Cyclic extensions of prime degree and their *p*-adic regulators

Tommy Hofmann Technische Universität Kaiserslautern

Yinan Zhang Australian National University

ANTS XIII, 19 July 2018

・ロト・西ト・山田・山田・山下・

Tommy Hofmann and Yinan Zhang Cyclic extensions of prime degree and their p-adic regulators The regulator R(K) of a number field K is an important invariant, providing information on its unit group structure.

Its p-adic analogue $R_p(K)$ was introduced by Leopoldt in his investigation of $p\text{-adic}\ L\text{-functions}.$

Computation of $R_p(K)$ remains difficult, and previous research has been predominantly focused on numerical verification of Leopoldt's conjecture.

In 2016, the authors were able to conjecture and provide heuristics on the distribution of $v_p(R_p(K)))$ for cyclic cubic fields K.

This was based on observations of computational data of $v_p(R_p(K))$ of almost 16 million fields.

We extend this result to a conjecture about all cyclic extensions of odd prime degree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

We use a definition of $R_p(K)$ introduced by Iwasawa, which differs slightly from the usual definition.

Let K be a totally real number field of degree ℓ , $\{\epsilon_i\}$ a p-maximal set of independent units, and $\{\tau_j\}$ the embeddings of K into \mathbb{C}_p . Then the p-adic regulator $R_p(K)$ is given by

$$R_p(K) = \frac{1}{\ell} \det \begin{pmatrix} 1 & \cdots & 1\\ \log_p(\tau_1(\epsilon_1)) & \cdots & \log_p(\tau_\ell(\epsilon_1))\\ \vdots & \ddots & \vdots\\ \log_p(\tau_1(\epsilon_{\ell-1})) & \cdots & \log_p(\tau_\ell(\epsilon_{\ell-1})) \end{pmatrix}$$

This is more costly to compute but maintains the structure of the matrix.

Basic overview:

- **1** Model $R_p(K)$ with the matrix M_ℓ
- **2** Factorise $det(M_\ell)$ as $\prod f_i$
- 3 Count solutions to the equation $\sum v_p(f_i) = v$ for some v

Based on observation of $v_p(R_p(K))$ computed for quintic fields up to $d(K) = 5 \times 10^{31}$ and septic fields up to $d(K) = 10^{42}$.

We note the following about $R_p(K)$:

1 There is a lower bound on $v_p(R_p(K))$: for a prime $p \neq \ell$ we have

$$v_p(R_p(K)) \ge \begin{cases} \frac{\ell-1}{2}, & \text{if } p \text{ is ramified in } K, \\ \ell-1, & \text{if } p \text{ is unramified in } K. \end{cases}$$

2 The matrix whose determinant gives $R_p(K)$ has a fixed structure:

$$M_{\ell} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ X_1 & X_2 & X_3 & \cdots & X_{\ell-1} & X_0 \\ X_2 & X_3 & X_4 & \cdots & X_0 & X_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ X_{\ell-1} & X_0 & X_1 & \cdots & X_{\ell-3} & X_{\ell-2} \end{pmatrix}$$

with
$$X_0 = -\sum_{i=1}^{\ell-1} X_i$$

If $p \neq \ell$, then there exist $a \in \overline{\mathbb{Q}}_p^{\ell-1}$ such that $v_p(R_p(K)) = v_p(M_\ell(a)).$

Tommy Hofmann and Yinan Zhang

These suggest that there may be a connection between the distribution of the valuations of the *p*-adic regulators in cyclic ℓ -extensions and that of det (M_{ℓ}) .

Let $P_{\ell,p} \colon \mathbb{Z}_p^{\ell-1} \to \mathbb{R}, a \mapsto v_p(\det(M_\ell(a)))$ be a random variable, and $\mathcal{K}_p^{\mathrm{T}}(D)$ be the set of fields with d(K) < D and $\mathrm{T} \in \{\mathrm{un}, \mathrm{ram}\}$. For primes $2 < \ell$ and $p \neq \ell$ we conjecture that

$$\lim_{D \to \infty} \frac{\#\{K \in \mathcal{K}_p^{\mathrm{T}}(D) \mid v_p(R_p(K)) = i + v_{\mathrm{T}}\}}{\#\mathcal{K}_p^{\mathrm{T}}(D)} = \mathrm{pr}(P_{\ell,p} = i),$$

where $v_{un} = \ell - 1$ and $v_{ram} = (\ell - 1)/2$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● の Q ()

Tommy Hofmann and Yinan Zhang

It turns out the factorisation of $det(M_{\ell})$ has some unique properties, which is useful for finding $P_{\ell,p}$:

Let ζ be a primitive ℓ -th root of unity, σ a generator of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$, $f_0 = X_0 + \zeta X_1 + \cdots + \zeta^{\ell-1} X_{\ell-1}$ and $f_i = \sigma^i(f_0)$ for $i \in \{1, \ldots, \ell-2\}$. Then

1

$$\det(M_{\ell}) = (-1)^{(\ell-1)/2} \cdot \prod_{i=0}^{\ell-2} \sigma^i(f_0).$$

2 The matrix $M \in \mathbb{Q}(\zeta)^{(\ell-1) \times (\ell-1)}$ defined by

$$\begin{pmatrix} f_0 \\ \vdots \\ f_{\ell-2} \end{pmatrix} = M \begin{pmatrix} X_1 \\ \vdots \\ X_{\ell-1} \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

satisfies
$$\det(M)^2 = (-1)^{(\ell-1)/2} \cdot \ell^{\ell-2}$$
.

Tommy Hofmann and Yinan Zhang Cyclic extensions of prime degree and their p-adic regulators Since $v_p(\det(M_\ell)) = \sum v_p(f_i)$, we are interested in counting solutions to the equations $\{v_p(f_i(a)) = v_i\}$ for some fixed $\sum v_i$. While this seems rather difficult in general, we can make use of the fact that $f_i = \sigma^i(f_0)$. In \mathbb{Z}_p with $\operatorname{ord}_\ell(p) = m$ and $\ell - 1 = mn$, if $v_p(f_1) = v_1$, then there are m - 1 other f_i also with valuation v_1 . The same applies for f_2, \ldots, f_n . The probability for a particular set of $\{v_1, \ldots, v_n\}$ is given by

$$\frac{1}{p^{m(v_1+\ldots v_n)}} \left(1 - \frac{1}{p^m}\right)^n$$

Tommy Hofmann and Yinan Zhang Cyclic extensions of prime degree and their *p*-adic regulators

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

For a fixed *i* there are $\binom{i+n-1}{n-1}$ choices of v_1, \ldots, v_n with $v_1 + \cdots + v_n = i$, so for $i \in \mathbb{Z}_{>0}$ we have:

$$pr(P_{\ell,p} = mi) = {\binom{i+n-1}{n-1}} \frac{1}{p^{mi}} \left(1 - \frac{1}{p^m}\right)^n$$

Conjecture

Let $p \neq 2, \ell$ be a prime, $\operatorname{ord}_{\ell}(p) = m$, $\ell - 1 = mn$ and $T \in \{\operatorname{un, ram}\}$. Then $v_p(R_p(K)) \in m\mathbb{Z} + v_T$ for all $K \in \mathcal{K}_p^T$ and for $i \geq 0$ we have

$$\lim_{D \to \infty} \frac{\#\{K \in \mathcal{K}_p^{\mathrm{T}}(D) \mid v_p(R_p(K)) = mi + v_{\mathrm{T}}\}}{\#\mathcal{K}_p^{\mathrm{T}}(D)}$$
$$= \binom{i+n-1}{n-1} \frac{1}{p^{mi}} \left(1 - \frac{1}{p^m}\right)^n,$$

where $v_{un} = \ell - 1$ and $v_{ram} = (\ell - 1)/2$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● の Q ()

Tommy Hofmann and Yinan Zhang

$$p = 3, \ell = 5$$

p = 29, $\ell = 7$, p unramified

$v_p(R_p(K))$	Obs	Conj	$v_p(R_p(K))$	Obs	Conj
4	.98766	.98765	6	.81036	.81014
8	.01218	.01219	7	.16753	.16761
12	.142E-3	.150E-3	8	.01990	.02022
16	.181E-5	.185E-5	9	.00204	.00186
		1	10	.135E-3	.144E-3
			11	.109E-4	.995E-5

Questions/comments

Tommy Hofmann and Yinan Zhang Cyclic extensions of prime degree and their $p\mbox{-}{\rm adic}$ regulators

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○ ○

$$p = 3, \ell = 5$$

p = 29, $\ell = 7$, p unramified

$v_p(R_p(K))$	Obs	Conj	$v_p(R_p(K))$	Obs	Conj
4	.98766	.98765	6	.81036	.81014
8	.01218	.01219	7	.16753	.16761
12	.142E-3	.150E-3	8	.01990	.02022
16	.181E-5	.185E-5	9	.00204	.00186
		1	10	.135E-3	.144E-3
			11	.109E-4	.995E-5

Questions/comments

Tommy Hofmann and Yinan Zhang