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Abstract

We describe an algorithm that we used to compute the q-expansions of all weight 2 cusp forms of prime level
at most 2,000,000 and dimension at most 6. We also present an algorithm that we used to verify that there
was only one cusp form of dimension 7 or more per Atkin-Lehner eigenspace for prime levels between 10,000
and 1,000,000. Our algorithm is based on Mestre’s Méthode des Graphes, and involves supersingular isogeny
graphs and Wiedemann’s algorithm for finding the minimal polynomial of sparse matrices over finite fields.
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1 Introduction
Let S2(p) be the space of weight 2 cusp forms of prime level p. We say that the dimension of a newform of
S2(p) is the degree of the number field its Hecke eigenvalues generate, or, equivalently, the size of its Galois orbit.
There have been many efforts from computational number theorists to create databases with information about
the newforms of S2(p); we highlight the Antwerp tables [6], Cremona’s database of elliptic curves [15], and the
LMFDB [24]. The LMFDB builds on the previous two, and currently lists the q-expansions of every newform of
S2(p) of dimension g at most 20 and level at most 10,000 [3].

In this paper, we describe an algorithm that we used to compute the q-expansions of all newforms with g ≤ 6
and p < 2,000,000 up to the Sturm Bound, and also used to verify that there were no eigenforms with g ≥ 7 and
10,000 < p < 1,000,000 besides one factor of high dimension per Atkin-Lehner eigenspace. For each level p, our
algorithm runs in time O(p2+ε) and space O(p1+ε).

In the field of arithmetic statistics there is a lot of interest in understanding how various properties of these
eigenforms are distributed. This is partly because modular forms are interesting in their own right, but also
partly because standard modularity conjectures [18] predict that, for each genus g factor of the modular jacobian
J0(p), there is an associated weight 2 newform of level p and dimension g. The genus 1 case of elliptic curves
has been studied extensively, and is one of the most important topics in modern number theory. The association
between elliptic curves and 1-dimensional modular forms is a theorem [39, 36, 8], and the literature contains con-
jectures and theorems for how many related invariants are distributed, notably ranks [29, 4], Selmer groups [5],
torsion subgroups [21], and other numbers which appear in the Birch and Swinnerton-Dyer formula [30]. Gener-
alizations of these theorems to genus 2 or more are far out of reach for the most part, and in many situations it is
poorly understood what the correct generalizations would even be. In particular, merely predicting the number
of genus g factors of J0(p) has not been done whenever g ≥ 2, whereas there are well established conjectures for
the number of elliptic curves with bounded conductor [10, 37]. In light of this gap in understanding, databases
of newforms of S2(p) are very useful: they give a way to observe generalizations of phenomena which occur in
the genus 1 case, and they also allow one to formulate conjectures about the statistics of these objects. In [26],
for instance, Martin computes the dimensions of the eigenforms of S2(p) for p < 60000 and uses this data to
formulate conjectures related to counts of eigenforms of fixed dimension.

The main idea in our algorithm is from Mestre’s Méthode des Graphes [27]. In Mestre’s work, he relates the
q-expansion of weight 2 newforms of prime level to “supersingular isogeny graphs”. The supersingular `-isogeny
graph over Fp is the graph whose vertices are supersingular j-invariants over Fp, and whose edges are `-isogenies.
These graphs have recently been of independent interest because of their applications to cryptography [11, 22, 19].
The relationship Mestre highlights depends on a trace formula: the action of the Hecke operator T` on the space
S2(p) can be represented as the adjacency matrix of the supersingular `-isogeny graph. We find simultaneous
eigenvectors of these matrices, and then use a formula fromMestre’s work to compute the associated q-expansions.

Some of the building blocks of our algorithm come from more general-purpose techniques. In particular, we
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use Wiedemann’s algorithm for finding the minimal polynomial of a sparse matrix over a finite field [38], Brent
and Kung’s algorithm for fast power series composition [7], and a well known dynamic programming algorithm
for solving the subset sum problem [14].

We implemented most of the algorithm in Sage. We used cython to multiply vectors by sparse matrices, and we
used c++’s NTL package when doing power series manipulations. We ran our code on the Oklahoma University
Supercomputing Center for Education & Research.

2 Acknowledgments
I’m extremely grateful to Noam Elkies for both suggesting I work on this problem, and for telling me about
many of the ideas and techniques used in this paper. I thank Kimball Martin for many helpful discussions
regarding ways to use the data, and for running and managing the computations. The computing for this
project was performed at the OU Supercomputing Center for Education & Research (OSCER) at the University
of Oklahoma (OU). I thank Drew Sutherland for help in adding the data to the LMFDB. I thank David Roe for
helping me write some of the code. This work was done under Simons Collaboration grant number 550031.

3 Background

3.1 Wiedemann’s algorithm
We use [38] as a reference for what we call “Wiedemann’s algorithm”. Given an n × n nonsingular matrix M
over a finite field F , Wiedemann gives a probabilistic algorithm for finding the minimal polynomial µ of M .
Wiedemann’s algorithm is one of the major building blocks of the algorithm presented in this paper. See section
6 for details.

Let u be a vector in Fn, and let i ∈ [1, n] ∩ Z be one of the indices of the coordinates of u. The key idea
in Wiedemann’s algorithm is that the sequence ui, (Mu)i, (M

2u)i, . . . will satisfy a recursion relation, and that
recursion relation will, for most choices of u and i, give the minimal polynomial µ.

For a given choice of u and i, computing the sequence ui, (Mu)i, (M
2u)i, . . . , (M

ru)i takes time O(rω), where
ω is the number of nonzero entries in M . Wiedemann then uses the following:

Proposition 3.1. If µ(t) =
∑n
k=0 µnt

n is the minimal polynomial of M , then, for any vector u, we have

n∑
k=0

µnM
ku = 0.

As a consequence of proposition 3.1, we know that the sequence ui, (Mu)i, (M
2u)i, . . . , (M

ru)i satisfies a recur-
sion relation of length at most n. To determine what the recursion relation is, we’ll need a number of terms at
least double the recursion length. Thus, we can take r = 2n. In our application, M will have O(n) nonzero
entries, so we’ll compute the sequence ui, (Mu)i, (M

2u)i, . . . , (M
2nu)i in time O(n2).

Wiedemann then uses an algorithm of Berlekamp-Massey to find the coefficients of the recursion relation of the
sequence ui, (Mu)i, (M

2u)i, . . . , (M
2nu)i. This takes time O(n2). See [28] for a description of the Berlekamp-

Massey algorithm in terms of continued fractions. One step in this algorithm involves writing 1
µ(t) as a power

series. If M is not invertible, then µ(t) will be divisible by t, making it impossible to do this. It’s possible to
circumvent this problem in a number of ways. We chose to modify our matrices so that they would be invertible
(see section 6.1), but Wiedemann gives a modification of his algorithm for this case in [38], and it’s also possible
to modify the Berlekamp-Massey algorithm directly.
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3.2 Newforms
We give [16] as a reference for this section. Define Γ0(p) to be the group

Γ0(p) :=

{(
a b
c d

)
∈ SL2(Z) : c = 0 mod p

}
.

The group Γ0(p) acts on the upper half-plane H := {x+ iy : x ∈ R, y ∈ R>0} via Möbius transformations:(
a b
c d

)
z :=

az + b

cz + d
.

A weight 2 modular form on Γ0(p) is a holomorphic function f : H→ C which satisfies the relation

f

((
a b
c d

)
z

)
= (cz + d)2f(z)

for every z ∈ H and every
(
a b
c d

)
∈ Γ0(p). Weight 2 modular forms on Γ0(p) form a finite-dimensional complex

vector space.

Because
(

1 1
0 1

)
is in Γ0(p), we have f(z + 1) = f(z). It follows that modular forms have Fourier expansions,

i.e. there exist complex numbers an(f) such that

f(z) =

∞∑
n=0

an(f)e2πinz.

The space S2(p) of cusp forms is the subspace of these modular forms which have a0 = 0. Throughout this paper
we use the shorthand q := e2πiz, and we’ll call these Fourier expansions q-expansions. We’ll write an instead of
an(f) when the modular form f is clear from context.

The Hecke operators are linear operators Tn indexed by positive integers n which act on the space of mod-
ular forms as

am(Tnf) =
∑

d|gcd(m,n)

d · amn/d2(f).

The Hecke operators commute with one another, and hence they are simultaneously diagonalizable. Thus, there
exist modular forms f with a1 = 1 which, for all n simultaneously, satisfy the relations

Tnf = anf.

Modular forms with these properties are called newforms. They form a basis for the space S2(p).

In [34], Sturm proves the following:

Theorem 3.2 (Sturm bound). If f and g are weight 2 newforms of level p and an(f) = an(g) for all n ≤ bp+1
6 c,

then f = g.

There’s are analogous results for other weights and levels as well.

There is a linear operator wp called the Atkin-Lehner involution which acts on S2(p). This operator com-
mutes with all of the Hecke operators, so newforms are also eigenforms of the Atkin-Lehner involution. As
suggested by the name, the Atkin-Lehner involution is an involution. Thus, if f is a newform, then wpf = ±f ,
and S2(p) decomposes into two Atkin-Lehner eigenspaces (of roughly equal size; see [25]).
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3.3 La Méthode des Graphes
The supersingular j-invariants over Fp are the j-invariants of the elliptic curves defined over Fp which are
supersingular (i.e. their endomorphism ring is an order in a quaternion algebra). It’s known that there are
b p12c+ 0, 1, or 2 supersingular j-invariants over Fp, and that they’re all defined over Fp2 [32]. The supersingular
`-isogeny graph over Fp is the directed multigraph whose vertices are the supersingular j-invariants over Fp, and
whose edges correspond to `-isogenies over Fp between the associated elliptic curves. These graphs have been
and continue to be studied extensively [23, 35, 11, 22, 19], in part because of their potential applications to
post-quantum cryptography.

As described in [20, §2,5], [27], and [17], one description of the action of the Hecke operator T` on S2(p) is
as the adjacency matrix of the supersingular `-isogeny graph over Fp. This connection involves a trace formula
and an equivalence of categories between supersingular elliptic curves and orders in quaternion algebras.

As a consequence of the representation of T` as the adjacency matrix of the supersingular `-isogeny graph
over Fp, there is a bijection between newforms f of S2(p) and vectors v = (vj)j with coordinates indexed by the
supersingular j-invariants over Fp which are simultaneous eigenvectors of all the Hecke operators T`. Mestre [27]
uses this bijection to produce the identity of power series∑

j

vjj

 f(q)
dq

q
=
∑
j

vj
dj(q)

j(q)− j
mod p,

where

• j(q) is the modular j function,

• p is any prime above p in the number field generated by the Hecke eigenvalues a`, and

• the sums are over the supersingular j-invariants over Fp.

The Weil bound for f states that |an| < 2
√
n, so for n� p2 this equality of power series is enough to know the

values of an exactly. Since the Sturm bound is O(p), this identity is enough to distinguish newforms.

4 Overview of the algorithm
The algorithm is broken into five sections:

• Section 5: Computing the action of T2 on S2(p).

• Section 6: Computing the characteristic polynomial of T2 modulo some small auxiliary prime.

• Section 7: Determining the eigenvalues of degree 6 or less T2, and finding eigenbases over Z whenever
they’ll correspond to newforms of dimension 6 or less.

• Section 8: Computing q-expansions using Mestre’s formula.

• Section 9: Verifying that only one high genus factor per Atkin-Lehner eigenspace exists.

In section 5, we compute a representation of the action of T2 on S2(p), or, more precisely, its action on each
Atkin-Lehner eigenspace, by constructing a supersingular isogeny graph. We use “modular polynomials” to find
edges, and explore the graph using a breath first search.

In section 6, we compute the characteristic polynomial χν of T` modulo some small auxiliary prime ν. The
main ingredient in this step is Wiedemann’s algorithm [38] for computing minimal polynomials of sparse matri-
ces defined over finite fields. This part of the algorithm contributes to the leading term in the overall asymptotic
time complexity.

5



In section7, we use the characteristic polynomial χν to find the eigenvalues and the eigenvectors of T` which
correspond to low degree factors of its characteristic polynomial χZ over Z. Our method for “lifting eigenspaces”
in this way is based on the heuristic that each low degree factor of χZ has an associated eigenbasis made up of
vectors whose coordinates are small.

In section 8, we use a formula from Mestre’s Méthode des Graphes to get the q-expansion of the newforms
in terms of a power series involving the previously computed eigenvectors. In evaluating this formula, we used
an algorithm from [7] for composing power series.

Finally, in section 9, we find the degrees of the irreducible factors of χZ. This allows us to know how J0(p)
decomposes as a product of Abelian varieties. As we mentioned before, we verified that, for 104 < p < 106, there
was only one factor per Atkin-Lehner eigenspace which had dimension 7 or more. This part of the algorithm uses
a modified version of a well known dynamic programming algorithm for solving the subset-sum problem [14]. It
is also a leading term in the asymptotic time complexity, and in practice is the most computationally expensive
part of our algorithm, but it is also optional: the q-expansions of all newforms associated to factors of J0(p) of
dimension at most 6 can be computed independently of this verification that only two other irreducible factors
per level exist.

5 Computing the action of T` on S2(p)

For a given prime `, we generate two directed weighted multigraphs, G+
` and G−` , whose adjacency matrices are

representations of the action of T` on the + and − Atkin-Lehner eigenspaces of S2(p) respectively.

The supersingular j-invariants over Fp are all defined over Fp2 , and it’s convenient to pick a generator of Fp2
which has trace 0 because it simplifies the part of the algorithm described in section 8. Let σ be the nontrivial
element of Gal(Fp2/Fp). Pick some arbitrary ordering < of the supersingular j-invariants over Fp. The vertices
of G+

` are the pairs (j, jσ) with j < jσ, and the vertices of G−` are the pairs (j, jσ) with j ≤ jσ.

The graph G+
` has a weight 1 edge from (j1, j

σ
1 ) to (j2, j

σ
2 ) for each `-isogeny from j1 to j2 and for each `-

isogeny from jσ1 to jσ2 , and has a weight −1 edge from (j1, j
σ
1 ) to (j2, j

σ
2 ) for each `-isogeny from j1 to jσ2 and for

each `-isogeny from jσ1 to j2.

The graph G−` has a weight 1 edge from (j1, j
σ
1 ) to (j2, j

σ
2 ) for each `-isogeny from j1 to j2, j1 to jσ2 , jσ1 to

j2, and jσ1 to jσ2 .

Constructing these graphs is done in two steps: finding a starting vertex (section 5.1), and exploring the graph
(section 5.2).

5.1 Finding a starting vertex
Let j ∈ Z be the j-invariant of an elliptic curve over Q with complex multiplication, and let D be the discriminant
of the associated imaginary quadratic field. The reduction j mod p is a supersingular j-invariant if D is not a
square mod p [9]. Thus, over 99% of the time, the reduction of one of the 13 supersingular j-invariants over Q
will be a supersingular j-invariant over Fp. We use this as our starting vertex in these cases.

If p is such that every D is a square mod p, then we use code from Arpin, Camacho-Navarro, Lauter, Lim,
Nelson, Scholl, and Sotáková to get the starting vertex [1].

5.2 Exploring the graph
For each prime ` there is a modular polynomial φ`(x, y) ∈ Z[x, y] with the property that φ`(j, y) has a zero at
y = j′ of order equal to the number of `-isogenies from j to j′ [35]. To generate the graphs G+

` and G−` , we do
a breadth first search, finding the roots of φ`(j, y) at the vertex (j, jσ) at each step. Because φ` has coefficients
in Z, the roots of φ`(jσ, y) are the Galois conjugates of the roots of φ`(j, y). We also make use of the fact that,
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beyond the first vertex, we know at least one of the roots of φ`(j, y), reducing the degree of the polynomial we
have to solve by 1. Thus generating G±` requires finding the roots in Fp2 of one polynomial of degree `+ 1 and
O(p) polynomials of degree `.

In our implementation we take ` = 2, but later in the algorithm it is sometimes necessary to compute the
action of T` for ` ≥ 3. We do this without making use of any information gained while computing the action
of T2, because in practice this ran the fastest. We tested a different algorithm which made use of the fact that
if there’s an `1-isogeny from j to j1, and an `2-isogeny from j to j2, then there necessarily exists a j′ which is
both `1-isogenous to j2 and `2-isogenous to j1, but our implementation took longer to evaluate the corresponding
modular polynomials at all the neighbours of j1 and j2 than to find the roots of the modular polynomials directly.

6 Computing the characteristic polynomial of T2 mod ν

The next step of our algorithm for computing q-expansions is computing the characteristic polynomials of the
adjacency matrices of the graphs G±` (which we’ll denote T` in a slight abuse of notation). Computing the
characteristic polynomial over Z directly appears to be infeasible. Instead we compute modulo some small
arbitrary auxiliary prime ν, and use an algorithm from Wiedemann [38] with some small modifications and
additions. The changes to Wiedemann’s algorithm that we make serve two purposes: some of them result in
speedups for our problem specifically, and others are needed to guarantee that we find all q-expansions. In this
section we’ll outline these changes.

6.1 Shifting eigenvalues
To compute the characteristic polynomial of T2, we first compute the characteristic polynomial of T2 + kI for
some integer k, and then make a change of variables. We do this for two reasons: to try and avoid singular
matrices, and to give another parameter to modify in the random algorithm.

Wiedemann’s algorithm as described in [38] is significantly more involved for singular matrices. In our case,
if there’s a newform in S2(p) with a2 = 0, then the matrix representation of T2 will be singular over Z. To
avoid these we instead work with the matrix T2 + kI for k > 3. The matrix T2 over Z has one eigenvalue of 3,
and the others are guaranteed to be real and at most 2

√
2 in absolute value. Thus T2 + kI is guaranteed to be

nonsingular over Z whenever k > 3. The reduction of T2 + kI modulo ν might end up being singular anyway.
We discuss this in section 6.2.

6.2 Varying parameters
Wiedemann’s algorithm is a random algorithm, and, for any given random input, fails a non-negligible amount
of the time. Our purposes give us the freedom to vary two parameters which would be fixed in other situations:
the shift k (see section 6.1) and the modulus ν. We got significant speedups by tweaking our algorithm to vary
these parameters while also varying the random inputs.

Overall, our implementation of Wiedemann’s algorithm takes 4 inputs:

• a random starting vector u,

• a random coordinate i,

• a shift k, and

• a modulus ν.

To choose a random starting vector, we take the zero vector and set 50 random entries to 1. We found that
setting only one entry to 1 causes the algorithm to fail more often.

The random coordinate i which we use for the Berlekamp-Massey part of the algorithm is chosen uniformly
at random.
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Even though the matrix T2 + kI is guaranteed to be nonsingular over Z whenever k > 3, the reduction mod ν
might happen to be singular, essentially “by chance”. In this case, the Berlekamp-Massey part of the algorithm
will be given a power series which is not invertible. When this happens, we increment the shift k in addition to
choosing new values of v and i.

The cases which are the most computationally intensive, by a wide margin, are cases where the characteris-
tic polynomial of T2 has repeated factors. The runtime of our implementation of Wiedemann’s algorithm is
proportional to the multiplicity of the most frequently occurring factor (see section 6.3), and, if the repeated
factors are ones which might be reductions of factors of the characteristic polynomial over Z, then we’ll have to
run the very expensive part of the algorithm which attempts to lift eigenspaces of dimension larger than 1 (see
section 7). Genuine repeated factors of the characteristic polynomial Z are quite rare. Thus, we’ve found that
the fastest approach is to run Wiedemann’s algorithm for at most 2 random u’s, and, if the algorithm fails for
both choices, to change our small prime ν in case the failure was caused by a spurious repeated factor. After
changing ν, we increase the maximum number of choices of u, so that the algorithm does eventually find genuine
high dimensional eigenspaces. Every time we change ν, we have to recompute all of our iterates, so this results
in a significant slowdown for levels which do have high dimensional eigenspaces, but there are very few of these.

6.3 Getting the characteristic polynomial from the minimal polynomial
For our purposes, it’s important to find not just the minimal polynomial of T2 (which is what Wiedemann’s
algorithm as described in [38] yields), but the full characteristic polynomial. We need to do this for two reasons.

First, we know the degree of the characteristic polynomial (because we know the dimension of S2(p)), but
not the degree of the minimal polynomial. Wiedemann’s algorithm has some chance to fail to find the minimal
polynomial, and when it does so, it outputs a polynomial which properly divides the minimal polynomial, and
does not detect that it has failed to find the full minimal polynomial. We want to provably find all Galois
orbits of S2(p), so it’s necessary for us to be able to detect when the algorithm fails. By instead computing the
characteristic polynomial, we can guarantee that the algorithm has succeeded by checking the degree.

Second, a repeated factor of the characteristic polynomial of T2 over Z indicates the presence of multiple Galois
orbits of newforms with the same a2. If we were to only compute the minimal polynomial of T2, then there
is some chance we would compute the q-expansion of only some of these newforms. In practice, this would be
unlikely but not impossible; we elaborate on this in more detail in section 7.

Given the minimal polynomial of T2, we use two techniques to produce the characteristic polynomial: com-
paring with known top coefficients (6.3.1), and checking eigenspace dimensions (6.3.2).

6.3.1 Comparing with known top coefficients

The coefficient of the second-highest degree term of the characteristic polynomial of a matrix M is equal to
−tr(M). Similarly, the coefficient of the third-highest degree term of the characteristic polynomial is given by
the expression [33] ∑

1≤i<j≤dim(M)

MiiMjj −MijMji. (1)

Computing the trace of any matrix M takes a time of only O(dim(M)1+ε), and evaluating the expression (1)
can be done in time O(dim(M)2+ε). Furthermore, because the matrix T2 is sparse and nearly symmetric, these
quantities can be computed more quickly. Expressions similar to the trace and (1) exist for other coefficients as
well, and, while these would take too long to compute for general matrices, may be efficiently computable for
sparse symmetric matrices like T2. We haven’t investigated this, but it would likely lead to a small improvement
in the running time of our algorithm.

If the characteristic polynomial is of degree at most 2 more than than the degree of the minimal polynomial, and
if the coefficients of the 3 leading terms of both polynomials are known, then the ratio of these two polynomials
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can be found from an elementary calculation. We do this to find the characteristic polynomial whenever possible.
Moreover, note that this trick still works even if the missing factors don’t divide the minimal polynomial, so it
also helps in some cases where Wiedemann’s algorithm fails to find the minimal polynomial.

6.3.2 Checking eigenspace dimensions

This section of the overall algorithm is used only after Wiedemann’s algorithm has been tried for 3 or more initial
random starting vectors u, which we’ll label u1, . . . , un. We stored the values of T k2 ui for 0 ≤ k ≤ dim(T2) and
1 ≤ i ≤ n (or, more precisely, the first 1000 entries of these vectors; see section 6.4). Let µ(t) denote the highest
degree polynomial that’s been returned by Wiedemann’s algorithm thus far (so µ is a candidate for the minimal
polynomial of T2). Finding all the roots of µ takes time O(p1+ε) using the Fast Fourier Transform (henceforth
“FFT”) [13]. Then, given a root λ of µ, the vector

vi,λ :=
µ(T2)

T2 − λ
ui

is an eigenvector of T2 with eigenvalue λ. Given the iterates of ui, computing the first 1000 entries of vi,λ takes
time O(p1+ε). The dimension of the span of the vectors vi,λ is at most the dimension of the λ-eigenspace (and
it’s very likely that these dimensions will be equal, provided the number of iterates n is at least the dimension of
the eigenspace). This allows us to give lower bounds for the multiplicity with which linear factors of the minimal
polynomial occur in the characteristic polynomial. In practice, the additional linear factors found with this trick,
in combination with the trick from section 6.3.1, are usually enough to determine the characteristic polynomial
of T2.

6.4 Storing iterates
To implement our version of Wiedemann’s algorithm, we needed information about the iterates T k2 u of the
random starting vector u for three different purposes.

1. We computed these iterates as T k2 u = T2(T k−12 u), so every coordinate of the previous iterate is stored
temporarily.

2. To run the Berlekamp-Massey part of Wiedemann’s algorithm, we used the ith coordinate of T k2 u for all
k < 2dim(T2) + 10, for an arbitrary i (which we chose uniformly at random).

3. To implement the trick from section 6.3.2, we used the first 1000 coordinates of T k2 u for k < dim(T2). Here
the choice of 1000 is largely arbitrary; we just need to take enough coordinates to avoid spurious linear
dependencies.

The runtime of the entire algorithm depended heavily on computing these iterates quickly. Asymptotically,
computing characteristic polynomials is the dominant term of the overall time complexity, and computing the
iterates T k2 u was the step in our implementation of Wiedemann’s algorithm that took the longest. Thus, we
wanted to compute and store as few of the iterates as possible. Moreover, we structured our code so that python
and Sage governed the algorithm at the top level, while computationally intensive sections were run in faster lan-
guages; these iterates were computed using cython directly. Because our code interfaced different programming
languages, we needed to use the cython data to generate corresponding python data. If we store too much data,
then this translation can take a significant amount of time. In the extreme case of storing the entire iterates
T k2 u, the translation took much longer than the actual computation of the data in cython.

The other important reason to be judicious in how much of the iterates are stored is concern for the space
complexity of the algorithm. We wanted our algorithm never use more than O(p1+ε) memory, and to accomplish
this we were only able to store a constant number of coordinates per iterate.

7 Finding Z-eigenbases
Let χZ be the characteristic polynomial of T2 over Z, and χν its reduction modulo ν. At this point, the algorithm
has computed χν for one choice of ν. The objective of this section is to determine all irreducible factors of degree
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6 or less of χZ, and, for each factor, an eigenbasis defined over Z and a simultaneous eigenvector (defined over a
number field) for all Hecke operators. Here we use the term “eigenspace” and related terms to mean ker(ρ(T2))
for some irreducible factor ρ of χZ. We’ll need Z-bases of these spaces to use a formula from Mestre’s Méthode
des Graphes, which we’ll discuss in section 8.

If an irreducible factor ρ of χZ divides χZ exactly once, then ρ corresponds to a single Galois orbit of a newform
of S2(p)±, where ± denotes the Atkin-Lehner eigenvalue. If an irreducible factor ρ divides χZ twice or more then
the situation is more complicated. Multiple Galois orbits of newforms with the same a2 lead to repeated factors
of χZ, as do newforms whose Hecke field is of strictly larger degree than the degree of a2. In these cases, Galois
orbits of newforms will correspond to the minimal nontrivial subspaces of ker(ρ(T2)) which are invariant under
the action of every T` simultaneously.

The key idea behind the lifting algorithm described in this section is taking advantage of the heuristic that
the coordinates in the vectors making up the Z-eigenbasis are very likely to be small in absolute value. We pick
some number of “candidate lifts” of an Fν-eigenbasis in which the most common entries are small integers, and
then check directly whether or not our candidate lifts are eigenvectors of T2 over Z. In a large majority of cases,
if ρ does indeed divide χZ, then checking only a handful of candidate lifts is enough to find a Z-eigenbasis.

7.1 Finding eigenvalues
Let {ρi} denote the set of polynomials which occur as the minimal polynomial of a2 of a simple Abelian variety
over F2 of dimension 6 or less. There are 96795 such polynomials, and they can be found in the LMFDB. Every
irreducible factor of χZ of degree 6 or less is necessarily one of these.

To find the irreducible factors of χZ, we first determine which ρi’s divide χν . We do this by iterating over
the set {ρi} and checking for divisibility one by one, but one could use FFT [13] to do this more quickly if
necessary.

It is possible for ρi to divide χν but not χZ. When we find a ρi which divides χν , we attempt to produce
an eigenbasis defined over Z for this factor using a method which we describe in the rest of this section. If we
succeed, this proves that ρi does divide χZ. Our method for producing a Z-eigenspace is not guaranteed to work,
though it almost always does in practice. In the cases where it doesn’t, we compute χν′ for some other small prime
ν′ 6= ν, and see if ρi divides χν′ . If ρi - χν′ , then we’ve proven that ρi - χZ, and, conversely, if ρi - χZ, then there is
guaranteed to be some prime ν′ for which ρi - χν′ (and usually only one additional prime ν′ needs to be checked).

It would be difficult to determine the Galois orbits of size 7 or greater using this approach, because the number
of simple Abelian varieties over F2 of given dimension grows very quickly. In section 9, we describe the algorithm
we used to determine the size of every Galois orbit, including the ones of size 7 or more. For every prime level
between 10,000 and 1,000,000 and each Atkin-Lehner eigenspace, the characteristic polynomial χZ had only
one irreducible factor of degree 7 or more. For prime levels between 1,000,000 and 2,000,000 we computed the
q-expansions of the newforms of degree 6 or less but did not investigate the decomposition of the rest of the
space.

7.2 Lifting 1-dimensional eigenspaces
When an eigenspace is 1-dimensional (which is the case exactly when ρ(t) = t−λ is linear and divides χν exactly
once), our algorithm is fairly straightforward. First, we find an eigenvector v of T2 by computing

v :=
µ(T2)

T2 − λ
u

for some random starting vector u, where µ is the minimal polynomial of T2 on the given Atkin-Lehner eigenspace.
Computing v takes time O(p2+ε), so, for the levels for which require that we attempt to lift eigenspaces, this
is a leading term of the over asymptotic time complexity of our algorithm, and these levels presumably make
up a small but strictly positive proportion of all levels. The computation of v in this way involves successively
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computing the iterates T k2 u = T2(T k−12 u). This computation was done previously in the section of our algorithm
which used Wiedemann’s algorithm, but it was impossible to store these iterates while meeting our goal of having
a space complexity of O(p1+ε). Implementations of our algorithm which can afford to store the iterates from the
Wiedemann section can use those iterates here, saving some time.

With our eigenvector v defined over Fν , we generate our list of “candidate lifts” of v to an eigenvector v̂ de-
fined over Z by guessing that the most likely scenario is that the most common nonzero entry of v̂ is 1, the
second most likely scenario is that the most common entry is 2, and so on. Note that it suffices to check for
strictly positive most common entries, since both v̂ and −v̂ span the Z-eigenbasis.

Let α ∈ Fν denote the most common nonzero entry of v. Then, our candidate lifts are 1
αv,

2
αv, . . . , where

each Fν coordinate of these vectors is lifted to the integer of smallest absolute value in that residue class. As
these candidate lifts are generated, we multiply them by T2 to check directly whether or not they’re eigenvectors,
and return the first candidate lift that is an eigenvector. This lift is guaranteed to have entries with a gcd of 1,
so it spans the Z-eigenspace (a condition which is necessary for the part of the algorithm described in section 8
to succeed). It is also guaranteed to be a simultaneous eigenvector of all the Hecke operators.

Our implementation of this algorithm generates 50 candidate lifts, and then, if no lift to Z has been found,
gives up and declares it has failed to lift the Fν eigenvector. This prompts the algorithm to try a different small
prime ν′ 6= ν, as discussed in section 7.1. We encountered no cases in which a lift existed but was not found.

7.3 Lifting higher dimensional eigenspaces
7.3.1 Finding an Fν-eigenbasis

We begin like we did in the 1-dimensional case, by computing

v :=
µ(T2)

ρ(T2)
u

for some random starting vector u, where µ is the minimal polynomial of T2 on the given Atkin-Lehner eigenspace.
The vector v is in the Fν-kernel of ρ(T2), and is what we’re calling an eigenvector (because it’s an eigenvector
up to Galois conjugacy for the field generated by ρ). The same discussion as that in section 7.2 applies here:
computing this eigenvector is a small but nonzero part of the leading term in asymptotic time complexity, and
the iterates from the Wiedemann component of our algorithm can’t be used to save time in the computation in
our implementation because of space limitations.

Let r denote the multiplicity with which ρ divides χν . If r = 1, then we compute the dimension of the span of
the vectors

v, T2v, T
2
2 v, . . . , T

deg(ρ)−1
2 v.

If the dimension of this span is equal to deg(ρ), then these vectors form an Fν-eigenbasis of the eigenspace. If
this dimension is strictly less than deg(ρ), or if r > 1, then, starting from ` = 3, we compute matrix which
corresponds to the action of T` on the given Atkin-Lehner eigenspace by exploring the supersingular `-isogeny
graph in the way described in section 5, and compute the dimension of the span of the vectors

v, T`v, T
2
` v, . . . , T

rdeg(ρ)−1
` v,

stopping our iteration over ` when this dimension is equal to r deg(ρ). We also periodically recompute v with
a new random choice of u, because it’s possible (but unlikely) that v happens to be a simultaneous eigenvector
of all Hecke operators, which would cause our iteration over ` to never terminate (in principle one could add a
clause in our algorithm to take advantage of this whenever it happened, but in practice this never happened).
In doing this, we find an ` such that all newforms of S2(p)± have distinct a`’s. We need these a`’s to be distinct
later, essentially so that we can separate the Z-eigenbases. Let M denote the dim(S2(p)±) × rdeg(ρ) matrix
whose columns are v, T`v, T 2

` v, . . . , T
rdeg(ρ)−1
` v.
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7.3.2 Finding a Z-eigenbasis for the full ρ-eigenspace

We now make use of our key heuristic that our Z-eigenbases are very likely to be made up of vectors which have
small entries. To do this, we start by making two lists (which we generate as needed, as opposed to storing in
memory):

• M: a list of the most common rows of M with the condition that any rows we add to this list are not in
the span of the rows we’ve added previously, and

• C: a list of “candidate columns”, which are rdeg(ρ)-tuples with small integer entries, ordered in such a way
such that, generally speaking, tuples with smaller entries are listed first.

Our implementation requires us to pick an ordering of the setMrdeg(ρ) × C so that we may iterate over it. We
do this more or less arbitrarily. Experimentally, we found that assigning a “size” to elements of C which was pro-
portional to the sum of squares of the entries, assigning a “size” to elements ofMrdeg(ρ) which was proportional
to the sum of the squares of the inverse appearance frequencies, and then orderingMrdeg(ρ) × C by the product
of these sizes lead to having to check fewer candidate lifts than lexicographic orderings.

We iterate over Mrdeg(ρ) × C. For each element (m, c), let L be the linear combination of columns of M
which yields c when restricted to the rows in m. We then produce a “candidate lift” v̂, which is the vector with
integer entries produced by taking the combination L of the columns of M , and then lifting each coordinate of
the resulting Fν vector to the integer in the appropriate residue class with smallest absolute value. We then
check directly whether or not v̂ is in ker(ρ(T2)). We continue this process until we’ve found rdeg(ρ) linearly
independent candidate lifts. This set of candidate lifts forms a Z-basis of ker(ρ(T2)), but our algorithm requires
a Z-basis for each Galois orbit, so it remains to decompose our Z-basis in this way. We do this next.

7.3.3 Finding a Z-eigenbasis for each Galois orbit

The method we describe in this section for finding a Z-eigenbasis for each Galois orbit is built around the ob-
servation that the action of T` fixes ker(ρ(T2)). This means that each column of T`M can be expressed as a
linear combination of the columns ofM . Let S denote the rdeg(ρ)×rdeg(ρ) integer matrix whose entries are the
coefficients of these linear combinations (which are all small, since T` is given by a matrix with at most 2(`+ 1)
nonzero entries per row, each of which is ±1).

Let χS denote the characteristic polynomial of S, and let h1, h2, . . . denote the minimal polynomials of the
a`’s of the newforms we’re considering. As discussed in section 7.3.1, we chose ` in a way that guarantees that
each of these minimal polynomials is distinct. By construction, we have

χS =
∏
i

hi.

We can then obtain, with some elementary linear algebra, a Z-basis for ker(hi(S)) and a set of eigenvectors of S
(which will be defined over number fields). Taking the linear combinations of the columns ofM whose coefficients
are given by the elements of these Z-bases and eigenvectors then yields the Z-eigenbases and simultaneous
eigenvectors we need. Our implementation requires only one simultaneous eigenvector per Galois orbit, which
we pick in an arbitrary way.

8 Computing q-expansions
Let v be a simultaneous eigenvector of all the Hecke operators whose coordinates are indexed by the supersingular
j-invariants over Fp. In [27], Mestre gives the q-expansion of the associated newform f modulo any prime p above
p in K := Q(a2, a3, . . . ) via an equality of power series involving the q-expansion of the modular j-function j(q):∑

j

vjj

 f(q)
dq

q
=
∑
j

vj
dj(q)

j(q)− j
mod p. (2)
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The Weil bound then allows one to determine a` for all `� p2. Our algorithm uses this formula to compute an
for n up to the Sturm bound.

Section 8.1 gives a version of equation (2) that does computations over Fp using the Z-eigenbases computed
earlier. Sections 8.2 and 8.3 detail how we evaluate the right hand side of (2) efficiently.

8.1 Z-eigenbasis version of Mestre’s identity
We use the simultaneous eigenvector v to compute the values a`1 , a`2 , . . . , a`degK (which might require computing
new Hecke matrices using supersingular isogeny graphs). With each vector uk in the Z-eigenbasis, we evaluate
the right hand side of (2), and let ψk(q) denote the resulting power series. As we’ll discuss in section 8.3, the
power series ψk(q) is guaranteed to be defined over Fp. We write ψk[`] to refer to the coefficient of q` in ψk(q).
Pick a basis {ri} of the ring of integers OK . Write each a` in terms of this basis:

a` =:
∑
i

αi[`]ri.

Then, from (2), it follows that there exist coefficients βi,k ∈ Fp such that, for every `, we have the a linear
combination

a` =
∑
i,k

βi,kψk[`]ri mod p,

so α1[`1] α1[`2] . . .
α2[`1] α2[`2] . . .

...
...

. . .

 =

β1,1 β1,2 . . .
β2,1 β2,2 . . .
...

...
. . .


ψ1[`1] ψ1[`2] . . .
ψ2[`1] ψ2[`2] . . .

...
...

. . .

 mod p. (3)

We solve the matrix equation (3) for the coefficients βi,k (as long as all the matrices involved are invertible;
compute a` for more `’s if there happens to be a linear dependence). We can then find the q-expansion of our
newform as

f(q)
dq

q
=
∑
i

(∑
k

βi,kψk[`]

)
riq

`.

We lift the coefficient
∑
k βi,kψk[`] to Z by ensuring that the Hecke eigenvalues satisfy the Weil bound. Usually

the coefficient lifts to the integer in the residue class of smallest absolute value if one chooses {ri} to be a reduced
basis of OK .

8.2 Computing j(q) mod p

To evaluate the right hand side of (2) up to the Sturm bound, we first need to compute O(p) coefficients of j(q)
modulo p. We compute these coefficients using the identity

j(q) =
E12(q)

(η(q)3)
8 −

82104

691
+ 744, (4)

where E12(q) is the weight 12 classical Eisenstein series (normalized to have constant term 1) and η(q) is the
Dedekind η-function. We chose equation (4) because the function η(q)3 has a “sparse” q-expansion:

η(q)3 =

∞∑
k=0

(−1)k(2k + 1)q
k(k+1)

2 .

Computing the first p terms of the quotient of two power series takes time O(p1+ε) using FFT, and empirically
dividing 8 times by η(q)3 was faster than alternatives, such as dividing by ∆(q) or 24 times by η(q).

In section 8.3 we’ll also need the power series j′(q). Differentiating j(q) takes time O(p1+ε).
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8.3 Fast power series algorithms
8.3.1 Atkin-Lehner eigenspace to Mestre’s formula

The eigenvectors {uk} we computed are indexed by pairs (j, jσ) with j < jσ (in the + space) or j ≤ jσ (in the
− space), where < is the arbitrary but fixed ordering from section 5. To use Mestre’s formula (2), we need to
construct eigenvectors {vk} that are indexed by supersingular j-invariants. Recall that in section 5 we chose
a generator ξ of Fp2 which satisfied ξσ = −ξ. This allows us to construct each vk easily: if j 6∈ Fp we set
vk(j) = uk((j, jσ)) and vk(jσ) = ∓uk((j, jσ)), and if j ∈ Fp we set vk(j) = (1∓ 1)uk((j, jσ)). Then vk is defined
over Z (because uk is), and the sum in (2) is either Galois-invariant or Galois anti-invariant. In the latter case
we then divide by ξ.

8.3.2 Evaluating Mestre’s formula

Evaluating the sum of rational functions of q-expansions in (2) by evaluating each term separately and then then
adding would take time � p2. However, it is possible to evaluate this sum in time O(p

3
2+ε) by doing a “binary

tree decomposition” and using a power series composition algorithm from Brent and Kung [7].

Given constants γ1, . . . , γM and j1, . . . , jM , let P and Q be polynomials such that

P (x)

Q(x)
:=

M∑
i=1

γi
x− ji

.

Define

S(x, y) :=

y∑
i=x

γi
x− ji

.

We compute P and Q recursively as

M∑
i=1

γi
x− ji

= S(1,M)

= S
(
1, M2

)
+ S

(
M
2 + 1,M

)
=
[
S
(
1, M4

)
+ S

(
M
4 + 1, M2

)]
+
[
S
(
M
2 + 1, 3M4

)
+ S

(
3M
4 + 1,M

)]
= . . .

=

M∑
i=1

S(i, i).

We start from the bottom expression and work upwards. At the kth step we compute O
(
M
2k

)
sums of two terms.

Each term at the kth step is a rational function whose numerator and denominator have degreeO(2k). Multiplying
two polynomials of degree d takes timeO(d1+ε) using FFT. Thus, each step takes timeO

(
(2k)1+εM

2k

)
= O(M1+ε).

There are O(logM) steps in this procedure. Thus, computing P and Q takes time O(M1+ε logM) = O(M1+ε).

In the context of our problem, this means that we can, in time O(p1+ε), compute polynomials P,Q of degree
O(p) such that ∑

j

vj
dj(q)

j(q)− j
=
P (j(q))

Q(j(q))
j′(q)dq.

Writing 1
Q(j(q)) as a power series in j(q) with O(p) terms of precision takes time O(p1+ε), and computing the

product R(j(q)) := P (j(q)) 1
Q(j(q)) as a power series in j(q) with O(p) terms of precision also takes time O(p1+ε).

Using [7], we compute the composition R(j(q)) to O(p) terms of precision in time O(p
3
2+ε). Finally, multi-

plying by j′(q)dq takes time O(p1+ε).
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9 Checking for high degree factors of the characteristic polynomial
As mentioned in section 7.1, our algorithm doesn’t find newforms whose a2 has minimal polynomial of degree
7 or more. It’s of value to at least determine the dimensions of all of the newforms of S2(p), even if we can’t
compute all of their q-expansions. This part of the algorithm is by far the most expensive time and space wise,
and is the most technically involved. This part of the algorithm isn’t required for computing q-expansions and
can be omitted.

Our algorithm is designed to try and efficiently determine that there is exactly one irreducible factor of χZ
of degree 7 or more, since this was the case for every prime level between 10,000 and 1,000,000. The approach
we take is based on the straightforward observation that if, for some small prime ν, the characteristic polynomial
χν has no factor of degree d, then χZ cannot have a factor of degree d either. Thus, for each possible degree d
between 7 and 1

2degχZ we aim to find some small prime ν such that χν has no factor of degree d.

9.1 Factoring the characteristic polynomial modulo many small primes
The first part of the algorithm will require finding and factoring characteristic polynomials χν1 , χν2 , . . . of T2
on a given Atkin-Lehner eigenspace modulo many small primes, which we’ll do as needed in what follows. Our
algorithm is slightly more efficient if we replace χνi with χνi divided by all of the irreducible factors of degree
6 or less which we know divide χZ. Factoring polynomials over finite fields has high time complexity in theory,
but experimentally we found that factoring χνi appeared to take time O(p2+ε) in our specific case. This is still
the most significant chunk of the runtime, but it’s not problematically expensive.

The reason factoring is feasible can be explained heuristically. There exists an algorithm based on FFT which
factors polynomials over finite fields in three steps [12]:

1. Eliminating square factors of χνi

2. Factoring χνi into products of irreducible polynomials of equal degree

3. Factoring each of these products of irreducibles of equal degree

The first step is not problematic because we obtain the squarefree part of χνi (which is the minimal polynomial)
directly through Wiedemann’s algorithm. Even ignoring this, eliminating the square factors of χνi can be done
efficiently by computing gcd(χνi , χ

′
νi).

The second step can be done in time O(p2+ε) using FFT.

The third step is the one which is theoretically challenging, but, in practice, it’s very rare that χνi has multiple
factors of the same degree if that degree is large. Thus, we can use Rabin’s irreducibility test [31], which runs
in time O(p2+ε), to determine which of the products from the second step require factoring. The products that
do require factoring end up being products of a handful of small degree factors which can be factored quickly.
There is also never a requirement to use any specific ν, so at worst one could abandon computations with ν’s
that were stuck on this step.

With knowledge of this factorization we can use the algorithm described in section 9.2. We’ve found that,
in our implementation, our algorithm ran more quickly if we only continued using this factorization if it didn’t
have “too many” irreducible factors, with a threshold determined experimentally and in a fairly arbitrary way.

9.2 Sieving possible degrees
Let Ei denote the set subset of [7, 12deg(χZ)] ∩ Z which we have yet to show cannot be degrees of factors of χZ
after running this part of the algorithm for νi. For each i, we determine

1. which elements of Ei occur as the degrees of (not necessarily irreducible) factors of χνi , and,

15



2. for each d in Ei, if there are only “a few” factors of χνi with this degree, we record them to later use in the
part of the algorithm described in section 9.3. We specify what we mean by “a few” later in this section.

Define
Di := {d ∈ Ei : there exists a factor of χνi with degree d}.

Given a factorization of χνi into irreducibles, computing the set Di is a manifestation of the well-studied subset
sum problem. Direct enumeration of all possible combinations of irreducible factors of χνi takes time and space
exponential in the number of irreducible factors and was infeasible in practice. There’s a dynamic programming
algorithm [14] which computes Di in time O(p2) and space O(p), but says nothing about what the corresponding
factors are. We’ll modify this dynamic programming algorithm so that it records which products of irreducible
factors have degree d whenever there are only “a few” such products. Doing this allows us to use the the method
described in section 9.3, which leads to having to compute fewer characteristic polynomials χνi and their factor-
izations. If one chooses, one can only compute Di and never anything about the factors themselves, and then
use the dynamic programming algorithm directly. We’ve found that omitting the method from 9.3 usually takes
longer but requires less space for our implementation.

To compute Di, we create a variable ∆i which will ultimately be the function with domain Di for which ∆i(d)
is either a set of combinations of irreducible factors whose product has degree d, or “null” if this set would have
more than “a few” elements in it. We initialize ∆i as the function with ∆i(0) = ∅ and no other elements in its
domain.

For k = 1, 2, . . . , let hk denote the irreducible factors of χνi . We sort these factors in descending order ac-
cording to their degrees (breaking ties arbitrarily), and compute the partial sums Pk :=

∑
κ≥k hκ. For each k,

let Rk denote the set of elements of Ei which are not yet in ∆i. We iterate over either the domain of ∆i, or the
set

{d ∈ Z : min(Rk)− Pk ≤ d ≤ max(Rk)} ,

whichever is smaller. For each d, if d ∈ dom(∆i), then we check whether or not d+ deg(hk) is in dom(∆i). If it
isn’t, then we set

∆i(d+ deg(hk)) = {H ∪ {hk} : H ∈ ∆i(d), hk 6∈ H}.

If it is, then, if ∆i(d+ deg(hk)) 6= “null”, we compute the set

H′ := ∆i(d+ deg(hk)) ∪ {H ∪ {hk} : H ∈ ∆i(d), hk 6∈ H}.

If H′ is larger than some fixed parameter η given as input to the algorithm, we then replace H′ with “null”. We
took η = 5 in our implementation. Then we update ∆i by setting ∆i(d+ deg(hk)) = H′.

Previously, when we said we wouldn’t find which products of irreducible factors multiplied together to give
factors of the given degree if there were more than “a few” such products, this process of replacing values of ∆i

by “null” whenever the values would have cardinality more than η is the condition we were referring to: at no
intermediate step were there more than η ways of obtaining that intermediate degree. It was necessary to have
some bound of this sort, since otherwise we are directly enumerating all possible products of irreducible factors,
which is infeasible. We chose η = 5 because empirically it was the best balance we found between yielding
non-null values of ∆i and not using excessive memory.

After the iteration over k finishes, we set Ei+1 = Ei ∩ dom(∆i). Moreover, for each d ∈ Ei+1, we store the
values of ∆i(d) whenever they’re not “null”, and then run the part of our algorithm described in section 9.3
before continuing our iteration over i.

9.3 Checking the Weil bound
If θ(t) = td+ θ1t

d−1 + · · ·+ θd is a polynomial which divides χZ, then the coefficients of θ satisfy the Weil bound:

|θj | ≤
(
d

j

)
(2
√

2)j .
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This bound gives us a way to rule out the existence of a lift of a polynomial θ̄(t) ∈ (Z/m)[t] to a factor of χZ: if
θ̄ has a coefficient which has no integer lifts that satisfy the Weil bound, then we know that θ̄ cannot lift to a
factor of χZ. For our range of levels and our choice of small primes ν, this Weil bound condition ends up being
trivial for j ≥ 3, but for j = 1, 2 we use this bound to avoid computing and factoring more χνi ’s than we would
have to otherwise.

For each degree d ∈ Ei, if there are primes νi1 , νi2 , . . . for which

1. all ways to obtain a factor of degree d from a product of irreducible factors of χνik are known, and

2.
∏
k νik is large enough for the Weil bound strategy outlined above to not be trivial,

then we use the Chinese Remainder Theorem on all possible combinations of products of irreducible factors to
produce a list of “candidate factors” modulo m =

∏
k νik . We then use the Weil bound as outlined above on these

candidate factors one at a time to try and rule them out. Even if not all candidate factors can be ruled out,
usually some can, and we remove these candidates so that this method is more likely to succeed as we continue
to iterate over i.

10 Results
We used the algorithm described in this paper to compute the q-expansions of all weight 2 eigenforms of dimension
g ≤ 6 and prime level between 104 and 2 ·106. The q-expansions of forms with level less than 104 were computed
by Best, Bober, Booker, Costa, Cremona, Derickx, Lowry-Duda, Lee, Roe, Sutherland, and Voight [3]. Forms
with g = 1 correspond to elliptic curves, and Weierstrass equations for all elliptic curves of prime conductor less
than 2·109 were computed by Bennett, Gherga, and Rechnitzer [2]. Both of these datasets are in the LMFDB [24].

Below, we tabulate the number of forms of prime level in the ranges [1, 104], [104, 106], and [106, 2 · 106], grouped
by the discriminant ∆ of their Hecke fields and omitting discriminants which don’t appear in our dataset.

Number with prime level in...
g ∆ [1, 104] [104, 106] [106, 2 · 106] Levels
1 1 329 8843 6406 11 . . . 1999957

2

5 158 1900 986 23 . . . 9973, 10103, 10267 . . . 1997773, 1999867
8 37 242 100 29 . . . 9613, 12619, 13537 . . . 1986043, 1991489

13 13 40 6 73 . . . 9967, 15193, 23473 . . . 1773361, 1863347
12 1 14 3 113, 13763, 15083, 15919, 22481 . . . 1493441, 1894043
21 1 3 1 1283, 112289, 329671, 577807, 1670563
17 1 75653

3

49 34 90 30 97 . . . 9857, 12569, 13121 . . . 1929943, 1972423
229 8 20 1 211 . . . 6997, 11197, 14563 . . . 614659, 1972651
81 3 13 127, 3581, 8513, 10753, 35591 . . . 277793, 336551

169 2 6 3 1481, 6569, 22943, 42209 . . . 1221239, 1856201
257 9 6 1 71 . . . 26713, 39089, 224057, 255877, 463249, 581657, 1120969
148 12 6 41 . . . 2341, 14929, 31039, 133117, 319489, 429397, 707801
321 2 1 113, 7057, 86813

4

725 16 5 1 137 . . . 9011, 13681, 14759, 35977, 264919, 794111, 1716109
1957 4 2 47, 223, 863, 2593, 28789, 185599
2777 3 2 197, 359, 1301, 28057, 63607
8768 1 10169

5
70601 2 1 193, 719, 26777

114 1 86161

6 135 1 171713
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