
SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM

HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Abstract. We present a new elementary algorithm that takes

time Oε
(
x

3
5 (log x)

3
5
+ε
)

and space O
(
x

3
10 (log x)

13
10

)
for computing M(x) =

∑
n≤x µ(n), where µ(n) is the Möbius function.

This is the first improvement in the exponent of x for an elementary
algorithm since 1985.

We also show that it is possible to reduce space consumption to
O(x1/5(log x)5/3) by the use of (Helfgott, 2020), at the cost of letting

time rise to the order of x3/5(log x).

1. Introduction

There are several well-studied sums in analytic number theory that involve
the Möbius function. For example, Mertens [Mer97] considered

M(x) =
∑
n≤x

µ(n),

now called the Mertens function. Based on numerical evidence, he conjec-
tured that |M(x)| ≤

√
x for all x. His conjecture was disproved by Odlyzko

and te Riele [OtR85]. Pintz [Pin87] made their result effective, showing that
there exists a value of x < exp(3.21 × 1064) for which |M(x)| >

√
x. It is

still not known when |M(x)| >
√
x holds for the first time; Dress [Dre93]

has shown that it cannot hold for x ≤ 1012, and Hurst has carried out a
verification up to 1016 [Hur18]. Isolated values of M(x) have been computed
in [Dre93] and in subsequent papers.

The two most time-efficient algorithms known for computing M(x) are
the following:

(1) An analytic algorithm (Lagarias-Odlyzko [LO87]), with computa-

tions based on integrals of ζ(s); its running time is O(x1/2+ε).
(2) A more elementary algorithm (Meissel-Lehmer [Leh59] and Lagarias-

Miller-Odlyzko [LMO85]; refined by Deléglise-Rivat [DR96]), with

running time about O(x2/3).

These algorithms are variants of similar algorithms for computing π(x), the
number of primes up to x. The analytic algorithm had to wait for almost 30
years to receive its first rigorous, unconditional implementation due to Platt
[Pla15], which concerns only the computation of π(x). The computation of
M(x) using the analytic algorithm presents additional complications and has

1

2 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

not been implemented. Moreover, in the range explored to date (x ≤ 1022),
elementary algorithms are faster in practice, at least for computing π(x).

Deléglise and Rivat’s paper [DR96] gives the values of M(x) for x =
106, 107, . . . , 1016. An unpublished 2011 preprint of Kuznetsov [Kuz11] gives
the values of M(x) for x = 1016, 1017, . . . , 1022 using parallel computing.
More recently, Hurst [Hur18] computed M(x) for x = 2n, n ≤ 73. (Note
that 273 = 9.444 . . . · 1021.) The computations in [Kuz11] and [Hur18] are
both based on the algorithm in [DR96].

Since 1996, all work on these problems has centered on improving the
implementation, with no essential improvements to the algorithm or to its
computational complexity. The goal of the present paper is to develop a new
elementary algorithm that is more time-efficient and space-efficient than the
algorithm in [DR96]. We show:

Main Theorem. We can compute M(x) in

time O
(
x

3
5 (log x)

3
5 (log log x)

2
5

)
and space O

(
x

3
10 (log x)

13
10 (log log x)−

3
10

)
.

This is the first improvement in the exponent of x since 1985. Using our
algorithm, we have been able to extend the work of Hurst and Kuznetsov,
computingM(x) for x = 2n, n ≤ 75, and for x = 10n, n ≤ 23. We expect that
professional programmers who have access to significant computer resources
will be able to extend this range further.

1.1. Our approach. The general idea used in all of the elementary algo-
rithms ([LMO85], [DR96], etc.) is as follows. One always starts with a com-
binatorial identity to break M(x) into smaller sums. For example, a variant
of Vaughan’s identity allows one to rewrite M(x) as follows:

M(x) = 2M(
√
x)−

∑
n≤x

∑
m1m2n1=n
m1,m2≤

√
x

µ(m1)µ(m2).

Swapping the order of summation, one can write

M(x) = 2M(
√
x)−

∑
m1,m2≤

√
x

µ(m1)µ(m2)

⌊
x

m1m2

⌋
.

The first term can be easily computed in time O(
√
x log log x) and space

O(x1/4), or else, proceeding as in [Hel20], in time O(
√
x log x) and space

O(x1/6(log x)2/3). To handle the subtracted term, the idea is to fix a param-
eter v ≤

√
x, and then split the sum into two sums: one over m1,m2 ≤ v and

the other with max(m1,m2) > v. The difference between the approach taken
in the present paper and those that came before it is that our predecessors
take v = x1/3 and then compute the sum for m1,m2 ≤ v in time O(v2). We

will take our v to be a little larger, namely, about x2/5. Because we take a
larger value of v, we have to treat the case with m1,m2 ≤ v with greater
care than [DR96] et al. Indeed, the bulk of our work will be in Section 4,
where we show how to handle this case.

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 3

Our approach in Section 4 roughly amounts to analyzing the difference
between reality and a model that we obtain via Diophantine approximation,
in that we show that this difference has a simple description in terms of
congruence classes and segments. This description allows us to compute the
difference quickly, in part by means of table lookups.

1.2. Alternatives. In a previous draft of our paper, we followed a route
more closely related to the main ideas in papers by Galway [Gal00] and by
the first author [Hel20]. Those papers succeeded in reducing the space needed
for implementing the sieve of Eratosthenes (or the Atkin-Bernstein sieve, in

Galway’s case) down to about O(x1/3). In particular, [Hel20] provides an
algorithm for computing µ(n) for all successive n ≤ x in time O(x log x)

and space O(x1/3(log x)2/3), building on an approach from a paper of Croot,

Helfgott, and Tao [TCH12] that computes
∑

n≤x τ(n) in time about O(x1/3).
That approach is in turn related to Vinogradov’s take on the divisor problem
[Vin54, Ch. III, exer. 3-6] (based on Voronöı).

The total time taken by the algorithm in the previous version of our paper
was on the order of x3/5(log x)8/5. Thus, the current version is asymptotically
faster. If an unrelated improvement present in the current version (Algorithm
23; see §3) were introduced in the older version, time usage would be on

the order of x3/5(log x)6/5(log log x)2/5. We sketch the older version of the
algorithm in Appendix A.

Of course, we could use [Hel20] as a black box to reduce space consump-
tion in some of our routines, while leaving everything else as it is in the
current version. Time complexity would increase slightly, while space com-
plexity would be much reduced. More precisely: using [Hel20] as a black
box, and keeping everything else the same, we could compute M(x) in time

O(x3/5(log x)) and space O(x1/5(log x)5/3). We choose to focus instead on
the version of the algorithm reflected in the main theorem; it is faster but
less space-efficient.

1.3. Notation and algorithmic conventions. As usual, we write f(x) =
O(g(x)) to denote that there is a positive constant C such that |f(x)| ≤
Cg(x) for all sufficiently large x. The notation f(x) � g(x) is synonymous
to f(x) = O(g(x)). We use f(x) = O∗(g(x)) to indicate something stronger,
namely, |f(x)| ≤ g(x) for all x.

For x ∈ R, we write bxc for the largest integer ≤ x, and {x} for x− bxc.
Thus, {x} ∈ [0, 1) no matter whether x < 0, x = 0, or x > 0.

We write logb x to mean the logarithm base b of x, not log log · · · log x (log
iterated b times).

Throughout this paper, we assume that arithmetic operations take time
O(1), and we count space in bits. The combination of these two assumptions
may seem counterintuitive, but it is actually a good reflection of practice,

4 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

particularly given that any x for which we can compute M(x) in reason-
able time can be stored in a fixed-sized integer (64 or 128 bits). All of the
pseudocode for our algorithms appears at the end of this paper.

1.4. Acknowledgements. The authors would like to thank the Max Planck
Institute for Mathematics, which hosted the two of them for a joint visit from
February 1 - April 15, 2020. They are especially grateful to have had access
to the parallel computers at the MPIM. While completing this research,
H.H. was partially supported by the European Research Council under Pro-
gramme H2020-EU.1.1., ERC Grant ID: 648329 (codename GRANT), and
by his Humboldt professorship. L.T. was partially supported by the Max
Planck Institute for Mathematics for her sabbatical during the 2019 - 2020
academic year. This work began while she was employed by Oberlin College.
She is grateful to Oberlin for supporting her during the early stages of this
project.

2. Preparatory work: identities

We will start from the identity

(2.1) µ(n) = −
∑

m1m2n1=n
m1,m2≤u

µ(m1)µ(m2) +

{
2µ(n) if n ≤ u
0 otherwise,

valid for n ≤ x and u ≥
√
x. (We will set u =

√
x.) This identity is simply

the case K = 2 of Heath-Brown’s identity for the Möbius function: for all
K ≥ 1, n ≥ 1, and u ≥ n1/K ,

µ(n) = −
∑

1≤k≤K
(−1)k

(
K

k

) ∑
m1...mkn1...nk−1=n

m1,...,mk≤u

µ(m1)...µ(mk).

(See [IK04, (13.38)]; note, however, that there is a typographical error under
the sum there: m1 . . .mkn1 . . . nk = n should be m1 . . .mkn1 . . . nk−1 = n.)
Alternatively, we can derive (2.1) immediately from Vaughan’s identity for
µ: that identity would, in general, have a term consisting of a sum over
all decompositions m1m2n1 = n with m1,m2 > u, but that term is empty
because u2 ≥ x.

We sum over all n ≤ x, and obtain

(2.2)
M(x) = 2M(u)−

∑
n≤x

∑
m1m2n1=n
m1,m2≤u

µ(m1)µ(m2).

for u ≥
√
x.

Before we proceed, let us compare matters to the initial approach in
[DR96]. Lemma 2.1 in [DR96] states that

M(x) = M(u)−
∑
m≤u

µ(m)
∑

u
m
<n≤ x

m

M
(x

mn

)
(2.3)

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 5

for 1 ≤ u ≤ x. This identity is due to Lehman [Leh60, p. 314]; like Vaughan’s
identity, it can be proved essentially by Möbius inversion. For u =

√
x, this

identity is equivalent to (2.1), as we can see by a change of variables and,
again, Möbius inversion.

We will set u =
√
x once and for all. We can compute M(u) in (2.2)

in time O(u log log u) and space O(
√
u), by a segmented sieve of Eratos-

thenes. (Alternatively, we can compute M(u) in time O(u log u) and space

O(u1/3(log u)2/3), using the space-optimized version of the segmented sieve
of Eratosthenes in [Hel20].) Thus, we will be able to focus on the other term
on the right side of (2.2). We can write, for any v ≤ u,

(2.4)

∑
n≤x

∑
m1m2n1=n
m1,m2≤u

µ(m1)µ(m2) =
∑
n≤x

∑
m1m2n1=n
m1,m2≤v

µ(m1)µ(m2)

+
∑
n≤x

∑
m1m2n1=n
m1,m2≤u

max(m1,m2)>v

µ(m1)µ(m2).

In this way, computing M(x) reduces to computing the two double sums
on the right side of (2.4).

3. The case of a large non-free variable

Let us work on the second sum in (2.4) first. It is not particularly difficult
to deal with; there are a few alternative procedures that would lead to the
same time complexity, and several that would lead to a treatment whose
time complexity is worse by only a factor of log x.

Clearly,

(3.1)

∑
n≤x

∑
m1m2n1=n
m1,m2≤u

max(m1,m2)>v

µ(m1)µ(m2) =
∑

v<m≤u
µ(m)2

⌊ x
m2

⌋

+ 2
∑
n≤x

∑
m1m2n1=n
v<m1≤u
m2<m1

µ(m1)µ(m2)

and

(3.2)
∑
n≤x

∑
m1m2n1=n
v<m1≤u
m2<m1

µ(m1)µ(m2) =
∑

v<a≤u
µ(a)

∑
r≤x

a

∑
b|r
b<a

µ(b).

It is evident that the first sum on the right in (3.1) can be computed in time
O(u log log u) and space O(

√
u), again by a segmented sieve. (Alternatively,

we can compute it in time O(u log u) and space O(u1/3(log u)2/3), using the
segmented sieve in [Hel20].)

6 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Write D(r, y) =
∑

b|r:b≤y µ(b). Then

∑
r≤x

a

∑
b|r
b<a

µ(b) =
∑
r≤x

a

∑
b|r
b≤x

r

µ(b)−
∑
r≤x

a

∑
b|r

a≤b≤x
r

µ(b)

=
∑
r≤x

a

D
(
r,
x

r

)
−
∑
b≥a

µ(b)
∑
r≤x

b

1 = S
(x
a

)
−
∑
b≥a

µ(b)
⌊ x
b2

⌋
.

where S(m) =
∑

r≤mD(r;x/r) = 1+
∑

x/u<r≤mD(r;x/r), sinceD(r;x/r) =∑
b|r:b≤x/r µ(b) =

∑
b|r µ(r) for r ≤

√
x = u.

Thus, to compute the right side of (3.2), it makes sense to let n take
the values buc, buc − 1, . . . , bvc+ 1 in descending order; as n decreases, x/n
increases, and we compute D(r;x/r), and thus S(x/n), for increasing values
of r. Computing all values of µ(a) for v < a ≤ u using a segmented sieve of
Eratosthenes takes time O(u log log u) and space O(

√
u).

The main question is how to compute D(r;x/r) efficiently for all r in a
given segment. Using a segmented sieve of Eratosthenes, we can determine
the set of prime divisors of all r in an interval of the form [y, y+∆], |∆| ≥ √y,
in time O(∆ log log y) and space O(∆ log y). We want to compute the sum
D(r;x/r) =

∑
b|r:b<x/r µ(b) for all r in that interval. The naive approach

would be to go over all divisors b of all integers r in [y, y + ∆]; since those
integers have log y divisors on average, doing so would take time O(∆ log y).
Fortunately, there is a less obvious way to compute D(r;x/r) in average
time O(log log y). We will need a simple lemma on the anatomy of integers.

Lemma 3.1. Let Pz(n) =
∏
p≤z:p|n p. For z,N, a arbitrary and N < n ≤ 2N

random, the expected value of

(3.3)
∑

a
Pz(n)

<d≤2a

p|d⇒p>z

∑
d′|n: d′ squarefree

p|d′⇒z1/2<p≤z

1

is O(1).

Proof. For any fixed positive integer K, the numbers N < n ≤ 2N with
Pz(n) = K are of the form m ·

∏
p≤z:p|n = m ·K, where m can be any of the

z-rough integers N/K < m ≤ 2N/K. Let us consider how many divisors
d|m with properties with p | d ⇒ p > z and a

Pz(n) < d ≤ 2a there are on

average as m varies on (N/K, 2N/K].
We can assume that z ≤ N/K, as otherwise m has at most 2 divisors d

free of prime factors ≤ z (namely, d = 1 and d = m). Then a random integer
m ∈ (N/K, 2N/K] with no prime factors ≤ z has the following expected

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 7

number of divisors in (aK , 2a]:

1

(N/K)/ log z
O

 ∑
a
K
<d≤2a

p|d⇒p>z

(N/K)/d

log z

+O(1) = O
(

1 +
∑

a
K
<d≤2a

p|d⇒p>z

1

d

)
,

since the number of integers in (M, 2M] with no prime factors up to z is
�M/ log z for z ≤M and�M/ log z for z > 1 and M ≥ 1. (The term O(1)
is there to account for d = m; in that case and only then, (N/K)/d < 1.)

Applying an upper bound sieve followed by partial summation, we see
that ∑

a
K
<d≤2a

p|d⇒p>z

1

d
� (log 2a− log a/K)

∏
p≤z

(
1− 1

p

)
+ 1.

(The term O(1) comes from
∑

a/K<d≤za/K 1/d.) By Mertens’ Theorem, the

product is � 1/ log z. Hence,∑
a
K
<d≤2a

e|d⇒e>z

1

d
= O

(
log 2a− log a/K

log z
+ 1

)
= O

(
log 2K

log z
+ 1

)
.

The number of divisors d′|n with p|d′ ⇒ z1/2 < p ≤ z depends only on
K = Pz(n). Therefore, the expected value of (3.3) is

(3.4) O
(
E
((log 2Pz(n)

log z
+ 1

) ∑
d′|n: d′ squarefree

p|d′⇒z1/2<p≤z

1
))
.

Now, logPz(n) =
∑

p|n log p. Let ξ denote the random variable given by

ξ =
∑

d′|n: d′ squarefree

p|d′⇒z1/2<p≤z

1

and let Ap denote the event that p | n. Then (3.4) is at most a constant
times

(3.5) E
(
ξ
)

+
1

log z

∑
p≤z

log p

p
E
(
ξ
∣∣∣ Ap).

Clearly

E
(
ξ
)
≤ 1

N

∑
n≤2N

∑
d′|n: d′ squarefree

p|d′⇒z1/2<p≤z

1

� 1

N

∑
d square-free
p|d⇒z1/2<p≤z

N

d
=

∑
d square-free
p|d⇒z1/2<p≤z

1

d
=

∏
z1/2<p≤z

(
1 +

1

p

)
∼ log z

log z1/2
� 1.

8 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

We must also estimate the conditional expectation: for p ≤ z ≤ N ,

E
(
ξ
∣∣∣ Ap)� 1

N/p

∑
n≤2N

p|n

∑
d′|n: d′ squarefree

p′|d′⇒z1/2<p′≤z

1

� 1

N/p

 ∑
d square-free:p-d
p′|d⇒z1/2<p′≤z

N/p

d
+

∑
d square-free:p|d
p′|d⇒z1/2<p′≤z

N/p

d/p


�

∑
d square-free:p-d
p′|d⇒z1/2<p′≤z

1

d
≤

∏
z1/2<p≤z

(
1 +

1

p

)
� 1.

Hence, the expression in (3.5) is

� 1 +
1

log z

∑
p≤z

log p

p
� 1 +

log z

log z
� 1.

�

Proposition 3.2. Define D(n; a) =
∑

d|n:d≤a µ(d). Let N,A ≥ 1. For each

N < n ≤ 2N , let A ≤ a(n) ≤ 2A. Then, given the factorization n =
pα1

1 pα2
2 · · · pαrr , where p1 < p2 < . . . < pr, Algorithm 23 computes D(n; a(n)).

in expected time O(log logN) on average over n = N + 1, . . . , 2N .

Proof. Algorithm 23 computes D(n; a) recursively: it calls itself to com-
pute D(n0; a) and D(n0; a/pr), where n0 = p1p2 · · · pr−1, and then returns
D(n; a) = D(n0; a) − D(n0; a/pr). The contribution of D(n0; a) is that of
divisors `|n with pr - `, whereas the contribution of D(n0; a/pr) corresponds
to that of divisors `|n with pr|`.

The algorithm terminates in any of three circumstances:

(1) for a < 1, returning D(n; a) = 0,
(2) for n = 1 and a ≥ 1, returning D(n; a) = 1,
(3) for n > 1 and a ≥ n, returning D(n; a) = 0.

Here it is evident that the algorithm gives the correct output for the cases
(1)–(2), whereas case (3) follows fromD(n; a) =

∑
d|n:d≤a µ(d) =

∑
d|n µ(d) =

0 for n > 1, a ≥ n.
We can see recursion as traversing a recursion tree, with leaves correspond-

ing to cases in which the algorithm terminates. (In the study of algorithms,
trees are conventionally drawn with the root at the top.) The total running
time is proportional to the number of vertices in the tree. If the algorithm
were written to terminate only for n = 1, the tree would have 2r leaves;
as it is, the algorithm is written so that some branches terminate at depth
much lower than r. We are to bound the average number of vertices of the
recursion tree for inputs N < n ≤ 2N and a = a(n) ∈ [A, 2A].

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 9

Say we are at the depth reached after taking care of all pi with pi > z. The
branches that have survived correspond to d|n with p|d⇒ p > z, d ≤ 2A and
d > A/Pz(n). We are to compute D(Pz(n); a/d). (If d > 2A, then a/d < 1,
and so our branch has terminated by case (1) above. If d ≤ A/Pz(n), then
a/d ≥ Pz(n), and we are in case (3).)

Now we continue running the algorithm until we take care of all pi with
pi > z1/2. On each branch that survived up to depth p > z, the vertices
between that depth and depth p > z1/2 correspond to square-free divisors
d′|n such that p|d⇒ z1/2 < p ≤ z.

By Lemma 3.1, we conclude that the average number of nodes in the tree
corresponding to z1/2 < p ≤ z is O(1). Letting z = N,N1/2, N1/4, N1/8, . . . ,
we obtain our result.

�

In this way, letting ∆ =
√
x/v, we can compute D(r;x/r) for all x/u <

r ≤ x/v in time O((x/v) log log(x/v)) and space O(
√
x/v log(x/v)). Sum-

ming values of D(r;x/r) for successive values of r to compute S(m) =∑
r≤mD(r;x/r) for x/u < m ≤ x/v takes time O(x/v) and additional

space1 O(1). As a decreases and m = x/a increases, we may (and should)
discard values of S(m) and D(r;x/r) that we no longer need, so as to keep
space usage down.

We have thus shown that we can compute the right side of (3.2) in time

O((x/v) log log x) and space O(
√
x/v · log x) for any 1 ≤ v ≤ u =

√
x.

It is easy to see that, if we use the algorithm in [Hel20, Main Thm.]
instead of the classical segmented sieve of Eratosthenes, we can accomplish
the same task in time O((x/v) log x) and space O((x/v)1/3(log x)5/3).

A few words on the implementation. See Algorithm 3.
Choice of ∆. The size of the segments used by the sieve is to be chosen at

the outset: ∆ = C max(
√
u,
√
x/v) = C

√
x/v (for some choice of constant

C ≥ 1) if we use the classical segmented sieve (SegFactor), or

(3.6) ∆ = C max

(
3
√
u(log u)2/3, 3

√
x

v
(log x/v)2/3

)
= C 3

√
x

v

(
log

x

v

)2/3

for the improved segmented sieve in [Hel20, Main Thm.].
Memory usage. It is understood that calls such as F ← SegFactor(a0,∆)

will result in freeing or reusing the memory previously occupied by F . (In
other words, “garbage-collection” will be taken care of by either the pro-
grammer or the language.)

Parallelization. Most of the running time is spent in function SArr (Al-
gorithm 4), which is easy to parallelize. We can let each processor sieve a
block of length ∆. Other than that – the issue of computing an array of sums
S (as in Algorithm 4) in parallel is a well-known problem (prefix sums), for

1One may take a little more space (but no more than O(
√
x/v log(x/v))) if one decides

to parallelize this summation procedure.

10 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

which solutions of varying practical efficiency are known. We follow a com-
mon two-level algorithm: first, we divide the array into as many blocks as
there are processing elements; then (level 1) we let each processing element
compute, in parallel, an array of prefix sums for each block, ending with the
total of the block’s entries; then we compute prefix sums of these totals to
create offsets; finally (level 2), we let each processing element add its block’s
offset to all elements of its block.

4. The case of a large free variable

We now show how to compute the first double sum on the righthand side
of (2.4). That double sum equals∑

m,n≤v
µ(m)µ(n)

⌊ x

mn

⌋
.(4.1)

Note that, in [DR96], this turns out to be the easy case. However, they take

v = x1/3, while we will take v = x2/5. As a result, we have to take much
greater care with the computation to ensure that the run time does not
become too large.

4.1. A first try. We begin by splitting [1, v] × [1, v] into neighborhoods
U around points (m0, n0). For simplicity, we will take these neighborhoods
to be rectangles of the form Ix × Iy with Ix = [m0 − a,m0 + a) and Iy =
[n0− b, n0 + b), where

√
m0 � a < m0 and

√
n0 � b < n0. (In Section 5, we

will partition the two intervals [1, v] into intervals of the form [x0, (1 +η)x0)
and [y0, (1 + η)y0), with 0 < η ≤ 1 a constant. We will then specify a and
b for given x0 and y0, and subdivide [x0, (1 + η)x0) × [y0, (1 + η)y0) into
rectangles Ix × Iy with |Ix| = 2a and |Iy| = 2b.) Applying a local linear
approximation to the function x

mn on each neighborhood yields

(4.2)
x

mn
=

x

m0n0
+ cx(m−m0) + cy(n− n0) + ETquad(m,n),

where ETquad(m,n) is a quadratic error term (that is, a term whose size is
bounded by O(max(n− n0,m−m0)2) and

cx =
−x
m2

0n0
, cy =

−x
m0n2

0

.

The quadratic error term will be small provided that U is small. We will show
how to choose U optimally at the end of this section. The point of applying
the linear approximation is that it will ultimately allow us to separate the
variables in our sum. The one complicating factor is the presence of the floor
function. If we temporarily ignore both the floor function in (4.1) and the
quadratic error term, we can see very clearly how the linear approximation
helps us. To wit:

(4.3)
∑

(m,n)∈Ix×Iy

µ(m)µ(n)
x

mn

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 11

is approximately equal to∑
(m,n)∈Ix×Iy

µ(m)µ(n)

(
x

m0n0
+ cx(m−m0) + cy(n− n0)

)

=

(∑
m∈Ix

µ(m)

(
x

m0n0
+ cx(m−m0)

))
·
∑
n∈Iy

µ(n)

+

∑
n∈Iy

µ(n)cy(n− n0)

 · ∑
m∈Ix

µ(m).(4.4)

One can use the segmented sieve of Eratosthenes to compute the values
of µ(m) for m ∈ Ix and µ(n) for n ∈ Iy. If a <

√
x0 or b <

√
y0, we compute

the values of µ in segments of length about
√
x0 or

√
y0 and use them for

several neighborhoods Ix × Iy. In any event, computing 4.4 given µ(m) for
m ∈ Ix and µ(n) for n ∈ Iy takes only time O(max(a, b)) and negligible
space.

4.2. Handling the difference between reality and an approximation.
Proceeding as above, we can compute the sum

S0 :=
∑

(m,n)∈Ix×Iy

µ(m)µ(n)

(⌊
x

m0n0
+ cx(m−m0)

⌋
+ bcy(n− n0)c

)
in time O(max(a, b)) and space O(log max(x0, y0)), given arrays with the
values of µ(m) and µ(n). The issue is that S0 is not the same as

S1 :=
∑

(m,n)∈Ix×Iy

µ(m)µ(n)

(⌊
x

m0n0
+ cx(m−m0) + cy(n− n0)

⌋)
,

and it is certainly not the same as the sum we actually want to compute,
namely,

S2 :=
∑

(m,n)∈Ix×Iy

µ(m)µ(n)
⌊ x

mn

⌋
.

From now on, we will write

L0(m,n) =

⌊
x

m0n0
+ cx(m−m0)

⌋
+ bcy(n− n0)c ,

L1(m,n) =

⌊
x

m0n0
+ cx(m−m0) + cy(n− n0)

⌋
, L2(m,n) =

⌊ x

mn

⌋
.

Here m0, n0 and x are understood to be fixed. Our challenge will be to show
that the weights L2 − L1 and L1 − L0 actually have a simple form – simple
enough that S2 − S1 and S1 − S0 can be computed quickly.

We approximate cy by a rational number a0/q with q ≤ Q = 2b such that

δ := cy − a0/q

12 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

satisfies |δ| ≤ 1/qQ. Thus,

(4.5)

∣∣∣∣cy(n− n0)− a0(n− n0)

q

∣∣∣∣ ≤ 1

2q
.

We can find such an a0
q in time O(logQ) using continued fractions (see

Algorithm 9).
Write r0 = r0(m) for the integer such that the absolute value of

(4.6) β = βm :=

{
x

m0n0
+ cx(m−m0)

}
− r0

q

is minimal (and hence ≤ 1/2q). If there are two such values, choose the
greater one. Then

(4.7) − 1

2q
≤ β < 1

2q
.

We will later make sure that we choose our neighborhoods Ix × Iy so
that |ETquad(m,n)| ≤ 1/2b, where ETquad(m,n) is defined by (4.2). We also
know that ETquad(m,n) > 0, since the function (m,n) 7→ x/mn is convex.
We are of course assuming that Ix × Iy is contained in the first quadrant,
and so (m,n) 7→ x/mn is well-defined on it.

The aforementioned notation will be used throughout this section.

Lemma 4.1. Let (m,n) ∈ Ix× Iy. Unless a0(n− n0) + r0 ∈ {0,−1} mod q,

L2(m,n) = L1(m,n).

Proof. Since 0 < ETquad(m,n) ≤ 1/2b, we can have

(4.8)
⌊ x

mn

⌋
6=
⌊

x

m0n0
+ cx(m−m0) + cy(n− n0)

⌋
(in which case the left side equals the right side plus 1) only if

(4.9)

{
x

m0n0
+ cx(m−m0) + cy(n− n0)

}
≥ 1− 1

2b
.

Since q ≤ 2b and

x

m0n0
+ cx(m−m0) + cy(n− n0) ∈ a0(n− n0) + r0

q
+

[
−1

q
,
1

q

)
,

we see that (4.9) can be the case only if a0(n−n0) + r0 is in {0,−1} mod q.
�

Lemma 4.2. Let (m,n) ∈ Ix × Iy. Unless a0(n− n0) + r0 ≡ 0 (mod q),

L1(m,n)− L0(m,n) =

{
0 if r0 + a0(n− n0) ≤ q,
1 otherwise,

(4.10)

+

{
1 if q|(n− n0) ∧ (δ(n− n0) < 0),

0 otherwise.
(4.11)

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 13

Proof. Recall that, for all real numbers A and B,

bA+Bc − (bAc+ bBc) =

{
0, if {A}+ {B} < 1

1, otherwise.

Thus, L1(m,n)− L0(m,n) is either 0 or 1, and it is 1 if and only if

(4.12)

{
x

m0n0
+ cx(m−m0)

}
+ {cy(n− n0)}

is ≥ 1. By (4.5) and (4.7), the quantity in (4.12) lies in

r0

q
+

{
a0(n− n0)

q

}
+

[
−1

q
,
1

q

)
unless, possibly, if a0(n−n0) ≡ 0 mod q, that is, if q|(n−n0). Hence, unless
a0(n − n0) + r0 ≡ 0 mod q or q|(n − n0), the expression in (4.12) is ≥
1 if and only if r0/q + {a0(n − n0)/q} ≥ 1. Moreover, if q|(n − n0) but
a0(n − n0) + r0 6≡ 0 mod q, it is easy to see that the expression in (4.12) is
< 1 iff δ(n− n0) = cy(n− n0)− a0(n− n0)/q is ≥ 0. �

It follows immediately from Lemmas 4.1 and 4.2 that

(4.13) L2(m,n)− L0(m,n) =

{
0 if r0 + a0(n− n0) ≤ q,
1 otherwise,

unless r0 + a0(n− n0) ∈ {0,−1} mod q, where we write a for the integer in
{0, 1, . . . , q − 1} congruent to a modulo q.

Note that the first term on the right side of (4.13) depends only on
n mod q (and a0 mod q and r0), and the second term depends only on
n mod q, sgn(n − n0) and sgn(δ) (and not on r0; hence it is independent
of m). Given the values of µ(n) for n ∈ Iy, it is easy to make a table of

ρr =
∑
n∈Iy

a0(n−n0)≡r mod q

µ(n)

for r ∈ Z/qZ in time O(b) and space O(q log b), and then a table of

σr =
∑
n∈Iy

a0(n−n0)>q−r

µ(n)

for 0 ≤ r ≤ q in time O(q) and space O(q log b). We also compute∑
n∈Iy
q|n−n0

δ·(n−n0)<0

µ(n)

once and for all. It remains to deal with the problematic cases a0(n− n0) +
r0 ∈ {0,−1} mod q.

14 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Lemma 4.3. Let (m,n) ∈ Ix × Iy. If a0(n − n0) + r0 ≡ −1 (mod q) and
q > 1, then

L2(m,n)− L1(m,n) =

{
1 if n 6∈ I,

0 if n ∈ I,

where I = (x−,x+) if the equation

γ2x
2 + γ1x + γ0 = 0

has real roots x− < x+, and I = ∅ otherwise. Here γ0 = xq, γ2 = −a0m and

γ1 =

(
−
⌊

x

m0n0
+ cx(m−m0)

⌋
q − (r0 + 1) + a0n0

)
m.

Proof. The question is whether L2(m,n) > L1(m,n). Since

(4.14) − 1/2q ≤ β < 1/2q and |δ(n− n0)| ≤ 1/2q,

we know that{
x

m0n0
+ cx(m−m0) + cy(n− n0)

}
=

{
r0

q
+ β +

a0(n− n0)

q
+ δ(n− n0)

}
=

{
−1

q
+ β + δ(n− n0)

}
=
q − 1

q
+ β + δ(n− n0),

where the last line follows from (4.14). Hence, L2(m,n) > L1(m,n) if and
only if

(4.15)
x

mn
−
(

x

m0n0
+ cx(m−m0) + cy(n− n0)

)
≥ 1

q
− β − δ(n− n0).

This, in turn, is equivalent to

(4.16)
c0

n
+ c1 + c2n ≥ 0,

where c0 = x/m, c2 = −a0/q and

c1 = −
(

x

m0n0
+ cx(m−m0)− β

)
+
a0

q
n0 −

1

q

= −
⌊

x

m0n0
+ cx(m−m0)

⌋
− r0 + 1

q
+
a0

q
n0.

Since a0/q is a Diophantine approximation to cy = −x/m0n
2
0 < 0, it is

clear that a0/q is non-positive. Consequently, if q > 1, a0 must be negative,
since a0 and q are coprime. Hence, c2 is positive, and so (4.16) holds iff
n 6∈ I, where I = (x−,x+) if the equation

c2x
2 + c1x + c0 = 0

has real roots x− ≤ x+, and I = ∅ otherwise.
�

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 15

Solving a quadratic equation is not computationally expensive; in prac-
tice, the function x 7→ b

√
xc generally takes less time to compute than a

division. Thus it makes sense to consider it to take O(1) time, since we are
thinking of the four basic operations as taking O(1) time.

What we have to do is keep a table of

ρr,≤n′ =
∑

n∈Iy ,n≤n′
a0(n−n0)≡r mod q

µ(n).

We need only consider values of n′ satisfying a0(n′ − n0) ≡ r mod q (since
ρr,≤n′ = ρr,≤n′′ for n′′ the largest number n′′ ≤ n′ with a0(n′′ − n0) ≡
r mod q). It is then easy to see that we can construct the table in time O(b)
and space O(b log b), simply letting n traverse Iy from left to right. (In the
end, we obtain ρr for every r ∈ Z/qZ.) In the remaining lemmas, we show
how to handle the cases where a0(n− n0) + r0 ≡ 0 (mod q).

Lemma 4.4. Let (m,n) ∈ Ix × Iy. If a0(n− n0) + r0 ≡ 0 (mod q), then

L1(m,n)− L0(m,n) =

{
0 if n 6∈ I,

1 if n ∈ I,

where, if r0 6≡ 0 mod q,

I =


n0 − β

δ + 1
δ · [0,∞) if δ 6= 0,

R if δ = 0 and β ≥ 0,

∅ if δ = 0 and β < 0,

and, if r0 ≡ 0 mod q,

I =


R if β < 0 and δ < 0

(−∞, n0] ∪ [n0 − β
δ ,∞) if β < 0 and δ > 0

n0 + 1
δ [−β, 0) if β > 0 and δ 6= 0,

∅ otherwise.

Proof. Since {a0(n− n0)/q} = {−r0/q},{
x

m0n0
+ cx(m−m0)

}
+ {cy(n− n0)} =

{
r0

q
+ β

}
+

{
−r0

q
+ δ(n− n0)

}
.

Recall that −1/2q ≤ β < 1/2q and |δ(n − n0)| ≤ 1/2q. For r0 6≡ 0 mod q,
{r0/q + β} + {−r0/q + δ(n − n0)} ≥ 1 iff β + δ(n − n0) ≥ 0. We treat the
case r0 ≡ 0 mod q separately: {β}+ {δ(n−n0)} ≥ 1 iff either (a) β < 0 and
δ(n− n0) < 0, or (b) βδ(n− n0) < 0 and β + δ(n− n0) ≥ 0.

�

Lemma 4.5. Let (m,n) ∈ Ix×Iy. If a0(n−n0)+r0 ≡ 0 (mod q) and q > 1,

L2(m,n)− L1(m,n) =

{
0 if n 6∈ I ∩ J ,

1 if n ∈ I ∩ J ,

16 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

where I = [x−,x+] if the equation

γ2x
2 + γ1x + γ0 = 0

has real roots x− ≤ x+, and I = ∅ otherwise, whereas J = n0−β/δ− 1
δ (0,∞)

if δ 6= 0, J = ∅ if δ = 0 and β ≥ 0 and J = (−∞,∞) if δ = 0 and β < 0.
Here γ0 = xq, γ2 = −a0m and

γ1 =

(
−
⌊

x

m0n0
+ cx(m−m0)

⌋
q − r0 + a0n0

)
m.

Proof. As in the proof of Lemma 4.3, we have{
x

m0n0
+ cx(m−m0) + cy(n− n0)

}
=

{
r0

q
+ β +

a0(n− n0)

q
+ δ(n− n0)

}
= {β + δ(n− n0)} ,

where the last equality follows from the fact that a0(n−n0)+r0 ≡ 0 (mod q).
We know that β+δ(n−n0) < 1/q, whereas 0 < ETquad(m,n) ≤ 1/2b ≤ 1/q.
Since q > 1, we see that, if β + δ(n− n0) ≥ 0, the inequality

(4.17)
⌊ x

mn

⌋
>

⌊
x

m0n0
+ cx(m−m0) + cy(n− n0)

⌋
cannot hold. If β + δ(n− n0) < 0, then (4.17) holds iff

(4.18)
x

mn
−
(

x

m0n0
+ cx(m−m0) + cy(n− n0)

)
≥ −β − δ(n− n0),

Much as in the proof of Lemma 4.3, this inequality holds iff n ∈ I, where
I = [x−,x+] if the equation c2x

2 + c1x + c0 = 0 has real roots x− ≤ x+,
where c0 = x/m, c2 = −a0/q and

c1 = −
⌊

x

m0n0
+ cx(m−m0)

⌋
− r0

q
+
a0

q
n0,

and I = ∅ if the equation has complex roots. �

Lemma 4.6. Let (m,n) ∈ Ix × Iy. If q = 1,

L2(m,n)− L1(m,n) =

{
0 if n 6∈ (I0 ∩ J) ∪ (I1 ∩ (R \ J)),

1 if n ∈ (I0 ∩ J) ∪ (I1 ∩ (R \ J)),

where J = n0 − β/δ − 1
δ (0,∞) if δ 6= 0, J = ∅ if δ = 0.

If a 6= 0, then Ij = [x−,j ,x+,j] if the equation

γ2x
2 + γ1,jx + γ0 = 0

has real roots x−,j ≤ x+,j, and I = ∅ otherwise. Here γ0 = xq, γ2 = −a0m
and

γ1,j =

(
−
⌊

x

m0n0
+ cx(m−m0)

⌋
q − (r0 + j) + a0n0

)
m.

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 17

If a = 0, then

Ij =

(
−∞, x

m

(⌊
x

m0n0
+ cx(m−m0)

⌋
+ r0 + j

)−1
]
.

Proof. Just as in the proof of Lemma 4.5,{
x

m0n0
+ cx(m−m0) + cy(n− n0)

}
= {β + δ(n− n0)} .

If β + δ(n − n0) < 0, then L2(m,n) − L1(m,n) > 0 holds iff (4.18) holds.
The term δ(n−n0) cancels out, and so, by (4.6), we obtain that (4.18) holds
iff

x

mn
≥
⌊

x

m0n0
+ cx(m−m0)

⌋
+ a0(n− n0) + r0,

just as in Lemma 4.5. If β + δ(n − n0) ≥ 0, L2(m,n) − L1(m,n) > 0 holds
iff (4.15) holds. Again, the term involving δ(n − n0) cancels out fully, and
so (4.18) holds iff

x

mn
≥
⌊

x

m0n0
+ cx(m−m0)

⌋
+ a0(n− n0) + r0 + 1.

�

In summary: for a neighborhood Ix×Iy small enough that |ETquad(m,n)| ≤
1/2b, we need to prepare tables (in time O(b) and space O(b log b)), compute
a Diophantine approximation (in time O(log b)), and then, for each value of
m, we need to (i) compute r0 = r0(m), (ii) look up σr0 in a table, (iii) solve
a quadratic equation to account for the case a0(n − n0) + r0 ≡ −1 mod q,
(iv) solve a quadratic equation and also a linear equation to account for the
case a0(n− n0) + r0 ≡ 0 mod q. If q = 1, then (iii) and (iv) are replaced by
the simple task of computing the expressions in Lemma 4.6. In any event,
these are a bounded number of operations taking a bounded amount of
time. Thus, the computation over the neighborhood Ix× Iy takes total time
O(a+ b) and space O(b log b), given the values of µ(m) and µ(n).

5. Parameter choice. Final estimates.

What remains now is to choose our neighborhoods U = Ix× Iy optimally
(within a constant factor), and to specify our choice of v. Recall that Ix =
[m0 − a,m0 + a), Iy = [n0 − b, n0 + b).

5.1. Bounding the quadratic error term. Choosing a and b. We can
use the formula for the error term bound in a Taylor expansion to obtain
an upper bound on the error term. Since f : (x, y) 7→ X/xy is twice con-
tinuously differentiable for x, y > 0, we know that, for (x, y) in any convex
neighborhood U of any (x0, y0) with x0, y0 > 0,

X

xy
=

X

x0y0
+
∂f(x0, y0)

∂x
(x− x0) +

∂f(x0, y0)

∂y
(y − y0) + ETquad(x, y),

18 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

where the Lagrange remainder term ETquad(x, y) is given by

ETquad(x, y) =
1

2

∂2f(ξ, υ)

∂2x
(x− x0)2 +

1

2

∂2f(ξ, υ)

∂2y
(y − y0)2

+
∂2f(ξ, υ)

∂x∂y
(x− x0)(y − y0),

for some (ξ, υ) = (ξ(x, y), υ(x, y)) ∈ U depending on (x, y). Working with
our neighborhood U = Ix × Iy of (x0, y0) = (m0, n0), we obtain that, for
m ∈ Ix and n ∈ Iy, |ETquad(m,n)| is at most

≤ X

m′3n′
(m−m0)2 +

X

m′2n′2
(m−m0)(n− n0) +

X

m′n′3
(n− n0)2,(5.1)

wherem′ = min(m,n)∈U m and n′ = min(m,n)∈U n.Hence, by Cauchy-Schwarz,

|ETquad(m,n)| ≤ 3

2

(
X

m′3n′
(m−m0)2 +

X

m′n′3
(n− n0)2

)
.

(From now on, we will write x, as we are used to, instead of X, since there
is no longer any risk of confusion with the variable x.)

Recall that we need to choose Ix and Iy so that |ETquad| ≤ 1/2b. Since
(m−m0)2 ≤ a2 and (n− n0)2 ≤ b2, it is enough to require that

x

m′3n′
a2 ≤ 1

6b
,

x

m′n′3
b2 ≤ 1

6b
.

In turn, these conditions hold for

a =
3

√
(m′)4

6x
, b =

3

√
m′(n′)3

6x
.

More generally, if we are given that m′ ≥ A, n′ ≥ B for some A, B, we see
that we can set

(5.2) a =
3

√
A4

6x
, b =

3

√
AB3

6x
.

At the end of Section 4, we showed that it takes time O(a+ b) and space
O(b log b) for our algorithm to run over each neighborhood Ix × Iy. Recall
that we are dividing [1, v] × [1, v] into dyadic boxes (or, at any rate, boxes
of the form B(A,B, η) = [A, (1 + η)A)× [B, (1 + η)B), where 0 < η ≤ 1 is a
constant) and that these boxes are divided into neighborhoods Ix × Iy. We

have � AB
ab neighborhoods Ix × Iy in the box B(A,B, η). Thus, assuming

that A ≥ B, it takes time

O

(
AB

ab
(a+ b)

)
= O

(
AB

b

)
= O

(
A2/3x1/3

)
to run over this box, using the values of a and b in (5.2).

Now, we will need to sum over all boxes B(A,B, η). Each A is of the form
d(1 + η)ie and each B is of the form d(1 + η)je for 1 ≤ (1 + η)i, (1 + η)j ≤ v.

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 19

By symmetry, we may take j ≤ i, that is, A ≥ B. Summing over all boxes
takes time

�
∑

i:(1+η)i≤v

∑
j≤i

((1 + η)i)2/3x1/3 �
∑

i:(1+η)i≤v

i((1 + η)i)2/3x1/3

� (log v)v2/3x1/3 ≤ v2/3x1/3 log x.

We tacitly assumed that a ≥ 1, b ≥ 1, and so we need to handle the
case of a < 1 or b < 1 separately, by brute force. It actually makes sense
to treat the broader case of a < C or b < C by brute force, where C is a
constant of our choice. The cost of brute-force summation for (m,n) with

n ≤ m� (C3x)1/4 (as is the case when a < C) is

� ((6C3x)1/4)2 � x1/2,

whereas the cost of brute-force summation for (m,n) with m ≤ v, n �
(6x/m)1/3 (as is the case when b < C) is

�
∑
m≤v

x1/3

m1/3
� x1/3v2/3.

Lastly, we need to take into account the fact that we had to pre-compute
a list of values of µ using a segmented sieve (Algorithm 20), which takes time

O(v3/2 log log x) and space O(
√
v log log v). Putting everything together, we

see that the large free variable case (Section 4) takes time O(v2/3x1/3 log x+

v3/2 log log x) and space O(
√
v log log x + (v4/x)1/3 log x), where the space

bound comes from substituting b =
3

√
m′(n′)3

6x into the space estimate that

we had for each neighborhood and adding it to the space bound from the
segmented sieve.

5.2. Choice of v. Total time and space estimates. Recall that the case
of a large non-free variable (Algorithm 3) takes time O((xv + u) log log x)

and space O(
√

max(x/v, u) log x). At the end of Section 3, we took u =
√
x,

making the running time O(xv log log x) and space O(
√
x/v log x).

On the other hand, as we just showed, the case of a large free vari-
able (Algorithm 5) takes time O(v2/3x1/3 log x + v3/2 log log x) and space

O(
√
v log log x+ (v4/x)1/3 log x).

Thus, in order to minimize our running time, we set the two time bounds
equal to one another and solve for v, yielding v = x2/5(log log x)3/5/(log x)3/5.
Using this value of v (or any value of v within a constant factor c of it) allows
us to obtain

time O
(
x

3
5 (log x)

3
5 (log log x)

2
5

)
and space O

(
x

3
10 (log x)

13
10 (log log x)−

3
10

)
,

as desired. Note that our algorithm for the case of a large non-free variable
uses more memory, by far, than that for the case of a large free variable.

The constant c can be fine-tuned by the user or programmer. It is actually
best to set it so that the time taken by the case of a large free variable and

20 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

by the case of a large non-free variable are within a constant factor of each
other without being approximately equal.

If we were to use [Hel20] to factor integers in SArr (Algorithm 4) then
LargeNonFree (Algorithm 3) would take time O((x/v) log x) and space

O((x/v)1/3(log(x/v))5/3). It would then be best to set v = c · x2/5 for some

c, leading to total time O(x3/5 log x) and total space O
(
x1/5(log x)5/3

)
.

6. Implementation details

We wrote our program in C++ (though mainly simply in C). We used
gmp (the GNU MP multiple precision library) for a few operations, but
relied mainly on 64-bit and 128-bit arithmetic. Some key procedures were
parallelized by means of OpenMP pragmas.

Basics on better sieving. Let us first go over two well-known optimization
techniques. The first one is useful for sieving in general; the second one is
specific to the use of sieves to compute µ(n).

(1) When we sieve (function SegPrimes, SegMu or SegFactor), it
is useful to first compute how our sieve affects a segment of length
M = 23 · 32 · 5 · 7 · 11, say. (For instance, if we are sieving for primes,
we compute which elements of Z/MZ lie in (Z/MZ)∗.) We can then
copy that segment onto our longer segment repeatedly, and then
start sieving by primes and prime powers not dividing M .

(2) As is explained in [Kuz11] and [Hur18], and for that matter in
[Hel, §4.5.1]: in function SegMu, for n ≤ x0 = n0 + ∆, we do
not actually need to store Πj =

∑
p≤√x0:p|n p; it is enough to store

Sj
∑

p≤√x0dlog4 pe. The reason is that (as can be easily checked)

Πj <
∏
p|n p if and only if Sj < dlog4 ne. In this way, we use

space O(∆ log log x0) instead of space O(∆ log x0). We also replace
many multiplications by additions; in exchange, we need to compute
dlog4 pe and dlog4 ne, but that takes very little time, as it only in-
volves counting the space occupied by p or n in base 2, and that is
a task that a processor can usually accomplish extremely quickly.

Technique (2) here is not essential in our context, as SegMu is not a bot-
tleneck, whether for time or for space. It is more important to optimize
factorization – as we are about to explain.

Factorizing via a sieve in little space. We wish to store the list of prime
factors of a positive number n in at most twice as much space as it takes to
store n. We can do so simply and rapidly as follows. We initialize an and bn
to 0. When we find a new prime factor p, we reset an to 2kan + 2k−1, where
k = blog2 pc, and bn to 2kbn + p− 2k. In the end, we obtain, for example,

a2·3·5·7 = 1110102, b2·3·5·7 = 0101112.

We can easily read the list of prime factors 2, 3, 5, 7 of n = 2 · 3 · 5 · 7 from
an and bn, whether in ascending or in descending order: we can see an as

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 21

marking where each prime in bn begins, as well as providing the leading 1:
2 = 102, 3 = 112, 5 = 1012, 7 = 1112.

The resulting savings in space lead to a significant speed-up in prac-
tice, due no doubt in part to better cache usage. The bitwise operations
required to decode the factorization of n are very fast, particularly if one is
willing to go beyond the C standard; we used instructions available in gcc
(builtin clzl, builtin ctzl).

Implementing the algorithm in integer arithmetic. Manipulating rationals
is time consuming in practice, even if we use a specialized library. (Part of
the reason is the frequent need to reduce fractions a/b by taking the gcd of a
and b.) It is thus best to implement the algorithm – in particular, procedure
SumByLin and its subroutines – using only integer arithmetic. Doing so
also makes it easier to verify that the integers used all fit in a certain range
(|n| < 2127, say), and of course also helps them fit in that range, in that we
can simplify fractions before we code: (a/bc)/(d/bf) (say) becomes af/bd,
represented by the pair of integers (af, bd).

Square-roots and divisions. On typical current 64-bit architectures, a di-
vision takes as much time as several multiplications, and a square-root
takes roughly as much time as one or two divisions. (These are obviously
crude, general estimates.) Here, by “taking a square-root” of x we mean
computing the representable number closest to

√
x, or the largest repre-

sentable number no larger than
√
x, where “representable” means “repre-

sentable in extended precision”, that is, as a number 2en with |n| < 2128

and e ∈ [−(214 − 1), 214 − 1]− 63.
Incidentally, one should be extremely wary of using hardware implemen-

tations of any floating-point operations other than the four basic operations
and the square-root; for instance, an implementation of exp can give a result
that is not the representable number closest to exp(x) for given x. Fortu-
nately, we do not need to use any floating-point operations other than the
square-root. The IEEE 754 standard requires that taking a square-root be
implemented correctly, that is, that the operation return the representable
number closest to

√
x, or the largest representable number ≤

√
x, or the

smallest such number ≥
√
x, depending on how we set the rounding mode.

We actually need to compute b
√
nc for n a 128-bit integer. (We can assume

that n < 2125, say.) We do so by combining a single iteration of the procedure
in [Zim99] (essentially Newton’s method) with a hardware implementation
of a floating-point extended-precision square-root in the sense we have just
described.

It is of course in our interest to keep the number of divisions (and square-
roots) we perform as low as possible; keeping the number of multiplications
small is of course also useful. Some easy modifications help: for instance, we
can conflate functions Special1 and Special0B into a single procedure;
the value of γ1 in the two functions differs by exactly m.

Parallelization. We parallelized the algorithm at two crucial places: one is
function SArr (Algorithm 4), as we already discussed at the end of §3; the

22 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

other one is function DDSum (Algorithm B), which involves a double loop.
The task inside the double loop (that is, DoubleSum or BruteDouble-
Sum) is given to a processing element to compute on its own. How exactly
the double loop is traversed and parcelled out is a matter that involves not
just the usual trade-off between time and space but also a possible trade-off
between either and efficiency of parallelization.

More specifically: it may be the case that the number of processing ele-
ments is greater than the number of iterations of either loop (d(A′−A)/∆e
and d(B′ −B)/∆e, respectively), but smaller than the number of iterations
of the double loop. In that case, parallelizing only the inside loop or the
outside loop leads to an under-utilization of processing elements. One al-
ternative is a näıve parallelization of the double loop, with each processing
element recomputing the arrays µ, µ′ that it needs. That actually turns out
to be a workable solution: while recomputing arrays in this way is wasteful,
the overall time complexity does not change, and the total space used is
O(ν∆ log log max(A′, B′)), where ν is the number of threads; this is slightly
less space than ν instances of SumbyLin use anyhow.

The alternative of computing and storing the whole arrays µ, µ′ before
entering the double loop would allow us not to recompute them, but it would
lead to using (shared) memory on the order of max(A′, B′) log log max(A′, B′),
which may be too large. Yet another alternative is to split the double loop
into squares of side about

√
ν∆; then each array segment µ, µ′ is recomputed

only about (A′−A)/(
√
ν∆) or (B′−B)/(

√
ν∆) times, respectively, and we

use O(
√
ν∆) shared memory. Our implementation of this last alternative,

however, led to a significantly worse running time, at least for x = 1019;
in the end, we went with the “workable solution” above. In the end, what
is best may depend on the parameter range and number of threads one is
working with.

7. Numerical results

We computed M(x) for x = 10n, n ≤ 23, and x = 2n, n ≤ 75, beating the
records in [Kuz11] and [Hur18]. Our results are the same as theirs, except
that we obtain a sign opposite to that in [Kuz11, Table 1] for x = 1021;
presumably [Kuz11] contains a transcription mistake.

x M(x)
1017 −21830254
1018 −46758740
1019 899990187
1020 461113106
1021 −3395895277
1022 −2061910120
1023 62467771689

x M(x)
268 2092394726
269 −3748189801
270 9853266869
271 −12658250658
272 9558471405
273 −6524408924
274 −6336351930
275 −4000846218

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 23

Computing M(x) for x = 1023 took about 18 days and 14.6 hours on
a 80-core machine (Intel Xeon 6148, 2.40 GHz) shared with other users.
Computing M(x) for x = 275 = 3.777 . . . · 1022 took about 9 days and 16
hours on the same machine. As we shall see shortly, one parameter c was
more strictly constrained for x = 1023, since we needed to avoid overflow;
we were able to optimize c more freely for 275.

For a fixed choice of parameters, running time scaled approximately as
x3/5. See Figure 7 for a plot2 of the logarithm base 2 of the running time (in

seconds) for x = 2n, n = 68, 69, . . . , 75 with v = x2/5/3. We have drawn a
line of slope 3/5, with constant coefficient chosen by least squares to fit the
points with 68 ≤ n ≤ 75.

We also ran our code for x = 2n, 68 ≤ n ≤ 75, on a 128-core machine
based on two AMD EPYC 7702 (2GHz) processors. The results were of
course the same as on the first computer, but running time scaled more
poorly, particularly when passing from 273 to 274. (For whatever reason, the
program gave up on n = 275 on the second computer.) The percentage of
total time taken by the case of a large non-free variable was also much larger
than on the first computer, and went up from 273 to 274. The reason for the
difference in running times in the two computers presumably lies in the
differences between their respective memory architectures. The dominance
(in the second computer) of the case of a large non-free variable, whose usage
of sieves is the most memory-intensive part of the program, supports this
diagnosis. It would then be advisable, for the sake of reducing running times
in practice, to improve on the memory usage of that part of the program,
either replacing SegFactor by the improved sieve in [Hel20] – sharply
reducing memory usage at the cost of increasing the asymptotic running time
slightly, as we have discussed – or using a cache-efficient implementation of
the traditional segmented sieve as in [OeSHP14, Algorithm 1.2]. These two
strategies could be combined.

Checking for overflow. Since our implementation uses 128-bit signed in-
tegers, it is crucial that all integers used be of absolute value < 2127. What
is critical here is the quantity

β

δ
=

(x(m◦ − (m−m◦))/m2
◦n◦ − r0/q

−x/m◦n2
◦ − a/q

=
(x(2m◦ −m)q − r0m

2
◦n◦)n◦

(−xq − am◦n2
◦)m◦

in SumByLim, where we write here y for the integer in {0, 1, . . . ,m2
◦n◦− 1}

congruent to y modulo m2
◦n◦. The numerator could be as large as qm2

◦n
2
◦

(The denominator is much smaller, since | − x/m◦n2
◦ − a/q| ≤ 1/2bq.) Since

q ≤ 2b, b ≤ (A4/6x)1/3 ≤ (v4/6x)1/3, m◦, n◦ ≤ v and v = cx2/5 (log log x)3/5

(log x)3/5
,

2The first time we ran the program for x = 275, we obtained a substantially higher
running time, on the order of fourteen and a half days (as was reported on the first public
draft of this paper). The time taken for x = 271 was also higher on a first run, by about
20%. We do not know the reason for this discrepancy, though demands by other users are
probably the reason for x = 271 and possibly also for x = 275.

24 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

68 69 70 71 72 73 74 75

16

17

18

19

20

Figure 1. Logarithm base 2 of running time for input x = 2n

we see that

(7.1) qm2
◦n

2
◦ ≤

2v16/3

(6x)1/3
=

2c16/3

61/3
· x9/5 (log log x)

16
5

(log x)
16
5

.

For c = 3/2 and x = 275 = 3.777 . . . · 1022,

log2

(
2c16/3

61/3
x9/5 (log log x)

16
5

(log x)
16
5

)
= 126.361 . . . < 127;

for c = 9/8 and x = 1023,

log2

(
2c16/3

61/3
x9/5 (log log x)

16
5

(log x)
16
5

)
= 126.611 . . . < 127.

Thus, our implementation should give a correct result for x = 1023, for the
choice c = 9/8. One can obviously go farther by using wider (or arbitrary-
precision) integer types.

There is another integer that might seem to be possibly larger, namely the
discriminant ∆ = b2−4ac in the quadratic equations solved in QuadIneqZ,
which is called by functions Special1 and Special0B. However, that dis-
criminant is smaller than it looks at first.

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 25

The coefficient γ1 in Special0B is

(−bR0cq − r0 + a0n◦)m = (−bR0cq − ({R0} − β)q + a0n◦)m

=

(
−
(

x

m◦n◦
− x

m2
◦n◦

(m−m◦)
)
q + βq + a0n◦

)
m

=

(
−
(

x

m◦n◦
− x

m2
◦n◦

(m−m◦)
)

+ β +

(
− x

m◦n2
◦
− δ
)
n◦

)
mq

=

(
− 2x

m◦n◦
+
x(m−m◦)
m2
◦n◦

+O∗
(

1

2q

)
+O∗

(
1

2bq

)
n◦

)
mq.

Here the second term is negligible compared to the first one, and the third
term is negligible compared to the fourth one. We know that

x

m◦n◦
mq ≤ x

m◦n◦
(m◦ + a) · 2b ≤ 2bx

n◦
+

2abx

m◦n◦
≤ 2x

3

√
A

6x
+ 2x 3

√
A2

(6x)2

≤ 2x 3

√
v

6x
+ 2x 3

√
v2

(6x)2
≤ 2 3

√
c

6
· x

4
5

(
log log x

log x

)1/5

+ 2
(c

6

) 2
3
x

3
5

(
log log x

log x

)2/5

.

We also see that

n◦m

2b
≤ n◦m◦

b
≤ 3
√

6x ·A2 ≤ 3
√

6v2x ≤ 3
√

6c2 · x
3
5

(
log log x

log x

)2/5

.

The dominant term is thus 2(c/6)1/3x4/5((log log x)/ log x)1/5. The coeffi-
cient γ1 in Special1 is equal to the one we just considered, minus m, and
thus has the same dominant term.

As for the term −4ac (or −4γ0γ2, so as not to conflict with the other
meanings of a and c here), it equals 4 times

amxq =
a

q
mxq2 =

(
− x

m◦n2
◦
− δ
)
mxq2 = −x

2q2m

m◦n2
◦

+O∗(mx).

Since

x2q2

n2
◦
≤ 4x2b2

B2
= 4x2 3

√
A2(6x)2 ≤ 4

62/3
x4/3v2/3 ≤ 4c2/3

62/3
x8/5

(
log log x

log x

)2/5

and mx ≤ vx ≤ cx7/5(log log x)3/5/(log x)3/5, we see that the main term
here is at most

16c2/3

62/3
x8/5

(
log log x

log x

)2/5

.

Since the two expressions we have just considered have opposite sign, we
conclude that the main term in the discriminant γ2

1 − 4γ0γ2 is thus at most

(16c2/3/62/3)x8/5(log log x)2/5/(log x)2/5, that is, considerably smaller than
the term in (7.1), at least for x larger than a constant. For c = 3/2 and
x = 275,

log2

16c2/3

62/3
x8/5

(
log log x

log x

)2/5

= 121.179

26 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

For c = 9/8 and x = 1023,

log2

16c2/3

62/3
x8/5

(
log log x

log x

)2/5

= 123.141 . . . ,

and thus we are out of danger of overflow for those parameters as well.

Appendix A. A sketch of an alternative algorithm

As we mentioned in the introduction, we originally developed an algorithm
taking time O(x3/5(log x)8/5) and space O(x3/10 log x), or, if the sieve in
[Hel20] is used to factorize integers in function SArr (Algorithm 4), time

O(x3/5(log x)8/5) and space O(x1/5(log x)1/5+5/3). The algorithm actually
had an idea in common with [Hel20]; as explained there, it is an idea inspired
by Voronöı and Vinogradov’s approach to the divisor problem.

Part of the improvement over that older algorithm resides in a better
(yet simple) procedure for computing sums of the form

∑
d|n:d≤a µ(d) (see

Algorithm 23); we analyzed it in §3. Other than that, the difference lies
mainly in the computation of the sum of µ(m)µ(n)bx/mnc for (m,n) in
a neighborhood U = Ix × Iy (see §4.2 and Algorithm 11). Let us use the
notation in §4.2. In particular, write Ix = [m0−a,m0+a), Iy = [n0−b, n0+b).
We have sums S0, S1, S2, where S0 is easy to compute and S2 is the sum
that we actually want to determine.

In the version given in the current version of the paper, we compute the
difference S1 − S0 in time O(a + b) and space O(b log b). Computing the
difference S1 − S0 in time O((a+ b) log b) and space O(b log b) (as we did in
the previous version of the paper) is not actually hard; the main steps are: (i)
sort the list of all pairs ({cy(n−n0)}, n) by their first element {cy(n−n0)},
(ii) use the sorted list to compute the sums

∑
n:{cyn}≥{cyn′} µ(n) for different

n′, and then (iii) search through the list as needed to determine the sum∑
n:{cyn}≥β µ(n) for any given value of β.

The crux is how to compute S2 − S1. In the current version, we analyze
this difference with great care, after having determined the (at most) two
arithmetic progressions in which the terms of S2 − S1 that are non-zero
must be contained. In the older version, we determined those arithmetic
progressions in the same way as here (namely, by finding a Diophantine
approximation a/q to cy). Within those progressions, however, we did not
establish precisely what the non-zero terms were, but simply showed that
they had to be contained in an interval I ⊂ Iy. We also showed that, for q
small, the interval I had to be small as well, at least on average. (The number
of elements of an arithmetic progression modulo q within Iy is O(b/q), and
so the case of q large is not the main worry.) It is here that the argument in
[Vin54, Ch. III, exer. 3-6] came in handy: as we move from neighborhood to
neighborhood, the quantity cy keeps changing at a certain moderate speed,
monotonically; thus, cy modZ cannot spend too much time in major arcs
on the circle R/Z. Only when cy modZ lies in the major arcs can q be small

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 27

and the interval I be large. Thus, just as claimed, the case of q small and I
large occurs for few neighborhoods.

We can thus simply determine I, and compute the terms that lie in the
intersection of either of those two arithmetic progressions and their corre-
sponding intervals I, and sum those terms. The time will be about O(ab/q),
unless q is small, in which case one can do better, viz., O(a|I|/q) or so.
(Compare with the corresponding bound for the newer algorithm, namely,
O(a+b).) On average, we obtained savings of a factor of O((log b)/b), rather
than O(1/b), as we do now.

Whether or not we use [Hel20] to factor integers n ≤ x/v, we set v =

cx2/5/(log x)3/5, for c a constant of our choice.

28 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Appendix B. Pseudocode for algorithms

In this section, we present the pseudocode for the algorithms referenced
in this paper. To aid the reader, we begin with a diagram demonstrating the
relationship between the algorithms.

Mertens

LargeFree BruteM

DDSumSegMu

LargeNonFree

Doublesum

SumByLin DiophAppr

BruteDoubleSum

LinearSum

SumTableSArr

SegFactor

FacToSumMu Special1

Special00 Special0A Special0B

Figure 2. Dependency diagram

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 29

Algorithm 1 Main algorithm: compute M(x) =
∑

n≤x µ(n)

1: function Mertens(x)
Output:

∑
n≤x µ(n)

2: c← 3/2 . hand-tuned value, change at will

3: u =
√
x, v ← cx2/5(log log x)3/5/(log x)3/5

4: M ← 2 ·BruteM(u)
5: M ←M − LargeNonFree(x, v, u)− LargeFree(x, v)
6: return M

Time: O
(
x

3
5 (log x)3/5(log log x)2/5

)
.

Space: O
(
x

3
10 (log x)

13
10 (log log x)−

3
10

)
.

Algorithm 2 Compute M(x) =
∑

n≤x µ(n) by brute force

1: function BruteM(x)
Output:

∑
n≤x µ(n)

2: M ← 0, ∆← b
√
xc

3: for 0 ≤ j < dx/∆e do
4: n0 ← j∆ + 1
5: µ← SegMu(n0,∆)
6: for n0 ≤ n ≤ min(n0 + ∆− 1, x) do
7: M ←M + µn−n0

8: return M

Time: O(x log log x). Space: O(
√
x log x).

Algorithm 3 The case of a large non-free variable

1: function LargeNonFree(x,v,u)
Output:

∑
n≤x

∑
m1m2n1=n:m1,m2≤u,max(m1,m2)>v µ(m1)µ(m2)

2: n0 ← buc+ 1, r0 ← bx/(buc+ 1)c+ 1

3: ∆← d
√

max(u, x/v)e, S← SArr(x, r0,∆, 1)
4: Σ← 0, σ ← 0
5: for n = buc, buc − 1, . . . , bvc+ 1 do
6: if n < n0 then
7: n0 ← max(n0 − (∆ + 1), 1), µ← SegMu(n0,∆)

8: σ ← σ + µn−n0bx/n2c
9: while x/n > r0 + ∆ do

10: r0 ← r0 + ∆ + 1, S← SArr(x, r0,∆,S∆)

11: Σ← Σ + 2µn−n0 ·
(
−σ + Sb xnc−r0

)
+ µ2

n−n0

⌊
x/n2

⌋
12: return Σ

Time: O
((

x
v + u

)
log log x

)
Space: O

(√
max(x/v, u) · log x

)
.

30 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Algorithm 4 Compute the main sum needed for LargeNonFree

1: function SArr(x,r0,∆,S0)
Output: for 0 ≤ j ≤ ∆, Sj =

∑
r≤r0+j

∑
b|r:b≤x

r
µ(b).

Require: S0 =
∑

r<r0

∑
b|r:b≤x

r
µ(b)

2: F ← SegFactor(r0,∆), S ← S0

3: for r = r0, r0 + 1, . . . , r0 + ∆ do
4: S ← S + FacToSumMu(Fr−r0 , x/r), Sr−r0 ← S

5: return S

Time: O
(
(
√
r0 + ∆) log log x

)
Space: O

(
(
√
r0 + ∆) log x

)
.

Algorithm 5 The case of a large free variable

1: function LargeFree(x,v)
Output:

∑
n≤x

∑
m1m2n1=n: m1,m2≤v µ(m1)µ(m2)

2: S ← 0, A′ ← bvc+ 1, C ← 10, D ← 8 . C and D are hand-tuned

3: while A′ ≥ max(2(6C3x)1/4, d
√
ve, 2D) do

4: B′ ← A′, A← A′ − 2bA′/2Dc
5: while B′ ≥ max(2(6C3x/A)1/3, d

√
ve, 2D) do

6: B ← B′ − 2bB′/2Dc
7: a← 3

√
A4

6x , b← 3

√
AB3

6x , ∆← d
√
v/max(2a, 2b)e ·max(2a, 2b)

8: S ← S + DDSum(A,A′, B,B′, x,∆, 1, a, b) ·

{
1 if A = B,

2 if A > B.

9: B′ ← B
10: S ← S + 2 ·DDSum(A,A′, 1, B′, x, d

√
ve, 0, 0, 0)

11: A′ ← A
12: S ← S + DDSum(A,A′, 1, B′, x, d

√
ve, 0, 0, 0)

13: return S

Time: O
(
v2/3x1/3 log x+ v3/2 log log x

)
Space: O

(√
v log log x+ (v4/x)1/3 log x

)

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 31

Algorithm 6 split
∑

(m,n)∈[A,A′)×[B,B′) µ(m)µ(n)
⌊
x
mn

⌋
into smaller sums

1: function DDSum(A,A′,B,B′,x,∆,γ,a,b)
Output:

∑
(m,n)∈[A,A′)×[B,B′) µ(m)µ(n)

⌊
x
mn

⌋
Require: A,B ≥ 1, 2|∆, A′ ≡ A mod 2, B′ ≡ B mod 2

2: S ← 0
3: for m0 ∈ [A,A′) ∩ (A+ ∆Z) do
4: m1 ← min(m0 + ∆, A′), µ← SegMu(m0,∆)
5: for n0 ∈ [B,B′) ∩ (B + ∆Z) do
6: n1 ← min(n0 + ∆, B′), µ′ ← SegMu(n0,∆)
7: if γ = 1 then
8: S ← S + DoubleSum(m0,m1, n0, n1, a, b, µ, µ

′, x)
9: else

10: F (m,n) := bx/mnc, f(m) := µm−m0 , g(n) := µ′n−n0

11: S ← S + BruteDoubleSum(m0,m1, n0, n1, µ, µ
′, F)

12: return S

Time: O
(⌈

A′−A
∆

⌉ ⌈
B′−B

∆

⌉
∆ log log ∆

)
, assuming ∆ �

√
max(A′, B′),

plus time taken by DoubleSum or BruteDoubleSum.

Space: O(∆ log log max(A′, B′)), mainly from SegMu

Algorithm 7
∑

(m,n)∈[m0,m1)×[n0,n1) f(m)g(n)F (m,n) by brute force

1: function BruteDoubleSum(m0,m1,n0,n1,f ,g,x)
Output:

∑
(m,n)∈[m0,m1)×[n0,n1) f(m)g(n)F (m,n)

2: S ← 0
3: for m0 ≤ m < m1 do
4: for n0 ≤ n < n1 do
5: S ← S + f(m)g(n)F (m,n)

6: return S

Time: O((m1 −m0)(n1 − n0) + 1).

Space: that of the inputs, plus O(1).

32 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Algorithm 8 compute
∑

(m,n)∈[m0,m1)×[n0,n1) fm−m0gn−n0

⌊
x
mn

⌋
1: function Doublesum(m0,m1,n0,n1,a,b,f ,g,x)

Output:
∑

(m,n)∈[m0,m1)×[n0,n1) fm−m0gn−n0

⌊
x
mn

⌋
Require: m0, n0 ≥ 1, m1 ≤ 2m0, n1 ≤ 2n0, 2|m1 −m0, 2|n1 − n0, and all

conditions for SumByLin
2: S ← 0
3: for 0 ≤ j < d(m1 −m0)/2ae do
4: m− ← m0 + j · 2a, m+ ← min(m0 + (j + 1) · 2a,m1)
5: m◦ ← (m− +m+)/2, m∆ ← (m+ −m−)/2 . midpoint, width
6: for 0 ≤ k < d(n1 − n0)/2be do
7: n− ← n0 + k · 2b, n+ ← min(n0 + (k + 1) · 2b, n1)
8: n◦ ← (n− + n+)/2, n∆ ← (n+ − n−)/2 . midpoint, width
9: f(m) := fm+m◦−m0 , g(n) := gn+n◦−n0

10: S ← S + SumByLin(f, g, x,m◦, n◦, a, b)

11: return S

Time: O
(

AB
min(a,b)

)
Space: that of the inputs, plus O(b log b)

Algorithm 9 Finding a Diophantine approximation via continued fractions

1: function DiophAppr(α,Q)

Output: (a, a−1, q, s) s.t.
∣∣∣α− a

q

∣∣∣ ≤ 1
qQ , (a, q) = 1, q ≤ Q, aa−1 ≡ 1 mod q

and s = sgn(α− a/q)
2: b← bαc, p← b, q ← 1, p− ← 1, q− ← 0, s← 1
3: while q ≤ Q do
4: if α = b then return (p,−sq−, q, 0)

5: α← 1/(α− b)
6: b← bαc, (p+, q+)← b · (p, q) + (p−, q−)
7: (p−, q−)← (p, q), (p, q)← (p+, q+), s← −s
8: return (p−, sq, q−,−s)

Time: O(log max(Q,den(α)). Space: O(1).

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 33

Algorithm 10 Preparing tables of partial sums by congruence class

1: function SumTable(f ,b,a0,q)
Output: (F, ρ, σ) where Fn0 =

∑
−b≤n≤n0:n≡n0 mod q f(n) for −b ≤ n0 < b

Output: ρr =
∑
−b≤n<b:a0n≡r mod q f(n) and σr =

∑q−1
j=q−r+1 ρj .

Require: q ≤ 2b
2: for n ∈ [−b,−b+ q) do
3: Fn ← f(n)

4: for n ∈ [−b+ q, b) do
5: Fn ← Fn−q + f(n)

6: r ←Mod(a0(b− q), q)
7: for n ∈ {b− q, . . . , b− 1} do
8: ρr ← Fn
9: r ←Mod(r + a0, q)

10: σ0 ← 0, σ1 ← 0
11: for r ∈ {1, 2, . . . , q − 1} do
12: σr+1 ← σr + ρq−r

13: return (F, ρ, σ)

Time: O(b). Space: O(b log b).

14: function RaySum(f ,q,b,δ)
15: S ← 0
16: if δ < 0 then
17: for n ∈ {q, 2q, . . . , b(b− 1)/qc q} do
18: S ← S + f [n]

19: if δ > 0 then
20: for n ∈ {q, 2q, . . . , bb/qc q} do
21: S ← S + f [−n]

22: return S

Time: O(n/q) Space: O(1)

23: function Mod(a,q)

Returns the integer 0 ≤ r < q such that r ≡ a mod q.

Time and space: O(1).

24: function Sgn(δ)
25: if δ < 0 then
26: return −1
27: else if δ > 0 then
28: return 1
29: else
30: return 0

Returns the integer 0 ≤ r < q such that r ≡ a mod q.

Time and space: O(1).

34 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Algorithm 11 Summing with a weight x/mn using a linear approximation

1: function SumByLin(f ,g,x,m◦,n◦,a,b)

Output:
∑

(m,n)∈U f(m)g(n)
⌊

x
(m+m◦)(n+n◦)

⌋
for U = [−a, a) × [−b, b),

a, b ∈ Z+

Require: the difference between x
(m+m◦)(n+n◦)

and its linear approximation

around (0, 0) has absolute value ≤ 1/2b on U
2: α0 ← x

m◦n◦
, α1 = − x

m2
◦n◦

, α2 = − x
m◦n2

◦
3: S ← LinearSum(f, g, a, b, α0, α1, α2)
4: (a0, a0, q, s)← DiophAppr(α2, 2b), δ ← α2 − a0/q, δ

′ ← Sgn(δ)
5: Z ← RaySum(g, q, b, sδ)
6: (G, ρ, σ)← SumTable(g, b, a0, q)
7: for m ∈ [−a, a) such that f(m) 6= 0 do
8: R0 ← α0 + α1m, r0 ← b{R0}q + 1/2c, m′ ← m◦ +m
9: β ← {R0} − r0/q, β

′ ← Sgn(β)
10: if δ 6= 0 then
11: Q← β/δ . the value of Q for δ = 0 is arbitrary

12: T ← σr0 + Special0A(G, q, a0, a0, r0, b, Q, β
′, δ′)

13: if q > 1 then
14: T ← T + Special1(G, x, q, a0, a0, R0, r0, n◦,m

′, b)
15: T ← T + Special0B(G, x, q, a0, a0, R0, r0, n◦,m

′, b, Q, β′, δ′)
16: else
17: T ← T + Special00(G, x, q, a0, a0, R0, r0, n◦,m

′, b, Q, δ′)

18: if 0 < r0 < q then
19: T ← T + Z

20: S ← S + f(m) · T
21: return S

Time: O(a+ b)

Space: O(b log b), mainly from SumTable

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 35

Algorithm 12 Table lookup

1: function SumInter(G,r,I,b,q)
Require: I = [I0, I1], where I0, I1 ∈ Z, I0 ≤ I1, or I = ∅

2: if I 6= ∅ then
3: return 0
4: r0 ← FlCong(I0 − 1, r, q), r1 ← FlCong(min(I1, b− 1), r, q)
5: if (r0 > r1) ∨ (r1 < −b) then
6: return 0
7: if r0 ≥ −b then
8: return Gr1 −Gr0
9: else

10: return Gr1

Time and space: O(1).

11: function FlCong(n,a,q)
Output: Returns largest integer ≤ n congruent to a mod q
12: return n−Mod(n− a, q)

Time and space: O(1).

Algorithm 13 L2 − L1 for special moduli: quadratic equations

1: function Special1(G,x,q,a,a,R0,r0,n◦,m,b)
2: γ1 = (−bR0cq − (r0 + 1) + an◦)m
3: r ← (−1− r0)a
4: I ← QuadIneqZ(−am, γ1, xq)− n0

5: return SumInter(G, r, (−∞,∞), b, q)− SumInter(G, r, I, b, q)

6: function Special0b(G,x,q,a,a,R0,r0,n◦,m,b,Q,sβ,sδ)
7: γ1 = (−bR0cq − r0 + an◦)m
8: I ← QuadIneqZ(−am, γ1, xq)− n◦
9: if sδ > 0 then

10: J ← (−∞,−bQc − 1]
11: else if sδ < 0 then
12: J ← [−dQe+ 1,∞)
13: else if sβ ≥ 0 then
14: J ← ∅
15: else
16: J ← (−∞,∞)

17: return SumInter(G,−r0a, J, b, q)− SumInter(G,−r0a, I ∩ J, b, q)

Time and space: O(1).

36 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Algorithm 14 L2 − L1: the case q = 1

1: function Special00(G,x,q,a,a,R0,r0,n◦,m,b,Q,sδ)
2: if sδ > 0 then
3: J ← (−∞,−bQc − 1]
4: else if sδ < 0 then
5: J ← [−dQe+ 1,∞)
6: else
7: J ← ∅
8: for j = 0, 1 do
9: if a 6= 0 then

10: γ1 = (−bR0c − (r0 + j) + an◦)m
11: Ij ← QuadIneqZ(−am, γ1, x)− n◦
12: else
13: Ij ← (−∞, b(x/m)/(bR0c+ r0 + j)c − n◦]
14: S ← SumInter(G, 0, I0 ∩ J, b, q)
15: S ← S + SumInter(G, 0, I1 ∩ (R \ J), b, q)
16: return SumInter(G, 0, (−∞,∞), b, q)− S

Time and space: O(1).

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 37

Algorithm 15 L1 − L0: casework for a0(n− n0) + r0 ≡ 0 mod q

1: function Special0a(G,q,a,a,r0,b,Q, sβ,sδ)
2: if 0 < r0 < q then
3: if sδ 6= 0 then
4: if sδ > 0 then
5: I ← [−bQc,∞)
6: else
7: I ← (−∞,−dQe]
8: else if sβ ≥ 0 then
9: I ← (−∞,∞)

10: else
11: I ← ∅
12: else
13: if sδ = 0 ∨ sβ = 0 then
14: I ← ∅
15: else if sβ < 0 then
16: if sδ < 0 then
17: S ← SumInter(G,−r0a, (−∞,−dQe], b, q)
18: return S + SumInter(G,−r0a, (0,∞), b, q)
19: else
20: S ← SumInter(G,−r0a, (−∞, 0), b, q)
21: return S + SumInter(G,−r0a, [−bQc,∞), b, q)

22: else
23: if sδ > 0 then
24: I ← [−bQc, 0)
25: else
26: I ← (0,−dQe]
27: return SumInter(G,−r0a,I,b,q)

Time and space: O(1).

Algorithm 16 Summing with floors of linear expressions as weights

1: function LinearSum(f ,g,a,b,α0,α1,α2)
Output:

∑
(m,n)∈U f(m)g(n)(bα0 +α1mc+bα2nc) for U = [−a, a)× [−b, b)

2: S1 ← 0, S1,0 ← 0, S2 ← 0, S2,0 ← 0
3: for m ∈ [−a, a) ∩ Z do
4: S1 ← S1 + f [m] · bα0 + α1mc, S1,0 ← S1,0 + f [m]

5: for n ∈ [−b, b) ∩ Z do
6: S2 ← S2 + g[n] · bα2nc, S2,0 ← S2,0 + g[m]

7: return S1 · S2,0 + S1,0 · S2

Time: O(max(a+ 1, b+ 1)).

Space: O(1)

38 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Algorithm 17 A little Babylonian routine

1: function QuadIneqZ(a,b,c)
Output: Returns an interval I such that
Output: I ∩ Z = {x ∈ Z : ax2 + bx+ c ≥ 0}, if a < 0,
Output: I ∩ Z = {x ∈ Z : ax2 + bx+ c < 0}, if a > 0.
Require: a, b, c ∈ Z, a 6= 0

2: ∆ = b2 − 4ac
3: if ∆ < 0 then
4: return ∅
5: Q = b

√
∆] . can be computed in integer arithmetic

6: if (a < 0) ∨ (Q2 6= ∆) then
7: I0 = d(−b−Q)/2ae, I1 = b(−b+Q)/2ac
8: else
9: I0 = b(−b−Q)/2a+ 1c, I1 = d(−b+Q)/2a− 1e

10: if I0 ≤ I1 then
11: return [I0, I1]

12: return ∅
Time: O(1). Space: O(1).

Algorithm 18 A very simple sieve of Eratosthenes

1: function SimpleSiev(N)
Output: for 1 ≤ n ≤ N , Pn = 1 if n is prime, Pn = 0 otherwise

2: P1 ← 0, P2 ← 1, Pn ← 0 for n ≥ 2 even, Pn ← 1 for n ≥ 3 odd
3: m← 3, n← m ·m
4: while n ≤ N do
5: if Pm = 1 then
6: while n ≤ N do . [sic]
7: Pn ← 0, n← n+ 2m . sieves odd multiples ≥ m2 of m

8: m← m+ 2, n← m ·m
9: return P

Time: O(N log logN). Space: O(N).

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 39

Algorithm 19 A segmented sieve of Eratosthenes for finding primes

1: function SegPrimes(n,∆) . finds all primes in [n, n+ ∆]

Output: Sj =

{
1 if n+ j is prime

0 otherwise

2: Sj ← 1 for all 0 ≤ j ≤ ∆
3: Sj ← 0 for 0 ≤ j ≤ 1− n . [sic; excluding 0 and 1 from prime list]

4: M ← b
√
n+ ∆c, P ← SimpleSiev(M)

5: for 1 ≤ m ≤M do
6: if Pm = 1 then
7: n′ ← max(m · dn/me, 2m)
8: while n′ ≤ n+ ∆ do . n′ goes over mults. of m in n+ [0,∆]
9: Sn′−n ← 0, n′ ← n′ +m

10: return S

Time: O((
√
n+ ∆) log log(n+ ∆)). Space: O(n1/2 + ∆).

Algorithm 20 A segmented sieve of Eratosthenes for computing µ(n)

1: function SegMu(n0,∆) . computes µ(n) for n in [n0, n0 + ∆]
Output: for 0 ≤ j ≤ ∆, mj = µ(n0 + j)

2: mj ← 1, Πj ← 1 for all 0 ≤ j ≤ ∆
3: P ← SimpleSiev(b

√
n0 + ∆c)

4: for p ≤
√
n0 + ∆ do

5: if Pp = 1 then . if p is a prime. . .
6: n← p · dn0/pe . smallest multiple ≥ n0 of p
7: while n ≤ n0 + ∆ do . n goes over multiples of p
8: mn−n0 ← −mn−n0 , Πn−n0 = p ·Πn−n0 , n← n+ p

9: n← p2 · dn0/p
2e . smallest multiple ≥ n0 of p2

10: while n ≤ n0 + ∆ do . n goes over multiples of p2

11: mn−n0 ← 0, n← n+ p2

12: for 0 ≤ j ≤ ∆ do
13: if mj 6= 0 ∧Πj 6= n0 + j then
14: mj ← −mj

15: return m

Time: O((
√
n0 + ∆) log log(n0 + ∆)). Space: O(

√
n0 + ∆ log(n0 + ∆)),

or, after a standard improvement (§6), space O(
√
n0+∆ log log(n0+∆)).

40 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

Algorithm 21 A segmented sieve of Eratosthenes for factorization

1: function SubSegSievFac(n,∆,M) . finds prime factors p ≤M
Output: for 0 ≤ j ≤ ∆, Fj = {(p, vp(n+ j))}p≤M,p|n+j

Output: for 0 ≤ j ≤ ∆, Πj =
∏
p≤M,p|(n+j) p

vp(n+j).

2: Fj ← ∅, Πj ← 1 for all 0 ≤ j ≤ ∆

3: ∆′ ← b
√
Mc, M ′ ← 1

4: while M ′ ≤M do
5: P ← SegPrimes(M ′,∆′)
6: for M ′ ≤ p < M ′ + ∆′ do
7: if Pp−M ′ = 1 then . if p is a prime. . .

8: k ← 1, d← p . d will go over the powers pk of p
9: while d ≤ n+ ∆ do

10: n′ ← d · dn/de
11: while n′ < x do
12: if k = 1 then
13: append (p, 1) to Fn′−n
14: else
15: replace (p, k − 1) by (p, k) in Fn′−n

16: Πn′−n ← p ·Πn′−n, n′ ← n′ + d

17: k ← k + 1, d← p · d
18: M ′ ←M ′ + ∆′

19: return (F,Π)

Time: O((M + ∆) log log(n+ ∆)),

Space: O(M + ∆ log(n+ ∆)).

Algorithm 22 A segmented sieve of Eratosthenes for factorization, II

1: function SegFactor(n,∆) . factorizes all n′ ∈ [n, n+ ∆]
Output: for 0 ≤ j ≤ ∆, Fj is the list of pairs (p, vp(n+ j)) for p|n+ j

2: (F,Π)← SubSegSievFac(n,∆, b
√
xc)

3: for n ≤ n′ ≤ n+ ∆ do
4: if Πn′−n 6= n′ then
5: p0 ← n′/Πn′−n, append (p0, 1) to Fn′−n

6: return F

Time: O((
√
n+ ∆) log log(n+ ∆)), Space: O(

√
n+ ∆ log(n+ ∆)).

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 41

Algorithm 23 From factorizations to
∑

d|n:d≤a µ(d)

1: function SubFacTSM(F , m,m′,a,n)
2: if m > a then
3: return 0
4: if F = ∅ then
5: return 1
6: if m′a ≥ n then
7: return 0
8: Choose (p, i) ∈ F such that p is maximal
9: F ′ = F \ {(p, i)}

10: return SubFacTSM(F ′,m,pm′,a,n) - SubFacTSM(F ′,mp,m′,a,n)

11: function FacToSumMu(F , a)
Require: F is the list of all pairs (p, vp(n)), p|n, for some n, with p in order
Output: returns

∑
d|n:d≤a µ(d)

12: n′ =
∏

(p,i)∈F p

13: return SubFacTSM(F ,1,1,a,n′)

Time: O(2len(F)), but less on average (see Prop 3.2). Space: O(len(F)).

42 HARALD ANDRÉS HELFGOTT AND LOLA THOMPSON

References

[DR96] M. Deléglise and J. Rivat. Computing the summation of the Möbius function.
Exp. Math., 5(4):291–295, 1996.

[Dre93] F. Dress. Fonction sommatoire de la fonction de Möbius; 1. Majorations
expérimentales. Exp. Math., 2:93–102, 1993.

[Gal00] W. F. Galway. Dissecting a sieve to cut its need for space. Algorithmic number
theory (Leiden, 2000), Lecture Notes in Comput. Sci., pages 297–312, 2000.

[Hel] H. A. Helfgott. The ternary Goldbach problem. Second preliminary version. To
appear in Ann. of Math. Studies. Available at https://webusers.imj-prg.

fr/~harald.helfgott/anglais/book.html.
[Hel20] H. Helfgott. An improved sieve of Eratosthenes. Math. Comp., 89:333–350,

2020.
[Hur18] G. Hurst. Computations of the Mertens function and improved bounds on the

Mertens conjecture. Math. Comp., 87:1013–1028, 2018.
[IK04] H. Iwaniec and E. Kowalski. Analytic number theory, volume 53 of Ameri-

can Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, RI, 2004.

[Kuz11] E. Kuznetsov. Computing the Mertens function on a GPU. Arxiv preprint,
2011.

[Leh59] D. H. Lehmer. On the exact number of primes less than a given limit. Illinois
J. Math., 3:381–388, 1959.

[Leh60] R. Sherman Lehman. On Liouville’s function. Math. Comp., pages 311–320,
1960.

[LMO85] J.C. Lagarias, V.S. Miller, and A. M. Odlyzko. Computing π(x): the Meissel-
Lehmer method. Math. Comp., 44:537–560, 1985.

[LO87] J.C. Lagarias and A. M. Odlyzko. Computing π(x): An analytic method. J.
Algorithms, 8(2):173–191, 1987.

[Mer97] F. Mertens. Über eine zahlentheoretische Funktion. Akad. Wiss. Wien Math.-
Natur. Kl. Sitzungber. IIa, 106:761–830, 1897.

[OeSHP14] T. Oliveira e Silva, S. Herzog, and S. Pardi. Empirical verification of the even
Goldbach conjecture, and computation of prime gaps, up to 4 · 1018. Math.
Comp., 83:2033–2060, 2014.

[OtR85] A. M. Odlyzko and H. J. J. te Riele. Disproof of the Mertens conjecture. J.
Reine Angew. Math., 357:138–160, 1985.

[Pin87] J. Pintz. An effective disproof of the Mertens conjecture. Astérisque, 147-
148:325–333, 346, 1987.

[Pla15] D. J. Platt. Computing π(x) analytically. Math. Comp., 84(293):1521–1535,
2015.

[TCH12] T. Tao, E. Croot, and H. Helfgott. Deterministic methods to find primes.
Math. Comp., 81(278):1233–1246, 2012.

[Vin54] I. M. Vinogradov. Elements of number theory. Dover Publications, Inc., New
York, 1954. Translated by S. Kravetz.

[Zim99] P. Zimmermann. Karatsuba square root. Technical Report RR-3805, Inria,
1999.

https://webusers.imj-prg.fr/~harald.helfgott/anglais/book.html
https://webusers.imj-prg.fr/~harald.helfgott/anglais/book.html

SUMMING µ(n): A FASTER ELEMENTARY ALGORITHM 43

Harald A. Helfgott, Mathematisches Institut, Georg-August Universität
Göttingen, Bunsenstraße 3-5, D-37073 Göttingen, Germany; IMJ-PRG, UMR
7586, 58 avenue de France, Bâtiment S. Germain, case 7012, 75013 Paris CEDEX
13, France

Email address: harald.helfgott@gmail.com

Lola Thompson, Mathematics Institute, Utrecht University, Hans Freuden-
thalgebouw, Budapestlaan 6, 3584 CD Utrecht, Netherlands

Email address: l.thompson@uu.nl

	1. Introduction
	1.1. Our approach
	1.2. Alternatives
	1.3. Notation and algorithmic conventions
	1.4. Acknowledgements

	2. Preparatory work: identities
	3. The case of a large non-free variable
	4. The case of a large free variable
	4.1. A first try
	4.2. Handling the difference between reality and an approximation

	5. Parameter choice. Final estimates.
	5.1. Bounding the quadratic error term. Choosing a and b.
	5.2. Choice of v. Total time and space estimates.

	6. Implementation details
	7. Numerical results
	Appendix A. A sketch of an alternative algorithm
	Appendix B. Pseudocode for algorithms
	References

