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The regulator R(K) of a number field K is an important invariant,
providing information on its unit group structure.

Its p-adic analogue Rp(K) was introduced by Leopoldt in his
investigation of p-adic L-functions.

Computation of Rp(K) remains difficult, and previous research has been
predominantly focused on numerical verification of Leopoldt’s conjecture.

In 2016, the authors were able to conjecture and provide heuristics on the
distribution of vp(Rp(K))) for cyclic cubic fields K.

This was based on observations of computational data of vp(Rp(K)) of
almost 16 million fields.

We extend this result to a conjecture about all cyclic extensions of odd
prime degree.
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We use a definition of Rp(K) introduced by Iwasawa, which differs
slightly from the usual definition.

Let K be a totally real number field of degree `, {εi} a p-maximal set of
independent units, and {τj} the embeddings of K into Cp. Then the
p-adic regulator Rp(K) is given by

Rp(K) =
1

`
det


1 · · · 1

logp(τ1(ε1)) · · · logp(τ`(ε1))
...

. . .
...

logp(τ1(ε`−1)) · · · logp(τ`(ε`−1))


This is more costly to compute but maintains the structure of the matrix.
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Basic overview:

1 Model Rp(K) with the matrix M`

2 Factorise det(M`) as
∏
fi

3 Count solutions to the equation
∑
vp(fi) = v for some v

Based on observation of vp(Rp(K)) computed for quintic fields up to
d(K) = 5× 1031 and septic fields up to d(K) = 1042.
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We note the following about Rp(K):

1 There is a lower bound on vp(Rp(K)): for a prime p 6= ` we have

vp(Rp(K)) ≥

{
`−1
2 , if p is ramified in K,

`− 1, if p is unramified in K.

2 The matrix whose determinant gives Rp(K) has a fixed structure:

M` =


1 1 1 · · · 1 1
X1 X2 X3 · · · X`−1 X0

X2 X3 X4 · · · X0 X1

...
...

...
. . .

...
...

X`−1 X0 X1 · · · X`−3 X`−2


with X0 = −

∑`−1
i=1 Xi

If p 6= `, then there exist a ∈ Q̄`−1
p such that

vp(Rp(K)) = vp(M`(a)).
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These suggest that there may be a connection between the distribution
of the valuations of the p-adic regulators in cyclic `-extensions and that
of det(M`).

Let P`,p : Z`−1
p → R, a 7→ vp(det(M`(a))) be a random variable, and

KT
p (D) be the set of fields with d(K) < D and T ∈ {un, ram}. For

primes 2 < ` and p 6= ` we conjecture that

lim
D→∞

#{K ∈ KT
p (D) | vp(Rp(K)) = i+ vT}

#KT
p (D)

= pr(P`,p = i),

where vun = `− 1 and vram = (`− 1)/2.
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It turns out the factorisation of det(M`) has some unique properties,
which is useful for finding P`,p:

Let ζ be a primitive `-th root of unity, σ a generator of Gal(Q(ζ)/Q),
f0 = X0 + ζX1 + · · ·+ ζ`−1X`−1 and fi = σi(f0) for i ∈ {1, . . . , `− 2}.
Then

1

det(M`) = (−1)(`−1)/2 ·
`−2∏
i=0

σi(f0).

2 The matrix M ∈ Q(ζ)(`−1)×(`−1) defined by f0
...

f`−2

 = M

 X1

...
X`−1


satisfies det(M)2 = (−1)(`−1)/2 · ``−2.
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Since vp(det(M`)) =
∑
vp(fi), we are interested in counting solutions to

the equations {vp(fi(a)) = vi} for some fixed
∑
vi. While this seems

rather difficult in general, we can make use of the fact that fi = σi(f0).

In Zp with ord`(p) = m and `− 1 = mn, if vp(f1) = v1, then there are
m− 1 other fi also with valuation v1. The same applies for f2, . . . , fn.

The probability for a particular set of {v1, . . . , vn} is given by

1

pm(v1+...vn)

(
1− 1

pm

)n

.
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For a fixed i there are
(
i+n−1
n−1

)
choices of v1, . . . , vn with

v1 + · · ·+ vn = i, so for i ∈ Z≥0 we have:

pr(P`,p = mi) =

(
i+ n− 1

n− 1

)
1

pmi

(
1− 1

pm

)n

.
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Conjecture

Let p 6= 2, ` be a prime, ord`(p) = m, `− 1 = mn and T ∈ {un, ram}.
Then vp(Rp(K)) ∈ mZ + vT for all K ∈ KT

p and for i ≥ 0 we have

lim
D→∞

#{K ∈ KT
p (D) | vp(Rp(K)) = mi+ vT}

#KT
p (D)

=

(
i+ n− 1

n− 1

)
1

pmi

(
1− 1

pm

)n

,

where vun = `− 1 and vram = (`− 1)/2.

Tommy Hofmann and Yinan Zhang

Cyclic extensions of prime degree and their p-adic regulators



p = 3, ` = 5

vp(Rp(K)) Obs Conj
4 .98766 .98765
8 .01218 .01219
12 .142E-3 .150E-3
16 .181E-5 .185E-5

p = 29, ` = 7, p unramified

vp(Rp(K)) Obs Conj
6 .81036 .81014
7 .16753 .16761
8 .01990 .02022
9 .00204 .00186
10 .135E-3 .144E-3
11 .109E-4 .995E-5

Questions/comments
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