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Abstract. We confirm the conjecture made in [5] that the smallest powerful
integer expressible as a sum of two coprime fourth powers is

3088257489493360278725196965477359217 = 173 · 739931692 · 3388377132

= 4275111224 + 13220492094,

and that in fact this is the only solution up to 3.6125 ·1037. We also conjecture
that

1061853595348370798528584585707993395597624934311961270177857

= 173 · 384016189212 · 3828330340448501772

= 5721324183698984 + 9884786794723734

is the second-smallest solution. Finally, we suggest one approach that might
allow our result to be extended past 3.6125 · 1037.

1. Introduction and motivation

An integer N is said to be “powerful” if every prime factor p | N satisfies p2 | N
(so N is a multiple of some power of p higher than p1). More generally, N is
“k-powerful” for some k ≥ 2 if pk | N for every prime factor p | N .

Several classical Diophantine equations have been reconsidered with one or more
squares (or k-th powers) replaced by powerful (or k-powerful) numbers. Since the
k-powerful numbers contain the k-th powers as a subset of positive density,1 one
might expect that replacing a k-th power by a k-powerful number would make
the solutions more numerous but only by a constant factor; but new behavior can
arise. For example, while there are clearly no consecutive squares other than 0, 1,
one can use Fermat–Pell equations to get infinite sequences of powerful numbers
x2 ± 1, such as 32 − 1, 172 − 1, . . . (from powers of (1 +

√
2)2) and 6822 + 1 =

53612, 9302492−1 = 53832042, . . . (from powers of (2+
√

5)5). In each such sequence
the number of terms up to x is asymptotically proportional to log x, as one expects
from the density of powerful numbers. Likewise, while there are no nonzero integer
solutions of x3 + y3 = z3, one can get infinite families of powerful N = x3 + y3

with x, y coprime (as we must assume, here and later, to avoid trivial constructions
such as (x, y,N) = (m(m3 +n3), n(m3 +n3), (m3 +n3)4). For example, the elliptic
curve x3 +y3 = 9z3 yields infinitely many examples starting with 9193 +(−271)3 =
2335733. In general an elliptic curve of rank r yields a sequence with ∼ c logr/2 x
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1For each k there exists αk with 1 < αk <∞ such that the number of k-powerful N ∈ [1, x] is

asymptotic to αkx
1/k as x→∞. For example, α2 = ζ(3/2)/ζ(3) = 2.173+. See [8, pp.407ff.].
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terms up to x. The curve x3 + y3 = 9z3 has rank 1, but there is at least one known
curve x3 + y3 = Az3 of rank 11 (see [6]), giving ∼ c log11/2 x; this exceeds the
probabilistic estimate, which again grows only as a multiple of log x.2

In the present paper we study the similar equation x4 +y4 = N with x, y coprime
and N powerful. There are no nontrivial solutions with N = z2, but again we can
find infinite families of solutions by replacing the rank-zero elliptic curve x4+y4 = z2

by suitable twists, which here are curves Cb : x4 + y4 = bz2. The first twist that
works is C17, which is an elliptic curve of rank 2; and the highest rank known is
6,3 for b = 695946499681 = 17 · 16481 · 2483953, so the number of solutions up to x
grows at least as a multiple of log3 x.

For this equation, though, already the first Cb that works requires N = bz2 to
be quite large when we impose the condition b | z that makes N powerful: even
with a rank-2 group of rational points, the smallest N coming from C17 is
(1) N1 := 4275111224 + 13220492094 = 173 739931692 3388377132 > 3 · 1036.

Further Cb produced more solutions, but all were larger than N1 and even larger
than the second example
(2) N2 := 5721324183698984 + 9884786794723734 > 1.06 · 1060

coming from C17. This led the first-named author to guess that N1 may be the
smallest solution. But this seemed quite hard to check: searching either over pairs
(x, y) or over powerful N < N1 would take computational work on the order of
N

1/2
1 , quite exorbitant when N1 > 3 · 1036. Searching over b < N

1/3
1 may seem

more promising, but processing that many elliptic curves is still daunting. A Math-
Overflow question [5] generated interest and discussion but no solution or improved
strategy.

Not long after posting, the first-named author noticed that this problem has
some special features that made it possible to build on previous theoretical and
computational work to reduce the number of candidate b’s to a tiny fraction of
N

1/3
1 . In particular, 2b would have to be one of the rare even “congruent numbers”

that are congruent to 2 mod 8. Such numbers had already been computed up to
1012 [7], so we could use the resulting list to exclude b < 5 · 1011. This might
not seem large enough because (5 · 1011)3 < N1, leaving us short by a factor of
almost 25. Fortunately it is a classical result4 that x4 + y4 = b3 has no solution in
positive integers with gcd(x, y) = 1. It soon follows that if N = x4 + y4 is powerful
then N ≥ 172b3, and now a list of candidate b < 5 · 1011 would suffice to reach N1
and even further, to 172(5 · 1011)3 = 3.6125 · 1037.

The list of candidate b would still be substantial, and it was not clear how
efficiently each one might be processed. Some years later, he suggested this problem

2A Fermat–Pell equation leads to the unit group in Z[
√
D], which has rank 1; but in that

setting the logarithmic height grows linearly, not quadratically, so rank 1 suffices to get c log x.
The special case x2 − 1 = y2 leads to the ring “Z[

√
1]” ∼= {(m,n) ∈ Z2 : m ≡ n mod 2}, which

has zero divisors and a finite unit group (m,n) = (±1,±1).
3While there are known curves Cb whose Jacobians Eb (see (4) below) have rank 7, none

of them has a rational point. Indeed it was not easy even to find one of the known rank-6
curves Eb (see [13]) for which Cb has a rational point. For b = 695946499681, such a point is
(x, y, z) = (1470038250, 2196674399, 6337763194489).

4Attributed to Lucas in [4, p.83]. They refer to page 630 of Dickson’s History of the Theory
of Numbers, which in turn cites papers published in 1873 and 1877. These papers are not easy to
locate, so we later give a self-contained proof.
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to the second-named author for an undergraduate research project. After some
work and further refinements, the second-named author found and implemented a
strategy that was efficient enough to complete search up to 3.6125 · 1037 in a few
days on a laptop CPU. Since no new examples turned up, this proved that indeed
N1 is the smallest powerful sum of two coprime positive fourth powers, and the
unique one up to 3.6125 · 1037.

The rest of this paper is organized as follows. In the next section we show that
b must satisfy several conditions that, taken together, leave only 66551915 possible
candidates with b < 5 · 1011. In the following two sections, we treat 67 “small”
candidate b’s (all but 5 of those with b < 104) using the arithmetic of elliptic
curves, and then the remaining “large” b’s using unique factorization in Z[i] and
the arithmetic of conic curves. Finally we suggest how our techniques might be
extended to go beyond 3.6125 · 1037.

2. The 66551915 candidate b’s

We seek solutions to the Diophantine equation N = x4 + y4 where 1 ≤ x < y
with (x, y) = 1 and N powerful. Every powerful number N > 0 can be written as
N = a2b3 for integers a, b > 0, and this representation is unique if we require b to
be squarefree. Given such b, we consider the genus-1 curve
(3) Cb : x4 + y4 = bz2,

and then find all positive integer solutions of (3) satisfying b | z with z up to some
bound. By a classical theorem of Fermat, b > 1. If N is sum of two coprime
fourth powers, then every odd prime factor p | N is congruent to 1 mod 8, because
x/y mod p has order 8 in the group (Z/pZ)∗. Moreover, if N is even then N ≡
2 mod 16, so in particular N cannot be powerful. Therefore we need only consider
values of b that are products of distinct primes, each congruent to 1 mod 8.

In fact, we have a further restriction on b, which dramatically reduces the compu-
tational resources required. If the curve Cb has a rational point then it is isomorphic
over Q with its Jacobian, which we can identify with
(4) Eb : Y 2 = X3 − 4b2X

using classical invariant theory.5 It is well-known that the rational torsion group of
such a curve Eb is exactly Eb[2] = {∞, (0, 0), (2b, 0), (−2b, 0)} (see [10, X.6.1(a)]).
Hence if Eb is to have a finite rational point with y 6= 0 then Eb must have positive
rank.

Now the curve Eb has positive rank iff 2b is a congruent number. For b odd,
the L-function of Eb has sign ±1 according as b ≡ 1 mod 4. Fortunately for us, all
our b are +1 mod 4, so all our Eb should have even rank, and the vast majority
should have rank zero: it is expected that among all b < M with b ≡ +1 mod 4,
only M3/4±o(1) have Eb of positive rank as M →∞. We are also fortunate that the

5See for instance [3, p. 89]. We could tell a priori that Eb must have j = 1728, because Cb

has an automorphism (x : y : z) 7→ (x : iy : z) that multiplies a holomorphic differential ω by i;
also Eb must have all 2-torsion rational: a 2-torsion point on the Jacobian of Cb corresponds
to an involution of Cb that fixes ω, and here the involutions (x : y : z) 7→ (x : −y : −z) and
(x : y : z) 7→ (y : x : −z) are defined over Q. Thus Eb must be Y 2 = X3 − β2X for some β.
We can pin down β by noting that β2 is quadratic in the coefficients of b(x4 + y4), so β must
be proportional to b. Then it is enough to compute (or cite) a single example such as b = 1 to
recover β = 2b.
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list of such b with 2M = 1012 (which is more than enough for us to verify that the
proposed solution is smallest) was computed in 2010 [7]. More precisely, that paper
reports on a computation that determines which Eb have positive analytic rank (via
Tunnell’s criterion [12]); but by Kolyvagin — or indeed Coates–Wiles [1], since Eb
has complex multiplication — if Eb has positive arithmetic rank then it must have
positive analytic rank. Hence we need only consider those b such that 2b appears in
the list computed by [7]. This reduces by nearly two orders of magnitude the list of
possible b values: there are about 5 · 1011/π2 > 5 · 1010 squarefree b < 5 · 1011 such
that b ≡ 1 mod 8, and about 6 · 109 of those are the product of primes congruent
to 1 mod 8, but only 66551915 of those satisfy Tunnell’s criterion. We call these
the “candidate b” values. We thank Mark Watkins and William Hart for finding
and making available to us their list of 561217401 squarefree 2b < 1012 such that
b ≡ 1 mod 8 and Eb has positive analytic rank.

3. Small b

Even when the curve Cb : x4 + y4 = bz2 has a rational point, and is thus
birational with its Jacobian Eb, we find it easier to use instead the 2-isogenous
curve E′b : Y 2 = X3 + b2X, which admits a map

(5) Cb → E′b, (x : y : z) 7→
(
b(x/y)2, b2xz/y3)

that does not depend on a choice of rational point on Cb, or even on the existence
of such a point.

The conjecture of Birch and Swinnerton-Dyer, together with the heuristic that
the leading term of L(E, s) at s = 1 should not grow faster than N

o(1)
E , suggests

that the regulators of Eb and E′b grow no faster than b1/2+o(1). In our setting
these curves have rank at least 2, so their Mordell–Weil groups would typically be
generated by points of canonical height at most b1/4+o(1). This is large enough that
we cannot hope to find generators for typical b < 5 · 1011, but small enough that
a 2-descent sufficed to determine the full Mordell–Weil group for most candidate
b < 104. Each curve E′b has a rational 2-torsion point (0, 0), so Cremona’s mwrank
[2] easily found all the relevant principal homogeneous spaces. For 67 of the 72
candidate b < 104, mwrank found two independent points on E′b and proved that
they together with the 2-torsion point (0, 0) generate E′b(Q). For such b we can
then use small combinations of these generators to quickly list all points in E′b(Q)
up to a given height, and check whether any of those pull back under (5) to points
on Cb with b | z. The exceptional b were
(6) 4721, 4777, 6497, 6577, 9881;
we treat those b using the methods of the next section.6

To know how far we must search in the Mordell–Weil group of each E′b, we must
bound the difference between the canonical height ĥ and the logarithmic `2 height
h. We shall define the logarithmic `2 height so that the image of a point (x, y, z)
on Cb has height 1

2 log(x4 + y4), whence a bound on h corresponds directly to a

6Two of these b, namely 4721 and 6577, are prime; in each case mwrank found only one
generator. The remaining three factor: 4777 = 17 · 281, 6497 = 73 · 89, 9881 = 41 · 241; for each
of those b, mwrank found two independent points but could not prove that the rank is only 2. We
later checked this by running mwrank on the curves Eb, each of which has 3 choices of 2-isogeny
descent; in each case at least one of these descents yielded an upper bound of 2 on the rank.
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bound on N = e2h. To make this work we scale the coordinates of E′b to obtain the
model E : bY 2 = X3 + X, so that (x, y, z) maps to

(
(x/y)2, xz/y2). This has the

additional advantage of making the duplication formula, and thus the bounds on
ĥ− h, independent of b. Explicitly, for P on E we have X([2]P ) = f(X(P )) where

(7) f(X) := (X2 − 1)2

4X(X2 + 1) .

We define the `2 height as follows.

Definition 1. For a rational number m/n in lowest terms, we define its `2 height
and logarithmic `2 height by

H(m/n) :=
√
m2 + n2 and h(m/n) := logH(m/n)

respectively. For a rational point P = (X,Y ) 6= ∞ on the elliptic curve bY 2 =
X3 +X, we define its logarithmic `2 height by h(P ) := h(X).

We shall need the following lemma adapted from [11] §3.3.
Lemma 1. Let φ(X), ψ(X) ∈ Z[X] be relatively prime polynomials with leading
coefficients cφ and cψ respectively. Define d := max{deg φ,degψ}, and for a rational
number m/n in lowest terms, define

Φ(m,n) := ndφ(m/n) and Ψ(m,n) := ndψ(m/n).
Let F (X), G(X) ∈ Q[X] be any polynomials such that F (X)φ(X) +G(X)ψ(X) ≡ 1.
Let R the smallest positive integer such that RF (X), RG(X) ∈ Z[X], and let D :=
max{degF,degG}. Then

(8) gcd(Φ(m,n),Ψ(m,n)) | R gcd(cφ, cψ)d+D.

In particular, if either φ or ψ is monic then gcd(Φ(m,n),Ψ(m,n)) | R.

Proof. Without loss of generality, assume that deg φ = d and degψ = e ≤ d,
and write φ(x) =

∑d
j=0 ajx

d−j and ψ(x) =
∑e
j=0 bjx

e−j for integers aj , bj , where
a0 = cφ and b0 = cψ. Fix a rational number m/n in lowest terms, and define γ =
γ(m,n) := gcd(Φ(m,n),Ψ(m,n)); it suffices to show that γ | Rad+D

0 . Substituting
X = m/n in the identity F (X)φ(X) +G(X)ψ(X) ≡ 1 and multiplying throughout
by Rnd+D gives

nDRF
(m
n

)
Φ(m,n) + nDRG

(m
n

)
Ψ(m,n) = Rnd+D,

so certainly γ | Rnd+D. But expanding

Rnd+D−1Φ(m,n) = Rnd+D−1(a0m
d + a1m

d−1n+ · · ·+ adn
d)

= Rnd+D−1mda0 +Rnd+DC

for some integer C, we conclude that
γ | gcd(Rnd+D−1mda0, Rn

d+D) = Rnd+D−1 gcd(mda0, n) | Rnd+D−1a0,

where in the last step we have used that gcd(m,n) = 1. Similarly, we can expand
Rnd+D−kΦ(m,n) for 1 ≤ k ≤ d + D to inductively show that γ | Rnd+D−kak0 . At
the last stage, we get γ|Rad+D

0 . �

Note that R here divides the resultant res(φ, ψ), but in general can be smaller.
We prove:
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Proposition 1. For all rational points P 6= ∞ on bY 2 = X3 + X, the difference
between the canonical and logarithmic `2 height is bounded by

(9) −4
3 log 2 ≤ ĥ(P )− h(P ) ≤ 1

3 log 2.

Proof. We use Tate’s formula ĥ(P ) = limn→∞ 4−nh([2n]P ). (The height h that
appears in this formula is the logarithmic `∞ height associated to the Weierstrass
model Y 2 = X3 + b2X, and thus differs from our logarithmic `2 height by at most
log b + O(1); since this difference is divided by 4n, it does not affect the limit as
n→∞.) Now apply Lemma 1 to the numerator and denominator of the duplication
formula (7); that is, take φ(X) = (X2−1)2 and ψ(X) = 4X2(X2 +1). Then d = 4,
and we find the identity(

3X2 + 4
4

)
φ(X) +

(
−3X3 + 5X

16

)
ψ(X) = 1,

so that R = 16 works. This bounds the possible cancellation between numerator
and denominator of f(m/n) = (m2 − n2)2/(4m(m2 + n2), and we conclude that

H(f(X))
H(X)4 ≥ 1

16

√
Φ(m,n)2 + Ψ(m,n)2

(m2 + n2)2 = 1
16 + 1

4

(
X

X2 + 1

)2
≥ 1

16 .

for all X = m/n ∈ Q∗ with gcd(m,n) = 1.
Thus h([2]P ) − 4h(P ) ≥ −4 log 2 for all P . For the inequality in the other

direction, we use

H(f(X)) ≤
√

Φ(m,n)2 + Ψ(m,n)2 = H(X)4 + 4m2n2 ≤ 2H(X)4

(in the last step H(X)4 = (m2 + n2)2 ≥ 4m2n2 by the AM-GM inequality). Thus
h([2]P )− 4h(P ) ≤ log 2. Therefore,

h([2]P )− 4h(P ) ∈ [−4 log 2, log 2].

The telescoping sum

4−nh([2n]P )− h(P ) =
n∑
k=1

4−k(h([2k]P )− 4h([2k−1]P ))

shows that since
∑∞
k=1 4−k = 1/3, we have

ĥ(P )− h(P ) ∈=
[
−4

3 log 2, 1
3 log 2

]
,

which is equivalent to the claimed inequality (9). �

Suppose then that (x, y, z) is a primitive point on Cb : x4 + y4 = bz2 with
x4 + y4 ≤ Nmax. Then its image P : (X,Y ) = (x2/y2, xz/y2) on E : bY 2 = X3 +X
satisfies

(10) h(P ) = 1
2 log(x4 + y4) ≤ 1

2 logNmax =⇒ ĥ(P ) ≤ 1
2 logN1 + 1

3 log 2.

Since the canonical height is independent of the model, the bound (10) applies also
on the minimal Weierstrass model E′b of E on which we computed Mordell–Weil
generators. We thus have the following strategy:

Strategy 1 (small b). Given a squarefree positive integer b, to find all the
solutions to x4 + y4 = bz2 with x4 + y4 ≤ Nmax:
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(1) first find all points P on E′b : Y 2 = X3 + b2X with ĥ(P ) ≤ h0 :=
1
2 logNmax + 1

3 log 2, and then
(2) for each P = (X,Y ), check if X/b is a rational square. If not, discard P .

If it is, write
√
X/b = x/y with (x, y) = 1, and let z = Y y3/(b2x). This

(x, y, z) is a solution, and every solution in this range arises in this way.
In our example, if Nmax = N1 then this bound becomes h0 = 1

2 logN1 + 1
3 log 2 <

42.25, while Nmax = N2 makes h0 ≈ 70. This algorithm relies on our ability
to efficiently find all points up to that height on the curve E′b. For each of the
candidate b < 104 other than the five exceptions (6), we used Cremona’s mwrank
to find generators, and gp-pari’s qfminim to find all vectors of norm at most 42.25
in the Mordell–Weil lattice. (Actually qfminim lists only nonzero vectors, and only
one of each pair {P,−P}; but the origin and the 2-torsion point T = (0, 0) give
trivial solutions, while P and −P give the same solution, and solutions associated
to P = (X,Y ) and P + T = (1/X,−Y/X2) are related by swapping x with y.)
Doing this with h0 = 70 and each of our 67 small b, we obtained:
Theorem 1. Suppose x4 + y4 = bz2 for positive integers b, x, y, z such that b | z,
gcd(x, y) = 1, and x4 + y4 ≤ 22/3e140 ≈ 1.0044 · 1061. If b ≤ 104 and b is not one
of the five values listed in (6) then b = 17 and {x, y} = {427511122, 1322049209} or
{572132418369898, 988478679472373}.

This is also why we conjecture that N2 is the second-smallest powerful integer
that can be expressed as the sum of two coprime fourth powers.

4. Large b

For b > 104, or b among the few values of b < 104 for which mwrank did not
find the full Mordell–Weil group of E′b, we use another approach, starting from the
factorization x4 +y4 = (x2 + iy2)(x2− iy2) in Z[i]. In effect this is a further descent
step; even if we cannot find enough points to generate E′b(Q), we will still efficiently
find all points in the range corresponding to x4 + y4 ≤ Nmax = 3.6125 · 1037.

Recall that, for fixed b that is a product of distinct primes congruent to 1 mod 8,
we seek positive integer solutions (x0, y0, z0) to x4 + y4 = bz2 with (x0, y0) = 1 and
b | z0. Since b is odd, x0 and y0 have opposite parity, so x2

0 + iy2
0 and x2

0− iy2
0 ∈ Z[i]

are coprime. Therefore, x2
0 + iy2

0 = βζ2 with β, ζ ∈ Z[i] some primitive Gaussian
integers with norms b and z respectively. (If b is a product of k > 0 distinct primes,
then there are 2k−1 such β up to units and conjugation.) For fixed β = µ+ iν, we
write ζ = r + is and obtain a solution to the system of equations

(11) x2 = Q1(r, s), y2 = Q2(r, s)

where

(12) Q1(r, s) := µ(r2 − s2)− 2νrs, Q2(r, s) := 2µrs+ ν(r2 − s2).

Note also that in this case (x0, y0) = 1 implies that (r, s) = 1 as well. Each of the
equations in (11) is a plane conic. If either of them is locally obstructed at some
place then β = µ+iν is impossible. Assume then that both conics are unobstructed,
so that each conic is rational, and thus admits a rational parametrization by the
Hasse–Minkowski theorem.

Say we parametrize x2 = Q1(r, s) by homogeneous quadratic polynomials r =
r(t1, t2), s = s(t1, t2), x = x(t1, t2) with integer coefficients on the projective line
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with coordinates (t1 : t2). Then Q2(r, s) is a homogeneous quartic in t1, t2, and we
seek coprime t1, t2 that make it a square.

We can efficiently find all such (t1, t2) up to some height bound B using Stoll’s
program ratpoints, recently ported into gp as hyperellratpoints. (This still takes time
essentially quadratic in B, but with a very small constant.) This is not sufficient be-
cause r(t1, t2) and s(t1, t2) may have common factors even when gcd(t1, t2) = 1. To
avoid this difficulty we replace the single parametrization (r(t1, t2), s(t1, t2), x(t1, t2))
by a finite list of parametrizations (ri(t1, t2), si(t1, t2), xi(t1, t2)) such that for every
solution (x0, r0, s0) of x2 = Q1(r, s) with gcd(r0, s0) = 1 there is at least one i and
some t1, t2 ∈ Z such that

(r0, s0) = ±
(
ri(t1, t2), si(t1, t2)

)
.

[For each prime factor ` of discQ1 there is a finite set I` of such (r, s) ∈ Z`[t1, t2],
corresponding to `-adic components of x2 = Q1(r, s); the (ri, si) are indexed by∏
`|discQ1

I`. In our setting, discQ1 = 4(µ2 + ν2) = 4b is squarefree but for the
factor 22, and we find |I`| = 2 for each odd ` while |I2| = 1. For example, if
b = 17 and (µ, ν) = (1, 4) we can take (r1, s1) = (2t1t2 + 5t22, 2t21 + 2t1t2 + t22) and
(r2, s2) = (2t1t2 +8t22, t21 + t22). Documentation of the code that computes (ri, si, xi)
is in preparation and will appear elsewhere.] For each i, let

Φi := xi(t1, t2)2 and Ψi(t1, t2) := Q2
(
ri(t1, t2), si(t1, t2)

)
.

It follows from x2
i ≡ Q1(ri, si) that

Φi(t1, t2)2 + Ψi(t1, t2)2 = bΞi(t1, t2)2 where Ξ(t1, t2) := ri(t1, t2)2 + si(t1, t2)2.

From a solution (x0, y0, z0) as above, we get a point

(x0, r0, s0) = (x(m,n), r(m,n), s(m,n))

by the procedure explained above, and hence a point (Y, T ) = (y0/n
2,m/n) on the

elliptic curve Y 2 = Ψ(T, 1). Conversely, this point lets us recover (x0, y0, z0) by
taking x0 = x(m,n) and y0 = n2Y . Note that in this case x2

0 = Φi(m,n) and
y2

0 = Ψi(m,n) are coprime, whence

H

(
x2

0
y2

0

)
=
√
x4

0 + y4
0 =

√
Φ2
i (m,n) + Ψ2

i (m,n) =
√
bΞi(m,n).

Therefore,

H(x2
0/y

2
0)

H(m/n)4 = b1/2 Ξi(m,n)
(m2 + n2)2 = b1/2

[
ξi(z)

(z2 + 1)2

]
z=m/n

≥ b1/2Ci,

where ξi(z) := Ξi(z, 1) is a quartic with integer coefficients and

Ci := inf
z∈R

ξi(z)
(z2 + 1)2

is a positive real number because r(z, 1) and s(z, 1) share no common complex
roots: any common root would also be a root of x(z, 1), and then (r, s, x) would
be proportional to a degree-1 parametrization, which is not possible for a conic. It
follows that

H
(m
n

)4
≤ 1
b1/2Ci

H

(
x2

0
y2

0

)
≤ (N1/b)1/2

Ci
,
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and so it suffices to search for all points on the elliptic curve Y 2 = Ψi(T, 1) of height
at most

max{|m|, |n|} ≤ H
(m
n

)
≤ N1/8

1 b−1/8C
−1/4
i .

We can estimate Ci quickly to high numerical precision, and so we have the following
strategy:

Strategy 2 (large b). Given a squarefree positive integer b, to find all the
solutions to x4 + y4 = bz2 with x4 + y4 ≤ Nmax:

(1) Find all7 µ, ν ∈ Z such that 0 ≤ µ ≤ ν ∈ Z and µ2 + ν2 = b.
(2) For each of these (µ, ν), define Q1(r, s) and Q2(r, s) by (12). Check whether

either of the plane conics x2 = Q1(r, s) and y2 = Q2(r, s) is locally ob-
structed at some place; if so, discard this choice of (µ, ν).

(3) If neither is locally obstructed, use qsolve to produce a finite list of parametriza-
tions (x(t1, t2), r(t1, t2), s(t1, t2)) of x2 = Q1(r, s) of the form explained
above.

(4) For each parametrization on this list, define ξi(z) := ri(z, 1)2 +si(z, 1)2 and
calculate Ci to sufficient precision that N1/8

maxb−1/8C
−1/4
i can be estimated

to within an integer.
(5) Use hyperellratpoints to find all points (Y, T ) on the elliptic curve Y 2 =

Ψi(T, 1) := Q2(ri(T, 1), si(T, 1)) of `∞ height at most the upper bound on
N

1/8
1 b−1/8C

−1/4
i from (4). Given a point (Y, T ), write T = m/n in lowest

terms and define x0 := x(m,n) and y0 = n2Y . Then (x0, y0, b
−1/2

√
x4

0 + y4
0)

is a solution of the required form. Conversely, every such solution arises in
this way.

It is easy to write a one-line algorithm in gp that uses LLL lattice reduction to
efficiently find all such pairs (µ, ν). Checking local obstructions are easy in gp, and
both qsolve and hyperellratpoints are efficient enough to allow us to go to Nmax = N1
to prove the claim asserted in the abstract.

To keep this proof self-contained, we conclude by showing the result, attributed
to Lucas, that x4 + y4 = b3 has no solution in positive coprime integers; recall that
we need this to ensure that a ≥ 17 in x4 + y4 = a2b3.
Proposition 2. There are no positive integers x, y, b such that gcd(x, y) = 1 and
x4 + y4 = b3.

Proof. Assume on the contrary that such x, y, b exist. Necessarily b is odd because
if 2 | b then 8 | b3 = x4 + y4, so x, y are both even, contradicting gcd(x, y) = 1.
As before we factor over Z[i], finding (x2 + iy2)(x2 − iy2) = b3, with the factors
x2 ± iy2 relatively prime because b is odd. Hence each of x2 ± iy2 is a cube in Z[i],
say
(13) x2 ± iy2 = (m± in)3,

because Z[i] has unique factorization and all its units are cubes. Expanding (13)
gives
(14) x2 = m(m2 − 3n2), y2 = n(3m2 − n2).
In particular m and n are relatively prime because any common factor would be
inherited by x2 and y2. It follows that each of m,n,m2− 3n2, 3m2−n2 is a square

7As observed before, if b is a product of k distinct primes congruent to 1 mod 8 then there are
2k−1 such pairs (µ, ν).
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multiplied by ±1 or ±3. Moreover m,n are of opposite parity (else x, y are both
even); switching x with y if necessary we may assume that m is odd and that n is
even, and thus divisible by 4 because 4 | x2. This in turn makes m2−3n2 ≡ 1 mod 8
while 3m2−n2 ≡ 3 mod 8, so m2−3n2 and thus also m is a square, while 3m2−n2

and thus also n is 3 times a square. Writing (m,n) = (M2, 3N2), we deduce that
M4−27N4 and M4−3N4 are both squares. We claim that neither of these can be a
square unless N = 0, which would also make y = 0. Indeed each of M4−27N4 = z2

and M4− 3N4 = z2 is an elliptic curve with 2 rational points at infinity that differ
by a 2-torsion point; Weierstrass models are respectively y2 = x3 + 108x and
y2 = x3 + 12x. In each case a 2-descent proves8 that there are no other rational
points. �

To take our analysis past N ≤ 3.6125 · 1037 = 172(5 · 1011)3, we would need
either an extension of the Hart–Tornaŕıa–Watkins computation [7] to 2b > 1012 or
an analogue of Proposition 2 for x4 + y4 = a2b3 for a = 17, 41, 73, 89, 97, . . .. The
former approach would require extensive computation, though the result would
be of independent interest and could find other uses. The latter approach runs
into a new theoretical difficulty: we still obtain formulas for x2, y2 analogous to
(14), but these cubics no longer factor. It may be possible to instead give complete
parametrizations of coprime (X, y, b) such thatX2+y4 = a2b3, analogous to those of
[9, p.234, B.1.1] for a = 1. Such a parametrization yields a short list of homogeneous
polynomials X(m,n) of degree 12, for each of which one could use hyperellratpoints
to find all solutions of x2 = X(m,n) with x < N

1/4
max in time about N1/12

max .
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