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The Chebotarev density theorem

K a Galois number field
Count primes based on their behavior in K

πC (X ,K ) = #{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



The Chebotarev density theorem

K a Galois number field

Count primes based on their behavior in K

πC (X ,K ) = #{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



The Chebotarev density theorem

K a Galois number field
Count primes based on their behavior in K

πC (X ,K ) = #{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



The Chebotarev density theorem

K a Galois number field
Count primes based on their behavior in K

πC (X ,K ) =

#{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



The Chebotarev density theorem

K a Galois number field
Count primes based on their behavior in K

πC (X ,K ) = #{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



The Chebotarev density theorem

K a Galois number field
Count primes based on their behavior in K

πC (X ,K ) = #{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



The Chebotarev density theorem

K a Galois number field
Count primes based on their behavior in K

πC (X ,K ) = #{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



The Chebotarev density theorem

K a Galois number field
Count primes based on their behavior in K

πC (X ,K ) = #{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



The Chebotarev density theorem

K a Galois number field
Count primes based on their behavior in K

πC (X ,K ) = #{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



The Chebotarev density theorem

K a Galois number field
Count primes based on their behavior in K

πC (X ,K ) = #{p prime : p unramified in K ,

[
K/Q
p

]
= C , p ≤ X}

[
K/Q
p

]
Artin symbol

C a fixed conjugacy class in Gal(K/Q)

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )



An effective Chebotarev density theorem

Theorem (Chebotarev Density Theorem, 1926)

πC (X ,K ) ∼ |C |
|G |

Li(X )

Li(X ) =
∫ X
2 dt/ log t = X/ logX + O(X/ log2 X )

But I want primes now!
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An effective Chebotarev density theorem

nF := [F : Q]

DF := |DiscF |

Theorem (Lagarias and Odlyzko ’75, Serre ’82)

If K 6= Q, then ζK (s) has at most one zero β0 in a standard
zero-free region. We have∣∣∣∣πC (X )− |C |

|G |
Li(X )

∣∣∣∣ ≤ |C ||G |Li(X β0)+C1X exp(−C2n
−1/2
K (logX )1/2)

for all X ≥ exp(10nK (logDK )
2).
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Our main result

Theorem (Pierce, Turnage-Butterbaugh, W. ’17)

For each appropriate family F (G ) of number fields, for every
A ≥ 2, and ε > 0, for almost all K ∈ F (G ), (except a power
saving exceptional family), we have∣∣∣∣πC (X ,K )− |C |

|G |
Li(X )

∣∣∣∣ ≤ |C ||G | X

(logX )A
,

for
X ≥ Dε

K .

dihedral Dp fields without order p ramification
S3,S4 fields with square-free discriminant
A4 fields, all ramification order 3
cyclic fields, all ramification total
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Theorem (PTW)

Given G , for every A ≥ 2, and ε > 0, and 0 < δ ≤ 1/(2A), for any
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Kowalski and Michel: zeroes of automorphic L-functions

Theorem (Kowalski and Michel, ’02)

Let S(X ) be a family of cuspidal automorphic representations of
GLm(Q) satisfying several conditions, then the total number of
zeroes of all their L functions in the box

[1− δ, 1]× [−T ,T ]

is at most O(X γ).

Choose δ so almost all have no zeroes

Conditions:
size of family
control of conductors
Ramanujan-Petersson conjecture
convexity and joint convexity bounds
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in some cases what we need is not true (a positive proportion
of Z/4Z fields contain any given quadratic field)
main tool: pointwise upper bounds on #{K : |DK | = X} and
control ramification
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Lower bounds (e.g. An):
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class field theory to count cyclic p-extensions
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(not a tight upper bound)
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