_e
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_e_d
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.c_d_d
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_ab_c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_ab_g
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_b_c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_d_c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_d_b_f
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_d_b_h
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_b_c_f
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_c_a_a
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.c_e_h_k
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.d_i_o_x
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.ab_d_b_b_j
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_c_e_i_i
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_c_e_i_i
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_f_f_p_l
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_f_f_p_p
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_f_k_o
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_i_n_r
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_i_p_t
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_i_p_v
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_g_j_q_u
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.d_h_n_z_bl
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.d_i_q_bc_bs
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.c_h_k_z_bd_cg
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.d_j_t_bn_cl_du
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(g, g′) A J(C)
(2, 3) 1.2.ac 2.2.ab c, 2.2.b c
(2, 4) 2.2.ab ab⋆ 2.2.ab d
(2, 4) 2.2.ac c 2.2.a a, 2.2.a c
(2, 4) 2.2.ad f 2.2.b b
(2, 5) 3.2.ad d ac 2.2.b d
(2, 5) 3.2.ae i am 2.2.c e
(3, 5) 2.2.a ae 3.2.ad g ai
(3, 5) 2.2.ac c 3.2.ab a c, 3.2.ab c ac, 3.2.b c c
(3, 5) 2.2.ad f 3.2.a a f, 3.2.a c ab, 3.2.a c b, 3.2.c e f
(3, 5) 2.2.ae i 3.2.b c e
(3, 6) 3.2.ad c b 3.2.b e d
(3, 6) 3.2.ad d ac 3.2.b d c, 3.2.b d e
(3, 6) 3.2.ae i am 3.2.c e e, 3.2.c e g
(3, 6) 3.2.ae j ap 3.2.c d d
(4, 7) 3.2.ad c b 4.2.a d ab f, 4.2.a d ab h, 4.2.a d b f, 4.2.a d b h, 4.2.a d d f
(4, 7) 3.2.ad d ac 4.2.a c ab c, 4.2.a c ab e, 4.2.a c ab g, 4.2.a c b c, 4.2.a c b e
(4, 7) 3.2.ad d ac 4.2.a c b g, 4.2.a c d a, 4.2.a c d c, 4.2.a e b k, 4.2.c g j q
(4, 7) 3.2.ae i am 4.2.b c a a, 4.2.b c a c, 4.2.b c a e, 4.2.b c c c
(4, 7) 3.2.ae i am 4.2.b c c e, 4.2.b c c g, 4.2.b c e e, 4.2.b e c i, 4.2.b e e k
(4, 7) 3.2.ae j ap 4.2.b b a b, 4.2.b b a d, 4.2.b b c d, 4.2.b b c f, 4.2.b b c h, 4.2.b d c h, 4.2.b d e j
(4, 7) 3.2.af n aw 4.2.c e h k
(4, 8) 4.2.ae g ae c 4.2.c g i q
(4, 8) 4.2.af m au bd 4.2.d i o x
(4, 8) 4.2.af n az bn⋆ 4.2.d h l r
(5, 9) 4.2.ac ab ac n 5.2.ab d b b j
(5, 9) 4.2.ad c a b 5.2.a d c j d
(5, 9) 4.2.ad d ag o 5.2.a c d e g
(5, 9) 4.2.ae f c al 5.2.b f f p l, 5.2.b f f p n, 5.2.b f f p p
(5, 9) 4.2.ae g ae c 5.2.b e c i a, 5.2.b e c i c, 5.2.b e c k e, 5.2.b e e k i
(5, 9) 4.2.ae g ae c 5.2.b e e k k, 5.2.b e e k m, 5.2.b e e m k, 5.2.b e e m m, 5.2.b e g m q
(5, 9) 4.2.ae h ak p 5.2.b d d h d, 5.2.b d d h f, 5.2.b d d h h, 5.2.b d d h j
(5, 9) 4.2.ae h ak p 5.2.b d d j h, 5.2.b d d j j, 5.2.b d d j l, 5.2.b d f j j, 5.2.b d f j l
(5, 9) 4.2.ae i aq bc 5.2.b c e i i
(5, 9) 4.2.af l ao q 5.2.c g j q u, 5.2.c g j s w, 5.2.c g j u y, 5.2.c g l u bc
(5, 9) 4.2.af m au bd 5.2.c f g l l, 5.2.c f g n p, 5.2.c f i n r, 5.2.c f i n t, 5.2.c f i p t, 5.2.c f i p v, 5.2.c f k r z
(5, 9) 4.2.af n aba bq 5.2.c e f k m, 5.2.c e f k o, 5.2.c e f m q
(5, 9) 4.2.af n az bn⋆ 5.2.c e e g f, 5.2.c e e g h, 5.2.c e e i j, 5.2.c e e k n, 5.2.c e g k l, 5.2.c e g k n, 5.2.c e g k p
(5, 9) 4.2.af n az bn⋆ 5.2.c e g k r, 5.2.c e g m p, 5.2.c e g m r, 5.2.c e g m t, 5.2.c e i o t, 5.2.c e i o v, 5.2.c g i s v
(5, 9) 4.2.ag s abk ce 5.2.d i q bc bs
(5, 9) 4.2.ag t abp co 5.2.d h o z bk, 5.2.d h o z bm
(5, 9) 4.2.ag t abq cr 5.2.d h n z bl
(6, 11) 5.2.ae e a l abh 6.2.b g i v ba bz
(6, 11) 5.2.ae f ae p abi 6.2.b f h p t bk, 6.2.b f h p v bi, 6.2.b f h r v bq
(6, 11) 5.2.af k ak f ac 6.2.c h k z bd cg
(6, 11) 5.2.af l as bg aca 6.2.c g l w bg ca, 6.2.c g l w bg cc, 6.2.c g l w bg ce
(6, 11) 5.2.af l as bg aca 6.2.c g l w bi ca, 6.2.c g l w bi cc, 6.2.c g l w bi ce
(6, 11) 5.2.af m aw bk acb 6.2.c f i q v bh, 6.2.c f i q v bj, 6.2.c f i q v bl, 6.2.c f i q x bj
(6, 11) 5.2.af m aw bk acb , 6.2.c f i q x bl, 6.2.c f i q x bn, 6.2.c f i q x bp, 6.2.c f i q z bn
(6, 11) 5.2.af m aw bk acb 6.2.c f i q z bp, 6.2.c f i s z bp, 6.2.c f i s z br
(6, 11) 5.2.ag r abg bx acs 6.2.d j r bh bx cy, 6.2.d j r bh bx da, 6.2.d j r bh bz dc, 6.2.d j r bj cb di
(6, 11) 5.2.ag r abg bx acs 6.2.d j r bj cd dm, 6.2.d j t bn cl ds, 6.2.d j t bn cl du, 6.2.d j t bn cl dw
(6, 11) 5.2.ag t abt di afe 6.2.d h m x bi ca, 6.2.d h m x bk ce, 6.2.d h m x bm ci
(7, 13) 6.2.ag p aw bh acu ey (6, 18, 12, 18, 6, 60, 174), (6, 18, 12, 18, 6, 72, 132), (6, 18, 12, 18, 6, 84, 90)
(7, 13) 6.2.ah y ace ea agn jq (7, 15, 7, 31, 12, 69, 126), (7, 15, 7, 31, 22, 45, 112)
(7, 13) 6.2.ah y ace ea agn jq (7, 15, 7, 31, 22, 57, 70), (7, 15, 7, 31, 22, 57, 84)

(g, g′) A J(C)
(2, 4) 2.2.ab ab 2.2.ac e
(2, 4) 2.2.ad f 2.2.a ab, 2.2.a c
(2, 4) 2.2.ae i 2.2.b b, 2.2.c c
(2, 6) 4.2.ad b g am 2.2.a c
(2, 6) 4.2.ae e h av 2.2.b d
(2, 6) 4.2.ae f c al 2.2.b c
(2, 6) 4.2.af l ao q 2.2.c c
(3, 7) 4.2.ac ac e a 3.2.ab c a
(3, 7) 4.2.ad b g am 3.2.a b a, 3.2.a b d
(3, 7) 4.2.ae e h av 3.2.b c b, 3.2.b c e
(3, 7) 4.2.ae e i ay 3.2.b c a
(3, 7) 4.2.ae e i ay 3.2.b c d, 3.2.b d e
(3, 7) 4.2.ae e i ay 3.2.c e h, 3.2.d h l
(3, 7) 4.2.ae f c al 3.2.b b b, 3.2.b b e
(3, 7) 4.2.ae f c al 3.2.b c d, 3.2.b e e
(3, 7) 4.2.ae f c al 3.2.c d f, 3.2.c e h
(4, 10) 6.2.ag p ar ag cg aei 4.2.d f i n
(4, 10) 6.2.ag p at g bb acj 4.2.d f k s
(4, 10) 6.2.ah v abe a dk ahc 4.2.e j q z, 4.2.e k u bg
(4, 10) 6.2.ai bc abw m ey alc 4.2.f o bc bs

(d, g, g′) A J(C)
(4, 2, 5) 3.2.ac ac i 2.2.ab c
(4, 2, 5) 3.2.ae i am 2.2.b a
(4, 2, 5) 3.2.ae i am 2.2.b c, 2.2.c e
(4, 2, 6) 4.2.ae e i ay 2.2.c e
(4, 3, 9) 6.2.af i ab ag an br 3.2.c e f
(4, 3, 9) 6.2.ag o am am bw adc 3.2.d g i
(5, 2, 6) 4.2.ad b g am 2.2.a b
(5, 2, 6) 4.2.ad c a b 2.2.a a
(5, 2, 6) 4.2.ae e h av 2.2.b c
(5, 2, 6) 4.2.ae e i ay 2.2.b d
(5, 2, 6) 4.2.ae h ak p 2.2.b c
(5, 2, 6) 4.2.af l ao q 2.2.c e, 2.2.d f
(5, 2, 6) 4.2.af n az bn 2.2.c e
(6, 2, 7) 5.2.ae e e am q 2.2.b c, 2.2.c e
(6, 2, 7) 5.2.af k ak f ac 2.2.c c, 2.2.c d
(6, 2, 7) 5.2.af l as bg aca 2.2.c c
(6, 2, 7) 5.2.ag q aba bh abr 2.2.d f
(6, 2, 7) 5.2.ag r abg bx acs 2.2.d f
(7, 2, 8) 6.2.af j ah d ab ab 2.2.c d

Table 7. Candidates for A and J(C) in Theorem 1.3(b) for d =
2, d = 3, and d > 3 respectively; ⋆ means A is not principally
polarizable (Remark 10.4). For g = 7, J(C) does not appear in
LMFDB, so we list J(C)(F2i) for i = 1, . . . , 7.

http://www.lmfdb.org/Variety/Abelian/Fq/1.2.ac
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ab_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ab_ab
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ab_d
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ac_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_a
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ad_f
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_d_ac
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.b_d
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ae_i_am
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.c_e
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.a_ae
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_g_ai
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ac_c
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ab_a_c
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ab_c_ac
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_c_c
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ad_f
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.a_a_f
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.a_c_ab
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.a_c_b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.c_e_f
http://www.lmfdb.org/Variety/Abelian/Fq/2.2.ae_i
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_c_e
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_c_b
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_e_d
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_d_ac
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_d_c
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.b_d_e
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ae_i_am
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.c_e_e
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.c_e_g
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ae_j_ap
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.c_d_d
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_c_b
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_d_ab_f
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_d_ab_h
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_d_b_f
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_d_b_h
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_d_d_f
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_d_ac
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_ab_c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_ab_e
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_ab_g
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_b_c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_b_e
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ad_d_ac
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_b_g
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_d_a
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_c_d_c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.a_e_b_k
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.c_g_j_q
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ae_i_am
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_c_a_a
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_c_a_c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_c_a_e
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_c_c_c
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ae_i_am
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_c_c_e
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_c_c_g
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_c_e_e
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_e_c_i
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_e_e_k
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.ae_j_ap
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_b_a_b
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_b_a_d
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_b_c_d
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_b_c_f
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_b_c_h
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_d_c_h
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.b_d_e_j
http://www.lmfdb.org/Variety/Abelian/Fq/3.2.af_n_aw
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.c_e_h_k
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_g_ae_c
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.c_g_i_q
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.af_m_au_bd
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.d_i_o_x
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.af_n_az_bn
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.d_h_l_r
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ac_ab_ac_n
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.ab_d_b_b_j
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ad_c_a_b
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.a_d_c_j_d
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ad_d_ag_o
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.a_c_d_e_g
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_f_c_al
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_f_f_p_l
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_f_f_p_n
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_f_f_p_p
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_g_ae_c
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_e_c_i_a
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_e_c_i_c
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_e_c_k_e
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_e_e_k_i
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_g_ae_c
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_e_e_k_k
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_e_e_k_m
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_e_e_m_k
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_e_e_m_m
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_e_g_m_q
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_h_ak_p
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_d_d_h_d
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_d_d_h_f
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_d_d_h_h
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_d_d_h_j
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_h_ak_p
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_d_d_j_h
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_d_d_j_j
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_d_d_j_l
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_d_f_j_j
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_d_f_j_l
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ae_i_aq_bc
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.b_c_e_i_i
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.af_l_ao_q
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_g_j_q_u
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_g_j_s_w
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_g_j_u_y
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_g_l_u_bc
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.af_m_au_bd
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_g_l_l
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_g_n_p
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_i_n_r
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_i_n_t
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_i_p_t
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_i_p_v
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_f_k_r_z
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.af_n_aba_bq
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_f_k_m
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_f_k_o
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_f_m_q
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.af_n_az_bn
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_e_g_f
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_e_g_h
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_e_i_j
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_e_k_n
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_g_k_l
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_g_k_n
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_g_k_p
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.af_n_az_bn
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_g_k_r
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_g_m_p
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_g_m_r
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_g_m_t
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_i_o_t
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_e_i_o_v
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.c_g_i_s_v
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ag_s_abk_ce
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.d_i_q_bc_bs
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ag_t_abp_co
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.d_h_o_z_bk
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.d_h_o_z_bm
http://www.lmfdb.org/Variety/Abelian/Fq/4.2.ag_t_abq_cr
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.d_h_n_z_bl
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.ae_e_a_l_abh
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.b_g_i_v_ba_bz
http://www.lmfdb.org/Variety/Abelian/Fq/5.2.ae_f_ae_p_abi
http://www.lmfdb.org/Variety/Abelian/Fq/6.2.b_f_h_p_t_bk
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