
2-ADIC POINT COUNTING ON K3 SURFACES

ANDREAS-STEPHAN ELSENHANS AND JÖRG JAHNEL

Abstract. This article reports on an approach to point counting on algebraic
varieties over finite fields that is based on a detailed investigation of the 2-adic
orthogonal group. Combining the new approach with a p-adic method, we count
the number of points on some K3 surfaces over the field Fp, for all primes p < 108.

1. Introduction

Counting points on algebraic varieties over finite fields is an important problem in
algorithmic arithmetic geometry. When the Betti numbers of a variety are known,
one has strong estimates on the number of points using étale cohomology. For ex-
ample, in the case of a K3 surface S that is projective over a finite field Fq, the
Lefschetz trace formula [SGA41⁄2, Rapport, Théorème 3.2] reads

#S(Fq) = q2 + Tr(Frob: H2
ét(S

Fq
,Z2(1)) → H2

ét(S
Fq
,Z2(1)))q + 1 . (1)

Moreover, according to the Weil conjectures proven by P. Deligne [De74, Théo-
rème 1.6], all eigenvalues of Frobenius are algebraic numbers of absolute value 1.
As K3 surfaces have rkH2

ét(SFq
,Z2(1)) = 22 and the hyperplane section causes one

eigenvalue to be 1, the inequality

|#S(Fq) − (q2 + q + 1)| ≤ 21q (2)

results, which is of exactly the same form as the one formulated by P. Deligne for
hypersurfaces [De74, Théorème 8.1]. In particular, one sees that it is sufficient to
determine #S(Fq) modulo some auxiliary integer that is larger than 42q.

Nowadays, the p-adic methods, as developed by K. Kedlaya, D. Harvey, and oth-
ers, are frequently used for point counting, cf. [Ke, Ha, HS, EJ16]. They determine
the number #S(Fq), for q a power of the prime number p, by actually computing
(#S(Fq) mod pj), for a suitable value of the exponent j.

In this note, we are interested only in the number #S(Fp) of points over the prime
field Fp. Then the estimate (2) shows that, in most cases, (#S(Fp) mod p2) carries
enough information. However, for most of the primes, even the modulus p2 is by far
larger than necessary. Moreover, the p-adic methods are faster, at least by a factor
of 10, when working only modulo p and not modulo p2, cf. Remark 5.9. It is thus
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worth trying to use a p-adic method just for counting modulo p and to combine
the result with the point count modulo some other small integer, which has to be
obtained in a different way.

l-adic point counting in general – Explicitisation of étale cohomology. Let l be a
prime that is not the characteristic of the base field. Then, the essence of an l-adic
point counting algorithm is to make the l-adic cohomology Zl-module H i

ét(SFp
,Zl)

explicit, including the action of Frob, for the varieties of type considered.
A famous example is R. Schoof’s algorithm [Sch] for elliptic curves and its gen-

eralisation to abelian varieties [Pi]. Here, the l-adic cohomology may be explicitly
described using torsion points. Another well-known example works for del Pezzo sur-
faces. Here, formula (1) holds, as well. Moreover, one has T(S

Fp
,Zl) = 0. In other

words, H2
ét(SFp

,Zl(1)) and the action of Frob upon it can be made explicit in terms
of the geometric Picard group, cf. formula (7). This essentially breaks down to the
computation of the exceptional curves, cf. [EJ20b, §2.5].

A 2-adic point counting method for K3 surfaces. Following these ideas, the algo-
rithm we describe below relies on an explicitisation of T(S

Fp
,Z2)/4 T(S

Fp
,Z2) for

a particular family of K3 surfaces. This turns out to suffice for point counting
modulo 16.

We assume that we are given a K3 surface that is presented as a double cover
of P2

Fp
, branched over six Fp-rational lines. This assumption is certainly more re-

strictive than necessary, but coincides with the generality, for which the algorithm is
currently implemented. It coincides, too, with the generality, in which we describe
the algorithm in Section 5. We indicate in Section 6 how to treat a slightly more
general case and discuss the possibility of further generalisations in Section 7.

The very first step is to choose a lift to a flat Z-scheme S containing the given
surface as the special fibre S

Fp
. Such a lift exists for any K3 surface, at least as

long as p ≥ 5, as follows from [Og, Corollary 2.3], together with [Ch, Theorem 1],
cf. [De81, Remarque 1.9]. In our situation, one simply needs to lift the coefficients
of the linear forms defining the lines from Fp to Z. One then finds a double cover
S of P2

Z

, branched over the union of six lines, each of which is defined over SpecZ.
Then, for every good prime l 6= 2 of S, in particular for l = p, one has an isomorphism
of Z2-modules

H2
ét(S

Fl
,Z2(1)) ∼= H2

ét(S
Q

,Z2(1)) ,

the action of Frob on the left agreeing with that of Frobl on the right [SGA4, Exposé
XVI, Corollaire 2.3].

The assumptions and preparations made up to here have two consequences, as
explained in i) and ii), below.
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i) One has that rk Pic(S
Q

) ≥ 16. In fact, a sublattice of Pic(S
Q

) of rank 16 is
explicitly known, which is a trivial Gal(Q/Q)-module. Thus, there is an improve-
ment over (2) implying that it is sufficient to count (#S(Fp) mod 16p), cf. Para-
graph 2.5. Assuming that (#S(Fp) mod p) is known, only the information about
(#S(Fp) mod 16) is missing.

We assume that Pic(S
Q

) is a trivial Gal(Q/Q)-module in the case rk Pic(S
Q

) > 16,
as well. Then in order to count (#S(Fp) mod 16), it suffices to determine

(Tr(Frobp : T(S
Q

,Z2) → T(S
Q

,Z2)) mod 16) ,

for T(S
Q

,Z2) ⊂ H2
ét(SQ,Z2(1)) the transcendental lattice. Cf. Definition 3.1 and

formula (8).

ii) The Gal(Q/Q)-module T(S
Q

,Z2)/2 T(S
Q

,Z2) is trivial. Indeed, one has a canon-
ical Gal(Q/Q)-equivariant isomorphism Br(S

Q

)2
∼= Hom(T(S

Q

,Z2),Z/2Z), cf. The-
orem 3.5. Moreover, the 2-torsion of the geometric Brauer group is well understood
for double covers, thanks to the work of A.N. Skorobogatov [Sk, Theorem 1.1].

Here, an important observation comes into play. The action of Gal(Q/Q) on
T(S

Q

,Z2) takes place via maps being orthogonal with respect to the cup product
pairing (Cf. Section 3). And for the orthogonal group, a remarkable phenomenon
of 2-adic overdetermination occurs. We discuss this in detail in Section 4, which is,
from the technical point of view, the main part of this article. In fact, the following
is true.

Theorem. Let n ∈ N. With respect to a non-degenerate, symmetric bilinear form
on Qn

2 , let U1, U2 ∈ Mn×n(Z2) be orthogonal matrices such that U1 ≡ U2 (mod 4).
If U1 ≡ En (mod 2) then Tr(U1) ≡ Tr(U2) (mod 16).

In particular, for an orthogonal endomorphism a of T(S
Q

,Z2) such that
a ≡ id (mod 2), the reduction (a mod 4) ∈ End(T(S

Q

,Z2)/4 T(S
Q

,Z2)) completely
determines (Tr(a : T(S

Q

,Z2) → T(S
Q

,Z2)) mod 16).
Moreover, {A ∈ GLn(Z/4Z) |A ≡ En (mod 2)} is an elementary abelian 2-group.

Therefore, the splitting field K of the Gal(Q/Q)-action on T(S
Q

,Z2)/4 T(S
Q

,Z2)
is an abelian extension of Q of exponent 2. Furthermore, K is unramified at every
good prime l 6= 2 of S, so that one has K ⊆ Q(

√
−1,

√
2,
√
d | d bad prime of S).

Thus, in order to determine (Tr(Frobp : T(S
Q

,Z2) → T(S
Q

,Z2)) mod 16), it suffices

i) to look for a small good prime l such that the action of Frobl agrees with that
of Frobp on K = Q(

√
−1,

√
2,
√
d | d bad prime of S) and

ii) to count #S(Fl) by another method, either naive or p-adic, and to deduce
Tr(Frob: T(S

Fl
,Z2) → T(S

Fl
,Z2)) from that value.

A situation, where this approach is particularly efficient, is when a Z-scheme S is
given, the points on many special fibres S

Fp
of which are to be counted.

Practical experiments. We applied the 2-adic method, as described in combination
with a p-adic method, to count the Fp-rational points on some K3 surfaces, for all
primes p up to 108. All computations were done using magma [BCP].
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Checks for correctness of the implementation. For each of the surfaces, we compared
the output with the result of a completely naive algorithm, for all primes p < 1000,
and with that of a p-adic method, counting modulo p2, for all primes p < 100 000.

There is a further check as follows. The estimate (4) allows for #S(Fp) an interval
of length 12p. Thus, knowing (#S(Fp) mod p), there are only twelve (or perhaps 13)
options for #S(Fp), which means that not all residues modulo 16 are permissible.
At least a “random” bug would certainly produce such residue classes from time
to time.

Code. On the web pages of either author, related to the project described in this
article, the following code is publicly available.

i) Naive point counting, as used for initialisation and checks.

ii) A Harvey style p-adic point counting method in p-adic precision 1 with remainder
tree, for surfaces of the shape w2 = xyzf3. It runs through all prime numbers p ≤ 106

in a few minutes.

iii) The initialisation following the more efficient approach, as described in Algo-
rithm 5.1.A’) and A”).

iv) Point counting modulo 16p, as described in Algorithm 5.1.B).

Terminology and Notation. i) For O a commutative ring with 1 and n ∈ N, we
write GLn(O) := {A ∈ Mn×n(O) | detA is a unit in O}.
We let En be the n × n identity matrix. For any matrix A, we denote by A⊤ the
transpose in the usual sense. Note that A⊤ is usually not the adjoint matrix in
situations when the latter is defined.

When ϕ : Γ → Γ′ is an O-linear map between free O-modules of finite rank with
bases B and B′, respectively, then we denote by MB′

B
(ϕ) the matrix of ϕ with

respect to B and B
′.

ii) By an O-lattice, we mean a free O-module Γ of finite rank equipped with a non-
degenerate, symmetric O-bilinear form b : Γ × Γ → O . When there seems to be no
danger of confusion, we simply write Γ instead of (Γ, b).

An O-lattice (Γ, b) is called regular if b provides an isomorphism Γ → HomO(Γ,O).

iii) An O-linear map between O-lattices ϕ : (Γ, b) → (Γ′, b′) is called orthogonal if
b′(ϕ(x), ϕ(y)) = b(x, y) holds for all x, y ∈ Γ. And similarly for m × n-matrices if
Γ = On and Γ′ = Om.

iv) We let P denote the set of all prime numbers.

v) For a ∈ Q2, we let ν2(a) ∈ Z∪{∞} be the 2-adic exponential valuation of a. I.e.
the exponent of 2 in the unique factorisation a = u2ν2(a), for u ∈ Z2 a unit.

Putting ν2(A) := min{ν2(aij) | i = 1, . . . , m, j = 1, . . . , n} , we extend the 2-adic
valuation from Q2 to matrices A = (aij) ∈ Mm×n(Q2).

vi) A generic line on the projective plane P2 is denoted by l.
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2. The surfaces studied

2.1. Let k be a field of characteristic 6= 2 and l1, . . . , l6 ∈ Γ(P2
k
,O(1)) six linear

forms, such that the vanishing loci of any three of them do not have a geometric
point in common. Suppose that {l1, . . . , l6} is a Gal(k/k)-invariant set. Then the
double cover S ′ of P2

k, given by

W 2 = l1 · · · l6 , (3)

geometrically has 15 isolated singularities, which are ordinary double points.
The minimal resolution of singularities is a surface S of type K3. This is, in fact,
one of the most classical families of K3 surfaces, cf. [GH, Chapter 6, Section 2].

Examples 2.2. We actually work over Z and consider the double covers of P2
Z

, given
by the equations below,

i) S ′
1 : W 2 = T1T2T3(T1 + T2 + T3)(3T1 + 5T2 + 7T3)(−5T1 + 11T2 − 2T3),

ii) S ′
2 : W 2 = T1T2T3(2T1 + 4T2 − 3T3)(T1 − 5T2 − 3T3)(T1 + 3T2 + 3T3),

iii) S ′
3 : W 2 = T1T2T3(4T1 + 9T2 + T3)(−T1 − T2 − 4T3)(16T1 + 25T2 + T3),

iv) S ′
4 : W 2 = T1T2T3(T1 + T2 + T3)(T1 + 2T2 + 3T3)(5T1 + 8T2 + 20T3).

v) S ′
5 : W 2 = T1T2(T

4
1 −7T 3

1 T2−T 3
1 T3+19T 2

1T
2
2 +4T 2

1 T2T3+T
2
1 T

2
3 −23T1T

3
2 −7T1T

2
2 T3

− 6T1T2T
2
3 − T1T

3
3 + 11T 4

2 + 7T 3
2 T3 + 9T 2

2 T
2
3 + 3T2T

3
3 + T 4

3 ).

Note that, in the equation for S ′
5, the homogeneous degree four factor on the right

hand side completely splits over the integer ring of the fifth cyclotomic field Q(ζ5),
the irreducible factors being (T1 − (ζ5 + 2)T2 + ζ2

5T3) and its conjugates.

In each case, we let Si be the blowing-up of S ′
i in the Zariski closure, equipped with

the induced reduced scheme structure, of the singular locus of the generic fibre S ′
i,Q.

In particular, Si,Q is the minimal resolution of singularities of S ′
i,Q.

Remark 2.3. The surfaces above were investigated in detail in a project concerning
the Frobenius trace distributions and the Sato–Tate conjecture for K3 surfaces.
The efficient point counting algorithm described here was used in order to speed up
the computations that led to the histograms presented there [EJ21].

Remarks 2.4. Let us recall from [EJ21, Section 5] the main properties of the sur-
faces Si, for i = 1, . . . , 5.

a) (Geometric Picard ranks) In each case, the pull back of a general line on P2
Q

,
together with the exceptional curves resulting from the resolution of singularities,
generates a rank-16 sublattice in the geometric Picard group. The geometric Picard
rank of each of the surfaces S1,Q, S2,Q, and S4,Q is indeed equal to 16, while the
surface S3,Q is of geometric Picard rank 17.

b) (Bad primes) Aside from the prime 2, these are exactly the primes p such that,
modulo p, some combination of three of the branch lines has at least one point in
common. Thus, the bad primes could be determined by factoring the determinants
det(li li′ li′′), for {i, i′, i′′} ⊂ {1, . . . , 6} any subset of size three. The computation
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results in the sets {2, 3, 5, 7, 11, 13, 29}, {2, 3, 5, 7}, {2, 3, 5, 7, 11}, {2, 3, 5}, and {2, 5}
of bad primes, for S1, S2, S3, S4 and S5, respectively.

c) (Special properties) The surface S1 is a generic surface with a branch locus of
six lines, while S2 has a trivial jump character [CEJ]. The surface S3 has trivial
jump character, too, but higher Picard rank. Finally, the surface S4(C) has complex
multiplication byQ(

√
−1) and S5(C) is known to have real multiplication byQ(

√
5).

2.5 (An improvement of Deligne’s general bound). As the K3 surfaces Si, for
i = 1, 2, 3, 4, are of geometric Picard rank ≥16 and Pic(Si,Q) is a trivial Gal(Q/Q)-
module, the action of Frob on H2

ét(SFq
,Z2(1)) is bound to have the eigenvalue 1 at

least of multiplicity 16. Formula (1) therefore actually yields the sharper estimate

|#Si(Fp) − (p2 + 16p+ 1)| ≤ 6p . (4)

Thus, in each of these cases, it suffices to determine (#Si(Fp) mod 16p).

2.6. We explain the 2-adic method in Sections 3, 4, and 5 below, for K3 surfaces of
type (3), of the kind that the linear forms l1, . . . , l6 are defined over Z. This covers
Examples 2.2.i), ii), iii), and iv), but not v), which is more advanced. We report on
the modifications necessary in order to deal with S5 in Section 6.

3. Étale cohomology and the Brauer group

General K3 surfaces. Let S be a K3 surface over a field k. Then H2
ét(Sk,Z2(1)) is a

free Z2-module of rank 22. Since H3
ét(Sk,Z2(1)) = 0, the change of coefficients map

H2
ét(Sk,Z2(1))⊗

Z2
Z/2i

Z

∼=→ H2
ét(Sk, µ2i) is an isomorphism, for any i ∈ N.

Let us recall that there is the natural cup product pairing

〈., .〉 : H2
ét(Sk,Z2(1)) ×H2

ét(Sk,Z2(1)) → Z2 (5)

that is non-degenerate and even perfect, by Poincaré duality [SGA4, Exposé XVIII,
Théorème 3.2.5]. Moreover, we have at our disposal the Chern class homomorphism
c1 : Pic(Sk) → H2

ét(Sk,Z2(1)) [SGA5, Exposé VII, Section 3], under which the inter-
section pairing agrees with the cup product pairing.

Definition 3.1. Let S be a K3 surface over a field k.

a) Then, we write P(Sk,Z2) := c1(Pic(Sk)).

b) The orthogonal complement T(Sk,Z2) := P(Sk,Z2)
⊥ ⊂ H2

ét(Sk,Z2(1)) is called
the transcendental lattice of S. Note that T(Sk,Z2), as well as P(Sk,Z2), is a Z2-
lattice.

According to this definition, T(Sk,Z2) ⊂ H2
ét(Sk,Z2(1)) clearly has no cotorsion.

Let us note that P(Sk,Z2) ⊂ H2
ét(Sk,Z2(1)) has no cotorsion either. Indeed, sup-

pose, for a certain L ∈ Pic(Sk), that the Chern class c1(L ) ∈ H2
ét(Sk,Z2(1)) is

divisible by 2. Then (c1⊗Z2
Z/2Z)(L ) = 0 ∈ H2

ét(Sk, µ2) and the exactness of the
cohomology sequence Pic(Sk)

·2→ Pic(Sk) → H2
ét(Sk, µ2), induced by the Kummer

sequence, shows that L is divisible by 2 itself.
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Consequently, one has

P(Sk,Z2) := T(Sk,Z2)
⊥ , (6)

too. Indeed, the cup product pairing (5) is non-degenerate.

3.2. Let k be the finite field Fq. Then, in terms of the geometric Picard group and
the transcendental lattice, the Lefschetz trace formula (1) takes the form

#S(Fq) = q2 + Tr(Frob: Pic(S
Fq

)⊗
Z

Q→ Pic(S
Fq

)⊗
Z

Q)q

+ Tr(Frob: T(S
Fq
,Z2) → T(S

Fq
,Z2))q + 1 . (7)

Similarly, for S a flat Z-scheme such that S
Q

is a K3 surface and a prime p of good
reduction, one has

#S(Fp) = p2 + Tr(Frobp : Pic(S
Q

)⊗
Z

Q→ Pic(S
Q

)⊗
Z

Q)p
+ Tr(Frobp : T(S

Q

,Z2) → T(S
Q

,Z2))p+ 1 . (8)

In particular, this means #S(Fp) = p2+rp+Tr(Frobp : T(S
Q

,Z2) → T(S
Q

,Z2))p+1
in the case that rk Pic(S

Q

) = rk Pic(S
Q

) = r.

3.3. On cohomology with 2-torsion coefficients, the cup product pairing induces a
canonical Gal(k/k)-equivariant isomorphism

H2
ét(Sk, µ2)

∼=−→Hom(H2
ét(Sk, µ2),Z/2Z)

= Hom(H2
ét(Sk,Z2(1)),Z/2Z) .

Restricting the domain on the right hand side from H2
ét(Sk,Z2(1)) to the transcen-

dental lattice, one obtains a canonical homomorphism

H2
ét(Sk, µ2) −→ Hom(T(Sk,Z2),Z/2Z) , (9)

which is surjective, since T(Sk,Z2) ⊂ H2
ét(Sk,Z2(1)) has no cotorsion.

Lemma 3.4. Let S be a K3 surface over a field k. Then the kernel of the homo-
morphism (9) coincides with the image of c1⊗Z2

Z/2Z : Pic(Sk) → H2
ét(Sk, µ2).

Proof. “⊇” is clear. “⊆”: Let γ ∈ H2
ét(Sk, µ2) be in the kernel of (9). Lift γ to

a class γ̃ ∈ H2
ét(Sk,Z2(1)). Then, for every χ ∈ T(Sk,Z2), one has that 〈γ̃, χ〉 ∈ Z2

is divisible by 2. Since T(Sk,Z2) has no cotorsion and the pairing (5) is perfect,
there exists a class κ ∈ H2

ét(Sk,Z2(1)) of the kind that 〈γ̃, χ〉 = 2〈κ, χ〉, for any
χ ∈ T(Sk,Z2). In other words, γ̃ − 2κ ∈ T(Sk,Z2)

⊥ = P(Sk,Z2), according to (6),
which identifies γ as an element in the image of c1⊗Z2

Z/2Z. �

We denote by Br(Sk) := H2
ét(Sk,Gm) the geometric Brauer group of S. A stan-

dard application of the Kummer sequence shows that the 2-torsion part is given by
Br(Sk)2 = H2

ét(Sk, µ2)/ im(c1⊗Z2
Z/2Z).

Theorem 3.5. Let S be a K3 surface over a field k. Then the homomorphism (9)
induces a canonical Gal(k/k)-equivariant isomorphism

Br(Sk)2

∼=−→ Hom(T(Sk,Z2),Z/2Z) . (10)



8 ANDREAS-STEPHAN ELSENHANS AND JÖRG JAHNEL

Remark 3.6. In other words, the transcendental lattice modulo 2 is dual to the
2-torsion of the Brauer group. This has been known before, at least in the context
of complex analytic K3 surfaces, cf. [vG, Paragraph 2.1].

Double covers of P2 branched over six lines. Let S be a K3 surface over a field k
of the kind described in paragraph 2.1. Then S may be obtained as a double cover
of B, the projective plane, blown up in the singular locus of V (l1 · · · l6), which forms
a reduced k-scheme of length 15. The branch locus of the double cover π : S → B
is the strict transform of V (l1 · · · l6). This is a disjoint union of six projective lines.

Theorem 3.7 (A.N. Skorobogatov). Let k be a field of characteristic not 2 and
let S be a K3 surface over k as in 2.1. Then there is a Gal(k/k)-equivariant
isomorphism

Br(Sk)2

∼=−→ Pic(Bk)
even/π∗ Pic(Sk) ,

for Pic(Bk)
even ⊆ Pic(Bk) the subgroup formed by the classes having an even inter-

section number with each connected component of the branch locus.

Proof. This is a particular case of A.N. Skorobogatov’s explicit description of
Br(Sk)2 for double covers [Sk, Theorem 1.1]. Note that the geometric Picard group
of the branch locus has no torsion. �

The case of six k-rational lines.

Corollary 3.8. Let k be a field of characteristic not 2 and S a K3 surface over k
as in 2.1. Suppose that l1, . . . , l6 are defined over k.

a) Then the natural Gal(k/k)-action on Br(Sk)2 is trivial.

b) The natural Gal(k/k)-action on T(Sk,Z2)/2 T(Sk,Z2) is trivial, too.

Proof. a) Since l1, . . . , l6 are defined over k, B is the blowing-up of P2
k in 15

k-rational points. Therefore, the Gal(k/k)-action on the whole of Pic(Bk) is trivial.

b) follows from a), together with Theorem 3.5. �

Corollary 3.9 (The splitting field of T(Sk,Z2)/4 T(Sk,Z2)). Let k be a field of
characteristic not 2 and S a K3 surface over k as in 2.1. Suppose that l1, . . . , l6
are defined over k. Denote by K ⊇ k the splitting field of T(Sk,Z2)/4 T(Sk,Z2).

a) Then K is an abelian extension of k of exponent at most 2.

b) Suppose that k is a number field. Then K is unramified over k at all primes of
good reduction and odd residue characteristic.

Proof. a) By definition, one has a natural injection

Gal(K/k) →֒ Aut(T(Sk,Z2)/4 T(Sk,Z2)) .

But {A ∈ GLn(Z/4Z) | A ≡ En (mod 2)} is an elementary abelian 2-group, for any
n ∈ N.

b) As T(Sk,Z2) ⊂ H2
ét(Sk,Z2(1)) has no cotorsion, the natural homomorphism

T(Sk,Z2)/4 T(Sk,Z2) →֒ H2
ét(Sk, µ4) is injective. Moreover, by virtue of the smooth

specialisation theorem [SGA4, Exposé XVI, Corollaire 2.3], the splitting field of
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H2
ét(Sk, µ4) is known to be unramified at any prime of k of odd residue characteristic,

at which S has good reduction. �

Corollary 3.10. Let S be a K3 surface as in 2.1, over k = Q. Suppose that
l1, . . . , l6 are defined over Q. Then, for an odd prime p of good reduction, the action
of the Frobenius Frobp on T(S

Q

,Z2)/4 T(S
Q

,Z2) is completely determined by the
class of Frobp in the Galois group of the number field

K = Q(
√
−1,

√
2,
√
d | d a bad prime for S) .

Proof. This is the particular case of Corollary 3.9, for k = Q. �

The action of Sym(6) on T(Sk,Z2)/2 T(Sk,Z2) in the case that rk Pic(Sk) = 16.

Notation. In the remainder of this section, a double index is meant to be an
unordered pair. E.g., aij = aji. In particular, we write eij , but also eji, for the
exceptional curve on Bk that lies over the point of intersection V(li)∩V(lj), for i 6= j,
1 ≤ i, j ≤ 6.

Lemma 3.11. Let k be a field of characteristic not 2 and S a K3 surface over k
as in 2.1. Suppose that rk Pic(Sk) = 16.

a.i) Then Pic(Sk) ⊃ Zπ∗[l] ⊕ Zπ∗[e12] ⊕ · · · ⊕ Zπ∗[e56] is a sublattice of full rank.

ii) There are further divisor classes [D1], . . . , [D6] ∈ Pic(Sk) such that

2[Di] = π∗[l] +
∑

j=1,...,6,

j 6=i

π∗[eij ] . (11)

The classes [D1], . . . , [D6] generate Pic(Sk), together with π∗[l], π∗[e12], . . . , π
∗[e56].

b) Put

M := {aπ∗[l] + a12π
∗[e12] + · · ·+ a56π

∗[e56] ∈ F2π
∗[l] ⊕ F2π

∗[e12] ⊕ · · · ⊕ F2π
∗[e56]

| a+
∑

j=1,...,6,

j 6=i

aij = 0, for i = 1, . . . , 6} .

Then there is a natural isomorphism

Br(Sk)2
∼= M/〈π∗[l] +

∑
j=1,...,6,

j 6=i

π∗[eij ] | i = 1, . . . , 6〉 . (12)

Proof. One has Pic(Bk) = Z[l]⊕Z[e12]⊕ · · ·⊕Z[e56], the direct sum being orthog-
onal. Moreover, [l]·[l] = 1 and [eij ]·[eij] = −1, for 1 ≤ i < j ≤ 6. As πk : Sk → Bk

is finite of degree 2, this yields that π∗[l], π∗[e12], . . . , π
∗[e56] ∈ Pic(Sk) are mutually

perpendicular, with π∗[l]·π∗[l] = 2 and π∗[eij ]·π∗[eij ] = −2. From this, a.i) immedi-
ately follows. Consequently, one has Qπ∗[l] ⊕Qπ∗[e12] ⊕ · · · ⊕Qπ∗[e56] ⊃ Pic(Sk).
As the intersection numbers with the base elements have to be integers, the coeffi-
cients are in fact half integral, at most.

Furthermore, over the strict transform of the quintic V(l2 · · · l6 − l51) ⊂ P2
k
, the

double cover πk : Sk → Bk splits, since the equation of the surface goes over into
w2 = l61 [EJ18, Remark 4.6]. This yields a divisor D ∈ Div(Sk) such that
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π∗[D] = 5[l] + [e12] + [e13] + [e14] + [e15] + [e16]. One may put [D1] := [D]− 2π∗[l] in
order to fulfil (11). The divisor classes [D2], . . . , [D6] are constructed analogously.
Thus, there is an inclusion

Pic(Bk) ⊇ (Z[l] ⊕ Z[e12] ⊕ · · · ⊕ Z[e56]) + [D1] + · · · + [D6] , (13)

and in order to complete the proof of a), it needs to be shown that equality holds.
On the other hand, one has M = Pic(Bk)

even/π∗(Zπ
∗[l]⊕Zπ∗[e12]⊕· · ·⊕Zπ∗[e56]).

Hence, by Theorem 3.7, there is actually a natural surjection

Br(Sk)2 ։ M/〈π∗[l] +
∑

j=1,...,6,

j 6=i

π∗[eij ] | i = 1, . . . , 6〉 (14)

that is a bijection if and only if equality holds in (13). But an explicit calculation
reveals that the right hand side of (14) is of order 64, M being of order 2048. As, by
Theorem 3.5, Br(Sk)2 is of order 64, too, this proves both, a) and b). �

Theorem 3.12. Let k be a field of characteristic not 2 and S a K3 surface over k
as in 2.1. Suppose that rk Pic(Sk) = 16.

a.i) Then the group Sym(6) permuting the six branch lines naturally acts on the
sublattice of Pic(Sk) described in Lemma 3.11.a.i) by

σ(π∗[l]) = π∗[l] and σ(π∗[eij ]) = π∗[eσ(i)σ(j)] .

ii) The action on Br(Sk)2 is as follows. There is an F2-basis (b1, . . . , b6) of Br(Sk)2

such that

σ(bi) =

{
bσ̃(i) , if σ ∈ Alt(6) ,
bσ̃(i) + c , if σ 6∈ Alt(6) ,

for c := b1 + · · ·+ b6. Here, Sym(6) → Sym(6), σ 7→ σ̃, is an outer automorphism.

b) The natural Gal(k/k)-actions on Pic(Sk) and Br(Sk)2 are the compositions of
the natural Gal(k/k)-action on the six branch lines with the actions described in a).

Proof. a.i) and b) are clear.

a.ii) One puts b6 := π∗[e12] + π∗[e23] + π∗[e34] + π∗[e45] + π∗[e15] ∈ Br(Sk)2. Note
that indeed π∗[e12] + π∗[e23] + π∗[e34] + π∗[e45] + π∗[e15] ∈ M , so that this is a
correct definition.

It is clear that b6 is stabilised by a dihedral group of order ten, permuting only
{1, . . . , 5}. Moreover, applying the relations in (12), for i = 1 and 4, one finds that
b6 = π∗[e13] + π∗[e23] + π∗[e24] + π∗[e46] + π∗[e16], too. Hence, the stabiliser of b6 is
a 2-transitive subgroup of Sym(6), of order a multiple of 60.

A machine calculation shows that the orbit of b6 under Sym(6) is indeed of
size twelve, so that the stabiliser of b6 is Alt(5), transitively embedded into Sym(6)
[DM, Table 2.1]. Furthermore, the orbit {b1, . . . , b6} of b6 under Alt(6) ⊂ Sym(6)
turns out to be F2-linearly independent.

The orbit under Sym(6) is, in fact, {b1, . . . , b6, b1 + c, . . . , b6 + c}. Moreover,
c ∈ Br(Sk)2\{0} is the unique Alt(6)-invariant element, and hence Sym(6)-invariant.
Consequently, the stabiliser of the class b6 ∈ Br(Sk)2/〈c〉 is 2-transitive of order 120,
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and thus Sym(5), transitively embedded into Sym(6). This shows that indeed
the classes b1, . . . , b6 ∈ Br(Sk)2/〈c〉 are permuted according to an outer automor-
phism of the group Sym(6) [Wi, Subsection 2.4.2], which completes the proof. �

4. A theorem on the 2-adic orthogonal group

The main theorem. 2-adic overdetermination of the trace.

Theorem 4.1. Let n ∈ N. With respect to a non-degenerate, symmetric bilinear
form on Qn

2 , let U1, U2 ∈ Mn×n(Z2) be orthogonal matrices such that

U1 ≡ U2 (mod 4) .

a) If U1 ≡ En (mod 2) then Tr(U1) ≡ Tr(U2) (mod 16).

b) If U2
1 ≡ En (mod 2) then Tr(U1) ≡ Tr(U2) (mod 8).

Proof. One has det(U1) = ±1, since U1 is orthogonal. Hence, U−1
1 ∈ Mn×n(Z2).

The congruence U1 ≡ U2 (mod 4) therefore implies that U−1
1 U2 ≡ En (mod 4).

I.e., there exists a matrix B ∈ Mn×n(Z2) such that

U2 = U1(En + 4B) .

Moreover, det(En + 4B) = det(U−1
1 U2) = 1, hence the linear approximation of det

near the unit matrix yields 1 = det(En + 4B) ≡ det(En) + 4 Tr(B) (mod 16). I.e.,

Tr(B) ≡ 0 (mod 4) . (15)

a) Writing U1 = En + 2A, one finds

Tr(U2) = Tr((En + 2A)·(En + 4B)) = Tr(En + 2A) + 4 Tr(B) + 8 Tr(AB)

≡ Tr(U1) + 8 Tr(AB) (mod 16) .

Finally, one has Tr(AB) ≡ 0 (mod 2), due to Theorem 4.2.a), below.

b) Analogously, writing U1 = En + A, one sees

Tr(U2) = Tr((En + A)·(En + 4B)) = Tr(U1) + 4 Tr(B) + 4 Tr(AB) ,

so that the assertion follows from (15) and Theorem 4.2.b). �

2-adic divisibility of traces.

Theorem 4.2. For n ∈ N, let b be a non-degenerate, symmetric bilinear form
on Qn

2 .

a) Let A,B ∈ Mn×n(Z2) be such that En + 2A and En + 4B are orthogonal with
respect to b. Then Tr(AB) ≡ 0 (mod 2).

b) Let A,B ∈ Mn×n(Z2) be such that En + A and En + 4B are orthogonal with
respect to b and (En + A)2 ≡ En (mod 2). Then Tr(AB) ≡ 0 (mod 2).

A more natural formulation, not explicitly considering matrices, goes as follows.

Theorem 4.3. Let Γ be a Z2-lattice and ϕ, ψ : Γ → Γ orthogonal endomorphisms.
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a) If (ϕ mod 2) acts trivially on Γ/2Γ and (ψ mod 4) acts trivially on Γ/4Γ then
Tr((ϕ− id)◦(ψ − id)) ≡ 0 (mod 16).

b) If (ϕ◦ϕ mod 2) acts trivially on Γ/2Γ and (ψ mod 4) acts trivially on Γ/4Γ
then Tr((ϕ− id)◦(ψ − id)) ≡ 0 (mod 8).

4.4 (Structure of the proof). The proof of Theorem 4.3 is organised as follows.

i) We directly check the analogue of Theorem 4.3 for regular Z2[
√

2]-lattices.

ii) We show Theorem 4.3 in a particular case, in which the discriminant of b has a
small 2-adic valuation. The idea is to construct a Z2[

√
2]-lattice Γ̃ ⊇ Γ⊗

Z2
Z2[

√
2]

such that b is regular on Γ̃. We check that all relevant properties of the endomor-
phisms ϕ and ψ are preserved under this change of lattices.

iii) For the general case, the idea is as follows. By inspection of the dual lattice Γ∨,
we show that the endomorphisms ϕ and ψ respect various other lattices, as well.
We choose one rather particular such lattice Γ′ ⊂ Γ⊗

Z2
Q2, thereby making sure

that the discriminant of b on Γ′ has a 2-adic valuation sufficiently small, so that ii)
applies.

Remarks 4.5. a) For the concept of an O-lattice, in general, recall the terminology
and notation fixed in the introduction.

b) The ring O = Z2[
√

2] is a principal ideal domain, in fact a discrete valuation ring.
In particular, every finitely generated O = Z2[

√
2]-module that is projective or only

torsion-free is automatically free.

c) There is a more elementary proof for Theorem 4.3 that avoids Z2[
√

2]-lattices at
the cost of a more complicated case distinction.

First step of the proof – A variant for regular lattices over discrete valuation rings.

Proposition 4.6. Let O be a discrete valuation ring, in which 2 6= 0 is not a unit,
Γ a regular O-lattice, and ϕ, ψ : Γ → Γ orthogonal endomorphisms.

a) If (ϕ mod 2) acts trivially on Γ/2Γ and (ψ mod 4) acts trivially on Γ/4Γ then
Tr((ϕ− id)◦(ψ − id)) ≡ 0 (mod 16).

b) If (ϕ ◦ ϕ mod 2) acts trivially on Γ/2Γ and (ψ mod 4) acts trivially on Γ/4Γ
then Tr((ϕ− id)◦(ψ − id)) ≡ 0 (mod 8).

Proof. Choose a basis for Γ and denote the rank of Γ by n. The bilinear form
on Γ is then given by a symmetric n × n matrix M . Thanks to the regularity
assumption, one has M ∈ GLn(O). Moreover, the matrix representing ψ can be
written as En + 4B, for some B ∈ Mn×n(O). By Lemma 4.7.b), MB is symmetric
modulo 2 all diagonal coefficients being divisible by 2.

a) Here, the matrix representing ϕ is En+2A, for a certain A ∈ Mn×n(O). Thus, the
assertion follows from Lemmas 4.7.a) and 4.8, below.

b) Let A ∈ Mn×n(O) be the matrix representing ϕ−id. The fact that ϕ is orthogonal
is then equivalent to

A⊤M +MA + A⊤MA = 0 , (16)
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which implies
A⊤MA +MA2 + A⊤MA2 = 0 .

On the other hand, the assumption (En+A)2 ≡ En (mod 2) yields A2 ≡ 0 (mod 2),
so that one has A⊤MA ≡ 0 (mod 2). Therefore, formula (16), together with the
fact that M is symmetric, yields that MA is symmetric modulo 2. To summarise, it
is proved that Lemma 4.8 is applicable, which shows that Tr(AB) is divisible by 2.

�

Lemma 4.7. Let O be a discrete valuation ring, in which 2 6= 0 is not a unit, and
M ∈ GLn(O) a symmetric matrix.

a) Let C ∈ Mn×n(O) be such that En+2C is orthogonal with respect to M . Then the
reduction modulo 2 of MC is symmetric.

b) Let C ∈ Mn×n(O) be such that En+4C is orthogonal with respect to M . Then the
reduction modulo 2 of MC is symmetric. Furthermore, every diagonal coefficient
of MC is divisible by 2.

Proof. a) The orthogonality condition explicitly reads

C⊤M +MC + 2C⊤MC = 0 . (17)

Moreover, as M is symmetric, we have C⊤M = (MC)⊤. Thus, (17) implies that
MC ≡ (MC)⊤ (mod 2), which shows a).

b) Here, orthogonality means C⊤M + MC + 4C⊤MC = 0. Moreover, once again,
we have C⊤M = (MC)⊤, so that MC ≡ −(MC)⊤ (mod 4) follows. This proves
both conclusions of b). �

Lemma 4.8. Let O be a discrete valuation ring, in which 2 6= 0 is not a unit,
M ∈ GLn(O) symmetric, and A,B ∈ Mn×n(O) such that MA ≡ (MA)⊤ (mod 2),
MB ≡ (MB)⊤ (mod 2), and all diagonal coefficients of MB are divisible by 2.
Then Tr(AB) is divisible by 2.

Proof. Writing U := AM−1 and V := MB, one has

Tr(AB) = Tr(AM−1MB) = Tr(UV ) =
∑

i,j

uijvji . (18)

Here, U = M−1MAM−1 is symmetric modulo 2, since both, MA and M−1, are.
Furthermore, V = MB is symmetric modulo 2, by assumption.

Therefore, in (18), the summands for the indices (i, j) and (j, i) coincide modulo 2,
so that the sum of each pair is divisible by 2. Finally, the summands for i = j are
divisible by 2, as the diagonal coefficients vii of V are. �

Second step of the proof – Generalities on Z2-lattices.

Proposition 4.9 (Decomposition of Z2-lattices). Let (Γ, b) be a Z2-lattice. Then
there is a decomposition Γ =

⊕N
i=0 Γi into an orthogonal direct sum of the kind that

b =

N⊕

i=0

2ibi , (19)
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for regular symmetric bilinear forms b0, . . . , bN on Γ0, . . . ,ΓN , respectively.

Proof. See [CS, Chapter 15, Theorem 2] or [Kn, Satz 15.1]. It is, in fact, shown
that, for each i, the lattice Γi may be decomposed further into an orthogonal direct
sum of only 1- and 2-dimensional lattices. �

Definition 4.10. Let (Γ, b) be a Z2-lattice. Then, by the dual lattice, we mean

Γ∨ := {x ∈ Γ⊗
Z2
Q2 | b(x,Γ) ⊆ Z2} .

Here, the Q2-bilinear extension of b : Γ× Γ → Z2 to Γ⊗
Z2
Q2 is again denoted by b.

Example 4.11. A decomposition Γ =
N⊕

i=0

Γi as above, with b =
N⊕

i=0

2ibi, yields

Γ∨ =

N⊕

i=0

2−iΓi .

Indeed, for each i, the lattice (Γi, bi) is regular.

Lemma 4.12. Let Γ be a Z2-lattice and ϕ : Γ → Γ an orthogonal map. Denote the
Q2-linear extension of ϕ to Γ⊗

Z2
Q2 again by ϕ. Then ϕ(Γ∨) = Γ∨.

Proof. We have

x ∈ Γ∨ ⇔ b(x,Γ) ⊆ Z2 ⇔ b(ϕ(x), ϕ(Γ)) ⊆ Z2 ⇔ b(ϕ(x),Γ) ⊆ Z2 ⇔ ϕ(x) ∈ Γ∨ . �

Lemma 4.13. Let Γ be a Z2-lattice and ϕ : Γ → Γ an orthogonal endomorphism.
Moreover, let Γ =

⊕N
i=0 Γi, with b =

⊕N
i=0 2ibi, be a decomposition as above and let

B be a basis of Γ obtained by concatenating bases of Γ0, . . . ,ΓN . Finally, put

D = (Dij)i,j=0,...,N := MB

B(ϕ) ,

so that, for i, j = 0, . . . , N , the block Dij represents an element of Hom(Γj,Γi).

a) Then, for i, j = 0, . . . , N , one has ν2(Dij) ≥ j − i.

b) Let e ∈ N and suppose, in addition, that ϕ acts trivially on the quotient Γ/2eΓ.
Then ν2(Dij) ≥ j − i+ e, for i 6= j, i, j = 0, . . . , N .

Proof. a) As ϕ maps Γ onto itself, by Lemma 4.12, it does the same to the dual
lattice Γ∨ =

⊕N
i=0 2−iΓi. This shows that ν2(Dij) ≥ j − i, for j > i. Note that the

assertion is trivial in the case that j ≤ i.

b) By assumption, ϕ maps the lattices Γ and 2eΓ onto themselves. Furthermore, the
action induced on the quotient Γ/2eΓ is assumed to be trivial. Consequently, ϕ maps
every lattice ∆ of the kind that 2eΓ ⊆ ∆ ⊆ Γ onto itself.

We apply this observation to the lattices, given by

∆j :=

(
⊕

i=0,...,N

i6=j

Γi

)
⊕ 2eΓj ,
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for j = 0, . . . , N . As ϕ maps ∆j onto itself, the same is true for ∆∨
j . Noticing that

∆∨
j =

(
⊕

i=0,...,N

i6=j

2−iΓi

)
⊕ 2−j−eΓj ,

this yields ν2(Dij) ≥ j − i+ e, for j 6= i. Indeed, one has that ϕ(2−j−eΓj) ⊆ ∆∨
j . �

Remark 4.14. An alternative proof for b) may be given as follows. As ϕ acts trivially
on Γ/2eΓ, the adjoint map acts trivially on Γ∨/2eΓ∨. As the adjoint coincides with
the inverse of ϕ, the map being orthogonal, one may conclude that ϕ acts trivially
on Γ∨/2eΓ∨, as well. This implies the divisibility ν2(Dij) ≥ j − i+ e, for i 6= j.

Third step of the proof – A particular case.

Proposition 4.15. Let (Γ0, b0) and (Γ1, b1) be regular Z2-lattices. Equip the direct
sum Γ := Γ0⊕Γ1 with the symmetric bilinear form b := b0⊕2b1. Then Theorem 4.3
holds for Γ.

Proof. Let us first note that the Z2[
√

2]-lattice

Γ̃ :=
(
Γ0⊗Z2

Z2[
√

2]
)
⊕ 1

2

√
2
(
Γ1⊗Z2

Z2[
√

2]
)

(20)

⊂ Γ⊗
Z2
Q2[

√
2] ,

equipped with the bilinear form induced by b, is regular.

a) By assumption, ϕ, ψ : Γ → Γ are orthogonal maps acting trivially on Γ/2Γ and
Γ/4Γ, respectively. Then Lemma 4.16 shows that the induced maps ϕ̃, ψ̃ : Γ̃ → Γ̃
are again orthogonal, that (ϕ̃ mod 2) acts trivially on Γ̃/2Γ̃, and that (ψ̃ mod 2)
acts trivially on Γ̃/4Γ̃. By Proposition 4.6.a), this implies that

Tr((ϕ̃− id)◦(ψ̃ − id)) ∈ 16Z2[
√

2] .

Since ϕ̃ and ψ̃ are obtained from ϕ and ψ only by base extension, one has
Tr((ϕ− id)◦(ψ − id)) ∈ 16Z2[

√
2], too. But the latter trace is automatically in Z2,

so that the assertion follows.

The proof of b) works along the same lines. �

Lemma 4.16. Let (Γ0, b0) and (Γ1, b1) be regular Z2-lattices. Equip Γ := Γ0 ⊕ Γ1

with the bilinear form b := b0 ⊕ 2b1 and let Γ̃ be the Z2[
√

2]-lattice, defined by (20).
Moreover, let ϕ : Γ → Γ be an orthogonal map, and write ϕ̃ : Γ̃ → Γ⊗

Z2
Q2[

√
2] for

the map induced by ϕ.

a) Then ϕ̃ actually sends Γ̃ onto itself.

b) Moreover, ϕ̃ : Γ̃ → Γ̃ is an orthogonal map.

c) Let e ∈ N. If (ϕ mod 2e) acts trivially on Γ/2eΓ then (ϕ̃ mod 2e) acts trivially
on Γ̃/2eΓ̃.

Proof. b) is clear from the construction of ϕ̃, once the assertion of a) is established.
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a) and c) Let B be a basis of Γ as in Lemma 4.13 and put (C00 C01

C10 C11

) := MB

B
(ϕ− id).

The blocks Cij are then matrices with coefficients in Z2. One even has ν2(Cij) ≥ e,
for 0 ≤ i, j ≤ 1, under the assumption of c).

Multiplying the basis vectors of Γ1 by 1
2

√
2, one finds a basis B̃ of Γ̃, for which

MB̃

B̃
(ϕ̃− id) =

(
C00

1
2

√
2C01√

2C10 C11

)
.

Thus, in order to prove the assertions, only ν2(C01) ≥ 1 and ν2(C01) ≥ e + 1,
respectively, need to be verified. Both claims are true, due to Lemma 4.13. �

Completion of the proof.

Lemma 4.17 (Change of lattice). Let Γ be an arbitrary Z2-lattice and Γ =
N⊕

i=0

Γi

a decomposition as above. Furthermore, let ϕ : Γ → Γ be an orthogonal map.

a) Then ϕ maps the lattice Γ′ :=
N⊕

i=0

Γ′
i, for

Γ′
i := 2−⌊ i

2
⌋Γi ,

onto itself, as well.

b) Let e ∈ N and suppose that ϕ acts trivially on Γ/2eΓ. Then ϕ acts trivially on
the quotient Γ′/2eΓ′.

Proof. Let B be a basis of Γ as in Lemma 4.13. Then there is a basis B′ of Γ′

given by scaling the basis vectors of Γi by 2−⌊ i
2
⌋, for i = 0, . . . , N . The matrix

C ′ = (C ′
ij)i,j=0,...,N := MB′

B′(ϕ− id)

is then constructed out of the matrix (Cij)i,j=0,...,N = MB

B(ϕ− id) by putting
C ′

ij := 2⌊ i
2
⌋−⌊ j

2
⌋Cij, for i, j = 0, . . . , N . This translates the claims into certain

inequalities for ν2(Cij).

a) The assertion means that ν2(C
′
ij) ≥ 0, for i, j = 0, . . . , N , which is equivalent to

ν2(Cij) ≥
⌊

j
2

⌋
−
⌊

i
2

⌋
. By assumption, one has ν2(Cij) ≥ 0, so that, for i ≥ j, there

is nothing left to be shown. For i < j, the inequality ν2(Cij) ≥
⌊

j
2

⌋
−
⌊

i
2

⌋
indeed

holds, due to Lemma 4.13.a).

b) Here, the assertion means ν2(C
′
ij) ≥ e, for i, j = 0, . . . , N , and is equivalent to

ν2(Cij) ≥ e+
⌊

j
2

⌋
−
⌊

i
2

⌋
. As ν2(Cij) ≥ e holds by assumption, the case that i ≥ j

does not need any further consideration. Moreover, for i < j, the assertion follows
from Lemma 4.13.b). �

Proof of Theorem 4.3. Let Γ be any Z2-lattice. In order to prove that Theorem 4.3
holds for Γ, by Lemma 4.17, it suffices to show that exactly the same statement
holds for the Z2-lattice Γ′. To actually treat Γ′, note that, by construction, the
bilinear form b′ on Γ′ is of the form b′0 ⊕ 2b′1 ⊕ b′2 ⊕ 2b′2 ⊕ · · · ⊕ 2N−2⌊N

2
⌋b′N , for regular

Z2-lattices (Γ′
0, b

′
0), . . . , (Γ′

N , b
′
N). Thus, Γ′ allows a decomposition Γ′ = Γ′′

0 ⊕ Γ′′
1

with b′ = b′′0 ⊕ 2b′′1, for regular lattices (Γ′′
0, b

′′
0) and (Γ′′

1, b
′′
1). But for exactly this

particular case, the assertion of Theorem 4.3 is established by Proposition 4.15. �



2-ADIC POINT COUNTING ON K3 SURFACES 17

5. The point counting algorithm

Input. i) Let a scheme S ′ be given that is presented as a double cover of P2
Z

branched over the union of six lines, each of which is defined over SpecZ. Sup-
pose that no three of these lines have a Q-rational point in common, and let S
be the blowing-up of S ′ in the Zariski closure, equipped with the induced reduced
scheme structure, of the singular locus of the generic fibre S ′

Q

.

Suppose that Pic(S
Q

) is a trivial Gal(Q/Q)-module in the case that rk Pic(S
Q

) ≥ 16,
as well.

ii) Moreover, let a bound B be given.

Then the algorithm below computes #S(Fp), for all good primes p < B of S.

Algorithm 5.1. A) Initialisation.

i) Calculate the odd primes p1, . . . , pb, at which S has bad reduction. In terms of
these, declare the map

̺ : P\{2, p1, . . . , pb} → {±1}b+2 , p 7→ ((−1
p

), (2
p
), (p1

p
), . . . , (pb

p
)) .

ii) For each σ ∈ {±1}b+2, run through P\{2, p1, . . . , pb} from below, until a prime lσ
is found of the kind that ̺(lσ) = σ. Then count #S(Flσ) by a naive method.
From the point count, derive (Tr(Froblσ : T(S

Q

,Z2) → T(S
Q

,Z2)) mod 16) using
the Lefschetz trace formula (8) and store this value in a table.

Remark 5.2. As the action of Gal(Q/Q) on Pic(S
Q

)⊗
Z

Q is known to be trivial,
formula (8) allows, of course, to calculate Tr(Froblσ : T(S

Q

,Z2) → T(S
Q

,Z2)) from
#S(Flσ) exactly. But only the residue class modulo 16 is of importance. Which is
exactly the information that is stored.

Indeed, let p be a possibly large prime. Then, the value σ = ̺(p) ∈ {±1}b+2

completely determines the action of Frobp on T(S
Q

,Z2)/4 T(S
Q

,Z2), according to
Corollary 3.10. I.e., the action of Frobp coincides with that of Froblσ . Furthermore,
by Theorem 4.1.a), this is enough to fix the trace modulo 16 on T(S

Q

,Z2). I.e.,

Tr(Frobp : T(S
Q

,Z2)→T(S
Q

,Z2)) ≡ Tr(Froblσ : T(S
Q

,Z2)→T(S
Q

,Z2)) (mod 16) ,

the residue class on the right hand side being the one that was stored. Cf. part B)
of the algorithm.

Remark 5.3. The calculation of the bad primes in step A.i) involves the factorisation
of a discriminant. A failure in this step would prevent the algorithm from proceed-
ing. In our present implementation, this does not present any difficulty, as the
discriminant for the family of double covers of P2 branched over six lines is highly
reducible [Yo, Def. 7.7 and Lemma 7.8], cf. Remark 2.4.b). Step A.i) might, however,
become an issue when trying to carry over the algorithm to other types of surfaces.
This may concern other families of K3 surfaces, already.

5.4. The initialisation as described above ignores the group structure. It deter-
mines (Tr(σ : T(S

Q

,Z2) → T(S
Q

,Z2)) mod 16) individually, for every element of



18 ANDREAS-STEPHAN ELSENHANS AND JÖRG JAHNEL

Gal(K/Q), where K := Q(
√
−1,

√
2,
√
p1, . . . ,

√
pb). The number of these elements

is exponential in the number b of odd bad primes.
A more efficient approach is as follows. To simplify notation, put p−1 := −1

and p0 := 2. Moreover, let σ−1, σ0, σ1, . . . , σb ∈ Gal(K/Q) be the standard genera-
tors. I.e.,

σi(
√
pj) =

{ √
pj , if j 6= i, j ∈ {−1, 0, 1, . . . , b} ,

−
√
pj , if j = i ,

for i ∈ {−1, 0, 1, . . . , b}. Every element σ ∈ Gal(K/Q) may then uniquely be
described by some sequence s ∈ {0, 1}b+2, indexed from (−1) to b,

σ = σ
s−1

−1 σ
s0

0 σ
s1

1 · · ·σsb

b .

Or, σ =
∏

i∈Ms
σi, for Ms := {i ∈ {−1, . . . , b} | si = 1}.

With respect to a basis of T(S
Q

,Z2), each generator σi ∈ Gal(K/Q) yields a
matrix En+2Ai, with Ai ∈ Mn×n(Z2), encoding the action on T(S

Q

,Z2). A product
σ

s−1

−1 · · ·σsb

b then corresponds to the matrix

(En + 2A−1)
s−1 · · · (En + 2Ab)

sb ,

the trace of which modulo 16 is given by

Tr((En + 2A−1)
s−1 · · · (En + 2Ab)

sb) ≡ n + 2
∑

i∈Ms

Tr(Ai) + 4
∑

i,j∈Ms,

i<i′

Tr(AiAi′)

+ 8
∑

i,i′,i′′∈Ms,

i<i′<i′′

Tr(AiAi′Ai′′) (mod 16) . (21)

Based on (21), the traces modulo 8 of all matrices Ai, together with the traces mod-
ulo 4 of all products AiAi′ and the traces modulo 2 of all triple products AiAi′Ai′′,
can be determined efficiently by solving a system of linear congruences. This can be
described as an algorithm as follows.

Algorithm (continued). A’) Initialisation. A more efficient approach – First step.

Let l run through P\{2, p1, . . . , pb} from below. Each time, do the following.

i) Compute ̺(l). I.e., determine a presentation of Frobl ∈ Gal(K/Q) as a product
σ

s−1

−1 · · ·σsb

b of some of the standard generators.

ii) Count #S(Fl) by a naive method. Derive

(Tr((En + 2A−1)
s−1 · · · (En + 2Ab))

sb mod 16) =
(Tr(Frobl : T(S

Q

,Z2) → T(S
Q

,Z2)) mod 16)

from this value using the Lefschetz trace formula (8).

iii) According to formula (21) above, write down a linear congruence involv-
ing all Tr(Ai), Tr(AiAi′), and Tr(AiAi′Ai′′), for −1 ≤ i ≤ b, −1 ≤ i < i′ ≤ b, and
−1 ≤ i < i′ < i′′ ≤ b, respectively. Add this congruence to the system of congru-
ences already obtained.
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iv) Check whether the system of linear congruences obtained for (Tr(Ai) mod 8),
(Tr(AiAi′) mod 4), and (Tr(AiAi′Ai′′) mod 2), for −1 ≤ i ≤ b, −1 ≤ i < i′ ≤ b, and
−1 ≤ i < i′ < i′′ ≤ b, respectively, is uniquely solvable. If this is the case then com-
pute the solution, store it, and terminate Step A’).

A”) Initialisation. A more efficient approach – Second step.

Let s run through the elements of {0, 1}b+2. Each time, determine

T(s) := (Tr((En + 2A−1)
s−1 · · · (En + 2Ab)

sb) mod 16)

using formula (21) and the stored values of (Tr(Ai) mod 8), (Tr(AiAi′) mod 4), and
(Tr(AiAi′Ai′′) mod 2). Store the value in a table.

B) Point counting.

Let p run through P\{2, p1, . . . , pb} from below up to B. Each time, do the following.

i) Compute s := ̺(p), which means to the determine Frobp ∈ Gal(K/Q).

ii) Look up the corresponding value T(s) in the precomputed table. This is just
(Tr(Frobp : T(S

Q

,Z2) → T(S
Q

,Z2)) mod 16).

Applying the Lefschetz trace formula (8), calculate (#S(Fp) mod 16) from this value.

iii) Use a p-adic Harvey style algorithm [Ha] to compute (#S(Fp) mod p).

iv) Use the Chinese remainder theorem to calculate the class (#S(Fp) mod 16p)
from (#S(Fp) mod 16) and (#S(Fp) mod p).

v) Determine the unique representative of this residue class modulo 16p that is
compatible with Deligne’s bound (4) for #S(Fp) and output this number.

Remarks 5.5 (On the assumptions made on S). i) The assumptions made on the in-
tersection points of the six lines imply that the generic fibre S

Q

of S is nonsingular,
i.e. a K3 surface. Moreover, as the lines are assumed to be defined over Z, Corol-
lary 3.8.a) shows that the action of Gal(Q/Q) on T(S

Q

,Z2)/2 T(S
Q

,Z2) is trivial.
The assumption on Pic(S

Q

) is automatically fulfilled if rk Pic(S
Q

) = 16.

ii) The algorithm as described immediately carries over to other types of K3 sur-
faces, as soon as the actions of Gal(Q/Q) on Pic(S

Q

) and T(S
Q

,Z2)/2 T(S
Q

,Z2)
are trivial.

iii) A further generalisation is possible to K3 surfaces, for which the action of
Gal(Q/Q) on T(S

Q

,Z2)/2 T(S
Q

,Z2) is trivial and that on Pic(S
Q

) is explic-
itly known. Indeed, the triviality of Pic(S

Q

) is only used in the references to the
Lefschetz trace formula (8).

iv) Finally, one might want to consider the case when both Gal(Q/Q)-actions, that
on Pic(S

Q

) and that on T(S
Q

,Z2)/2 T(S
Q

,Z2), are nontrivial, but explicitly known.
At least when the action on T(S

Q

,Z2)/2 T(S
Q

,Z2) is of exponent 2, a modification
of Algorithm 5.1 is possible, which is based on Theorem 4.1.b). It may determine
Tr(Frobp : T(S

Q

,Z2) → T(S
Q

,Z2) only modulo 8.

The idea is as follows. Let the number field F be the known splitting field
of T(S

Q

,Z2)/2 T(S
Q

,Z2). Then the Galois action on T(S
Q

,Z2)/4 T(S
Q

,Z2) factors
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via Gal(K/Q), for K the maximal abelian extension of F of exponent 2, ramified
only at the primes above 2 and the bad primes of S. This is a ray class field over F
and thus, in principle, accessible to computation. Cf. Section 6 for an example.

Remark 5.6 (Initialisation). Among S1, . . . , S4, the surface S1 is the one having
the most bad primes. There are actually six bad primes p 6= 2. Thus, the direct
initialisation requires to count the points for 256 primes. As all elements of {±1}8

have to be hit, the largest prime to be used would be 21 121.
The more efficient approach needs to solve a system of linear congruences in

92 variables. Thus, it requires the point count only for 92 primes. As the elements
of {±1}8 to be hit by Frobp are otherwise arbitrary, we could get by working with
the primes up to 593.

Remark 5.7. Note that, in our examples, we always have 2b+2 ≤ 256 in comparison
to B = 108. For other samples with many more bad primes, so that 2b ≫ B, one
might want to optimise by reversing steps A”) and B). I.e., to calculate the values
T(̺(p)) separately for each prime.

Remark 5.8 (Practical performance). i) For each of the surfaces S1, . . . , S4, run-
ning up to B = 108, our implementation used about 20GB of memory and between
8 and 12 hours of CPU time on one core of an Intel i7-7700 processor running at
3.6GHz.

This running time is completely dominated by the modulo p point count, for which
we ran a variant of a Harvey style algorithm in p-adic precision 1 with remainder
tree implemented for this particular project. Note that our implementation is in
magma, not in a compiled language. And that, presumably, some of the possible
optimisations are still missing. Cf. [EJ16, Sections 3 and 4] for a description of an
earlier implementation.

ii) The initialisation, as described in A’) and A”), took less than one minute per
surface. More precisely, for the surface S1, the naive point counting had to be done
for 92 primes, which took around 49 seconds. For all other steps of the initialisa-
tion together, including the linear algebra calculations, the magma profiler reports a
running time of 2.5 seconds. For the surfaces S2, S3, and S4, the initialisation runs
faster by a factor of at least 10, because there are fewer bad primes.

The actual modulo 16 point counting mainly required Legendre symbol computa-
tions for the slightly more than 5.7 million primes up to B = 108, which took only
23 seconds per surface. Finally, the determination of the point counts modulo 16p
took 5 seconds, which are essentially accounted for the computations related to the
Chinese remainder theorem.

Remark 5.9 (Point counting modulo p2 versus modulo p). i) p-adic point counting
for a surface of the shape w2 = xyzf3(x, y, z) requires to do the following: In order to
count modulo p, one has to compute the coefficient at (xyz)(p−1)/2 in f

(p−1)/2
3 with

p-adic precision 1. In all our examples, the moving simplex approach (cf. [EJ16,
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Remark 4.8]) never resulted in a loss of p-adic precison. Thus, we were able to work
with p-adic precision 1 during all the intermediate steps.

On the other hand, for point counting modulo p2, one has to compute the coefficient
at (xyz)(p−1)/2 in f

(p−1)/2
3 with p-adic precision 2 and, furthermore, the coefficient at

xi(p−1)/2yj(p−1)/2zk(p−1)/2 in f
3(p−1)/2
3 , for every triple (i, j, k) ∈ N3 of odd numbers

such that i + j + k = 9. Thus, instead of computing one coefficient, one has to
compute eleven. Assuming that this can be done without p-adic precision loss, one
can work with p-adic precision 2 during all the intermediate steps. This indicates
that one has to expect an increase of the run time by at least a factor of 22.

As the exponent in f
3(p−1)/2
3 is increased by a factor of 3 compared to f

(p−1)/2
3 , a

naive implementation would slow down the process even more, in the worst case by
another factor of 3. However, a better implementation using multipoint evaluation
techniques [vGG, Section 10.1] might reduce this factor significantly.

ii) For checking correctness, we implemented a simple p-adic point counting with
p-adic precision 2 that does not use advanced techniques such as the remainder tree.
This implementation took about one day of CPU time per surface, running only
to B = 105. It is important to note, however, that this is not a fair comparison,
since too many optimisations were missing.

Remarks 5.10 (Results). a) The main outcome of our computations are the his-
tograms presented in [EJ21, Section 5].

b) The distribution of the traces modulo 16 relative to the elements in {±1}b+2, as
indicated in the table below, appears to be rather erratic.

Residue mod 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1 46 0 44 0 32 0 26 0 18 0 36 0 32 0 22 0
S2 0 0 7 0 0 0 7 0 0 0 9 0 0 0 9 0
S3 0 20 0 0 0 28 0 0 0 4 0 0 0 12 0 0
S4 8 0 2 0 0 0 4 0 0 0 2 0 0 0 0 0

Table 1. Number of elements of {±1}b+2 for each residue mod16

Nevertheless, there are a few more observations that should perhaps be noticed.

i) For instance, for S3, it happens that (Tr(Frobp : T(S
Q

,Z2)→T(S
Q

,Z2)) mod 16)
is independent of the Legendre symbol (2

p
). For S4, it suffices to consider (6

p
), instead

of (2
p
) and (3

p
) individually. These, however, are the only regularities that occurred

above those predicted by Corollary 3.10.

ii) (Explanation of the zeroes in Table 1) For p odd, a double cover of P2
Fp

, branched
over six Fp-rational lines in general position, has an odd number of points, since the
branch locus has. This yields that Tr(Frobp : T(S

Q

,Z2) → T(S
Q

,Z2)) is always
even in the case of geometric Picard rank 16, and odd, for geometric Picard rank 17.

But more is true. One has that det(En+2A) = ±1 implies 1+2 Tr(A) ≡ ±1 (mod 4)
and therefore Tr(En + 2A) ≡ n − 1 ± 1 (mod 4). This explains why, for S1
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and S4, there are equally many elements of {±1}b+2 leading to traces (0 mod 4)
and (2 mod 4).

The surfaces S2 and S3, however, have trivial jump characters [CEJ], so that
det(Frobp : T(S

Q

,Z2) → T(S
Q

,Z2)) = +1, for every prime p. This explains why
only traces (2 mod 4) occur for S2 and only traces (1 mod 4) for S3.

Finally, for every p ≡ 3 (mod 4), Tr(Frobp : T(S4,Q,Z2) → T(S4,Q,Z2)) = 0 holds
exactly. This is the spike in [EJ21, Figure 3]. On the other hand, for p ≡ 1 (mod 4),
one has det(Frobp : T(S4,Q,Z2) → T(S4,Q,Z2)) = +1, so that only traces (2 mod 4)
are allowed. The non-occurrence of traces (14 mod 16) seems to be explained only
by the fact that b = 2 is very small.

6. A more advanced example – A surface with real multiplication

This section is devoted to the surface S5 from Example 2.2.v).

6.1 (Properties of the surface). i) This surface is [EJ21, Example 5.8]. Also, S5 is
isomorphic to the specialisation to t = 0 of the family described in [EJ20a, Example
1.5]. In particular, rk Pic(S5,Q) = 16 and S5(C) has real multiplication by Q(

√
5).

ii) The surface S ′
5,Q is a double cover of P2

Q

, branched geometrically over six lines,
any three of which do not have a geometric point in common. Two of these lines are
defined over Q, while the other four are defined over Q(ζ5) and permuted cyclically
by Gal(Q(ζ5)/Q) ∼= Z/4Z.

By Theorem 3.12.a.i) and b), Pic(S5,Q) contains a sublattice of full rank that is
a linear permutation representation of Gal(Q(ζ5)/Q). The underlying permutation
representation has one fixed point and is otherwise the action on pairs of six objects,
two of which are fixed while the others form a 4-cycle. Thus, in total, there are three
orbits of size four each, one orbit of size two, and two fixed points. I.e.,

Tr(σ : Pic(S5,Q)⊗
Z

Q→ Pic(S5,Q)⊗
Z

Q) =






16 , if ord(σ) = 1 ,
4 , if ord(σ) = 2 ,
2 , if ord(σ) = 4 .

(22)

iii) For every good prime p ≡ 2, 3 (mod 5), one has

#S5(Fp) = p2 + 2p+ 1

by [EJ20a, Lemma 6.7]. This means that Tr(Frobp : T(S5,Q,Z2) → T(S5,Q,Z2)) = 0.

iv) In other words, only the good primes p ≡ 1, 4 (mod 5) need consideration in
this example. For these, according to (22) and (8), one has

#S5(Fp) = p2 + Talgp+ Tr(Frobp : T(S5,Q,Z2) → T(S5,Q,Z2))p+ 1 , (23)

for

Talg :=

{
16 , if p ≡ 1 (mod 5) ,
4 , if p ≡ 4 (mod 5) .
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6.2 (The Gal(Q/Q)-action on T(S5,Q,Z2)/2 T(S5,Q,Z2)).
Theorem 3.12.a.i) and b), together with Theorem 3.5, provides an explicit descrip-
tion of T(S

Q

,Z2)/2 T(S
Q

,Z2) as a Gal(Q/Q)-module. The results are as follows.

i) The Gal(Q/Q)-action on Br(S
Q

)2 factors via Gal(Q(ζ5)/Q), which is cyclic of
order four.

ii) With respect to a suitable basis, the action of a generator of Gal(Q(ζ5)/Q)
on Br(S

Q

)2 is given by the matrix
( 1 1 1 0 1 1

0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 0 1
1 1 1 1 1 0

)
.

Thus, the action of the element of order two is given by
( 0 1 0 0 0 0

1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

)
. (24)

iii) By Theorem 3.5, one has T(S
Q

,Z2)/2 T(S
Q

,Z2) ∼= (Br(S
Q

)2)
∨. The action on

T(S
Q

,Z2)/2 T(S
Q

,Z2) is therefore provided by the transposed inverses of the ma-
trices given.

6.3 (The Gal(Q/Q)-action on T(S
Q

,Z2)/4 T(S
Q

,Z2)).
As the Galois action on T(S

Q

,Z2)/2 T(S
Q

,Z2) factors via Gal(Q(ζ5)/Q), the ac-
tion on T(S

Q

,Z2)/4 T(S
Q

,Z2) factors via Gal(K/Q), for K the maximal abelian
extension of Q(ζ5) of exponent 2, ramified only at 2 and the prime above 5. It is
not hard to see that

K = Q(
√
−1,

√
2, ζ5,

√
ζ5 − 1,

√
ζ2
5 − 1) . (25)

Note here that the prime above 5 is (ζ5 − 1). Moreover, the unit group Z[ζ5]
∗ is

generated by the cyclotomic unit
ζ2

5
−1

ζ5−1
= ζ5 + 1, together with (−ζ5).

6.4 (Adaptation of the point counting algorithm).
Suppose a good prime p ≡ 1, 4 (mod 5) to be given. Then one determines the
conjugacy class Frobp in Gal(K/Q). As before, there is a small prime l such that
Frobl is the same class. By the construction ofK, this means that the action of Frobp

on T(S5,Q,Z2)/4 T(S5,Q,Z2) agrees with that of Frobl. Moreover, one may look up
the value (Tr(Frobl : T(S5,Q,Z2) → T(S5,Q,Z2)) mod 16) in a precomputed table.
Let us now distinguish between the two cases.

Case 1: p ≡ 4 (mod 5). Then Frobp ∈ Gal(Q(ζ5)/Q) is the element of order two.
Correspondingly, the action of Frobp on T(S5,Q,Z2)/2 T(S5,Q,Z2) is not trivial, cf.
(24), but that of Frob2

p is. Hence, Theorem 4.1.b) applies and shows that

Tr(Frobp : T(S5,Q,Z2) → T(S5,Q,Z2)) ≡
Tr(Frobl : T(S5,Q,Z2) → T(S5,Q,Z2)) (mod 8) .
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Thus, the precomputation determines (Tr(Frobp: T(S5,Q,Z2)→T(S5,Q,Z2))mod 8),
and therefore (#S5(Fp) mod 8), when taking (23) into consideration. Combining this
with a point count modulo p, one may easily compute (#S5(Fp) mod 8p).

Recall at this point that S5(C) has real multiplication by a quadratic number field.
This causes the algebraic monodromy group to be significantly smaller than usual.
Concretely, the Zariski closure of the image of Gal(Q/Q) in Aut(T(S

Q

,Q2)) is
isomorphic to [O3(Q2)]

2, and not to O6(Q2). Moreover, as p ≡ 4 (mod 5), the
action of Frobp lies in [O−

3 (Q2)]
2 [EJ21, Theorem 5.9]. In particular, two of the six

eigenvalues are bound to be (−1).
Denoting the other eigenvalues by λ1, . . . , λ4, formula (23) takes the form

#S5(Fp) = p2 + (2 + λ1 + λ2 + λ3 + λ4)p+ 1 .

As |λi| = 1, for i = 1, . . . , 4, this shows that (#S5(Fp) mod 8p) uniquely determines
#S5(Fp), except for the two edge cases λ1 = · · · = λ4 = 1 and λ1 = · · · = λ4 = −1,
which seem indistinguishable. However, the second of these does not occur, due to
the Lemma below.

Lemma 6.5. Let p be an odd prime number and S a K3 surface over Fp as in 2.1.
Suppose that Frobp acts on the six lines as a permutation of order at most two.
Then, among the six eigenvalues of Frobp on the orthogonal complement of π∗[l],
π∗[e12], . . . , π∗[e56] in H2

ét(SFp
,Z2(1)), at least one is not equal to (−1).

Proof. Assume the contrary. Then, for the arithmetic Picard group of S, one has
Pic(S)⊗

Z

Q ⊆ Qπ∗[l] ⊕Qπ∗[e12] ⊕ · · · ⊕Qπ∗[e56]. An orthogonal basis is provided
by the class π∗[l], the classes π∗[eij] being invariant under Frobp, and the classes
π∗[eij] + π∗[ei′j′] formed by an orbit of size two. The self-intersection numbers of
these are equal to 2, (−2), and (−4), respectively, so that the discriminant of Pic(S)
as a quadratic space is (±1) or (±2) ∈ Q∗/Q∗2.

On the other hand, according to the Artin–Tate formula [Mi, Theorem 6.1], the
value of this discriminant may be calculated as ±p·

∏
λ6=1(1 − λ), the product being

taken over all eigenvalues λ 6= 1 of Frobp on H2
ét(SFp

,Z2(1)), counted with multiplic-
ities. However, according to our assumptions, every eigenvalue 6=1 of Frobp is (−1),
which enforces the discriminant of Pic(S) to be (±p) or (±2p). A contradiction. �

Case 2: p ≡ 1 (mod 5). This case is easier. One has that Frobp ∈ Gal(Q(ζ5)/Q) is
the neutral element. Consequently, the action of Frobp on T(S5,Q,Z2)/2 T(S5,Q,Z2)
is trivial, so that Theorem 4.1.a) applies and shows

Tr(Frobp : T(S5,Q,Z2) → T(S5,Q,Z2)) ≡
Tr(Frobl : T(S5,Q,Z2) → T(5, S

Q

,Z2)) (mod 16) .

I.e., the precomputed value fixes (Tr(Frobp : T(S5,Q,Z2) → T(S5,Q,Z2)) mod 16)
and therefore (#S5(Fp) mod 16). Combining this with a modulo p point count,
one may compute (#S5(Fp) mod 16p). And, similarly to (4), this is enough to com-
pletely determine #S5(Fp). Note that, in formula (23), the trace of Frobp is bounded
by 6 in absolute value.
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Remark 6.6. The information on (#S5(Fp) mod 8p) suffices to determine #S5(Fp)
in Case 2, as well. Indeed, real multiplication causes two further eigenvalues (+1),
so that one has #S5(Fp) = p2 + (18 + λ1 + λ2 + λ3 + λ4)p + 1. This shows that,
again, only the two edge cases seem indistinguishable. But 22 eigenvalues (+1) are
impossible for a K3 surface over the prime field Fp, for p 6= 2, [Ar, (6.8)].

Remark 6.7 (Practical performance). The total running time for S5 was around
58 hours, which is a lot more than for the other examples. Cf. Remark 5.8.

The difference comes mainly from the p-adic algorithm. In fact, for a surface
given by W 2 = f6(T1, T2, T3) as a double cover of P2

Fp
, the number of Fp-rational

points modulo p depends only on the coefficient at T p−1
1 T p−1

2 T p−1
3 of f

(p−1)/2
6 .

Therefore, for f6 = T1T2T3f3, one only needs to compute the coefficient at
T

(p−1)/2
1 T

(p−1)/2
2 T

(p−1)/2
3 of f

(p−1)/2
3 . Our implementation makes systematic use of

this simplification, which applies to S1, S2, S3, and S4.
However, the equation of S5 only has the form f6 = T1T2f4, so that the coefficient

at T
(p−1)/2
1 T

(p−1)/2
2 T p−1

3 of f
(p−1)/2
4 is asked for. This computation is more elaborate,

so the last example took about five times longer.

Remarks 6.8 (Results). a) The main purpose of our computations for this example
was to generate the histogram in [EJ21, Figure 4] to the left.

b) Moreover, our computations show that, in this particular example, the trace
Tr(Frobp : T(S5,Q,Z2) → T(S5,Q,Z2)) modulo 8 or 16, respectively, is determined
by the conjugacy class Frobp in a field a lot smaller than the field K deduced from
the general theory, cf. formula (25). In fact, the following holds.

i) If p ≡ 4 (mod 5) then

Tr(Frobp : T(S5,Q,Z2) → T(S5,Q,Z2)) ≡{
6 (mod 8) , if (−1) is a square in Fp ,
2 (mod 8) , otherwise .

ii) If p ≡ 1 (mod 5) then

Tr(Frobp : T(S5,Q,Z2) → T(S5,Q,Z2)) ≡




6 (mod 16) , if (−1), (ζ5 − 1), and (ζ2
5 − 1) are squares in Fp ,

2 (mod 16) , if (−1) is a square, but
ζ2

5
−1

ζ5−1
= ζ5 + 1 is a non-square in Fp ,

14 (mod 16) , otherwise .

Note that these conditions are independent of the choice of the fifth root of unity
ζ5 ∈ Fp. Indeed, replacing ζ5 by ζ2

5 , one finds that only
ζ4

5
−1

ζ5−1
= −ζ4 = −(ζ2)2 needs

to be identified as being a square.
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7. The very general picture

Consider the class of all K3 surfaces over Q, or even a different kind of surfaces,
but suppose that H1

ét(SQ,Z2) = 0 and that Pic(S
Q

) is computable as a Gal(Q/Q)-
module. Is it then, at least in principle, possible to devise a 2-adic point count-
ing algorithm for such a class of surfaces? This, in essence, means to make the
Gal(Q/Q)-module T(S

Q

,Z2)/2
m T(S

Q

,Z2) explicit, for a suitable value of m.
A major portion of the information on the Gal(Q/Q)-module structure is encoded

in the splitting field Fm of T(S
Q

,Z2)/2
m T(S

Q

,Z2). This is, by definition, the
smallest field allowing a commutative diagram

Gal(Q/Q)
̺

//

��
��

Aut(T(S
Q

,Z2)/2
m T(S

Q

,Z2))

Gal(Fm/Q)

̺Fm

33
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

,

for ̺ the natural action. One has that Fm is an algebraic number field, for every
n ∈ N.

7.1. One might want to determine the splitting fields Fm inductively. The induction
step from m to m+ 1 should work as follows.

One has that {A ∈ GLn(Z/2m+1
Z) |A ≡ En (mod 2m)} is an elementary abelian

2-group, hence Fm+1/Fm is always an abelian field extension of exponent 2. More-
over, the smooth specialisation theorem [SGA4, Exposé XVI, Corollaire 2.3] implies
that Fm+1/Fm is unramified at any prime of odd residue characteristic, except pos-
sibly those lying above the prime numbers at which S has bad reduction. In other
words, an upper bound for Fm+1 is provided by a certain ray class field of Fm, which
is, at least in principle, amenable to computation.

7.2. On the other hand, the splitting field F2 of T(S
Q

,Z2)/2 T(S
Q

,Z2) is a number
field of degree ≤# GLt(F2) = 2t(t−1)/2(2t − 1) · · · (21 − 1), for t := dimT , unramified
at every odd prime of good reduction of S. There are only finitely many such number
fields, according to Minkowski’s Theorem [Ne, Theorem III.2.13], and to determine
all of them is, in theory, effective. Thus, the composite of all these fields is an upper
bound for F2.

Such an approach, however, appears practically unfeasable under virtually all cir-
cumstances. Thus, it seems that, generally speaking, the base case is more complex
than the induction step.

Remark 7.3. In order to settle this issue with the base case for the particular family
of K3 surfaces considered in this article, we decided to apply the isomorphism from
Theorem 3.5. This requires to make Br(S

Q

)2 explicit, for which there is no obvious
general approach either. The work of A.N. Skorobogatov [Sk, Theorem 1.1] we
use is limited to double covers. Furthermore, it provides, in general, only an exact
sequence, which might be non-split in certain cases.
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Remark 7.4. Only a subfield of Fm, the trace field, is relevant for the algorithm.
This is a minimal field K, for which there is a commutative diagram

Gal(Fm/Q)
̺Fm

//

��
��

Aut(T(S
Q

,Z2)/2
m T(S

Q

,Z2))

Tr
��

Gal(K/Q) //
Z/2m

Z

.

The 2-adic overdetermination phenomenon established in Section 4 indicates that
[K : Q] may be significantly smaller than [Fm : Q].
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