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Theorem (Chebotarev Density Theorem, 1926)

ql..
mc(X, K) ~ %M(X)
Li(X) = [ dt/log t = X/log X + O(X/log? X)
But | want primes now!

How big does X have to be to get any such primes? many?

“Effective”: error term and lower bound on X
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Theorem (Lagarias and Odlyzko '75, Serre '82)
We have

me(X) — —Li(X)‘ < ELi(><ﬁo)+c1xe><|o(—c2n;1/2(|og X))

for all X > exp(10nk (log Dk)?),

m want to apply in families, By not uniform, need to remove
effect of exceptional zero

m need to apply to smaller X, e.g. X = Df., need bigger
zero-free region
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Theorem (Pierce, Turnage-Butterbaugh, W. '17)

For each appropriate family % (G) of number fields, for every
A>2,and e >0, for almost all K € %#(G), (except a power
saving exceptional family), we have

il X
[G] (log X)A”

re(X,K) — |’G| X)‘

for
X > Df.

dihedral D, fields without order p ramification
S3, Sy fields with square-free discriminant
A4 fields, all ramification order 3

cyclic fields, all ramification total
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el X
|G| (log X)*’
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Theorem (Kowalski and Michel, '02)

Let S(X) be a family of cuspidal automorphic representations of
GL(Q) satisfying several conditions, then the total number of
zeroes of all their L functions in the box

[1 - 57 1] X [_T7 T]
is at most O(X7).

Choose 4 so almost all have no zeroes

Conditions:
m size of family
m control of conductors
m Ramanujan-Petersson conjecture

m convexity and joint convexity bounds
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CK(S) = H L(S,p, K)
)

irrep. of G

product of Artin L-functions
Strong Artin Conjecture: each L(s, p, K) is cuspidal

Kowalski-Michel fails for products of cuspidal L-functions
m One bad cuspidal L-function Lp,y
m Consider the family Lp,qL; for cuspidal L;
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Extending to products of cuspidal L-functions

Key: ensuring any bad cuspidal L-function does not propogate into
too many (;(s)

Task: counting number fields with fixed subfields (corresponding to
ker p)
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Counting number fields

Asymptotics of #{G-number fields K : |Dk| < X}7?
Some G known, many G wide open
Dihedral groups D, open

Easier—only need upper and lower bounds
m upper: no problem

m lower: more subtle

Harder—need to count with fixed subfields

m in some cases what we need is not true (a positive proportion
of Z /47 fields contain any given quadratic field)

m main tool: pointwise upper bounds on #{K : |Dk| = X} and
control ramification
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Example arguments

(as many arguments as there are families)

Lower bounds (e.g. Ap):
m f(x,t) Galois group G over Q(t)
m show f(x, t1)f(x, t2) typically has Galois group G x G

m f(x, t1) must have produced many different fields

Upper bounds with fixed discriminant, for dihedral Dp:
m cyclic p extensions of quadratic fields
m class field theory to count cyclic p-extensions
m reduce to local counting question

m (not a tight upper bound)
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Application to f-torsion in class groups

ICIx[4]] < |Clk| <ne DY

I

Conjecture

|Clk[]] <nk.e.c Dic

Theorem (PTW)

Let .Z#(G) be an appropriate family of number fields of degree n.

Then almost every K € .7 (G) (except power saving exceptions)
satisfies

+

Okl < D 700

for all e > 0.
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Theorem (Ellenberg and Venkatesh '07)

Let § < m and suppose that there are at least M rational

primes with p < Df< that are unramified and split completely in K.
Then for any € > 0,

3tey -1
|IClk[4]| <nyee D M.
Note the requirement for small primes
Assuming GRH, Ellenberg and Venkatesh get

23T T
|Clk[4]] <n,e.e Di
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Application to number fields with small generators

Theorem (Vaaler and Widmer, '13)

Assuming GRH, every K of degree n has a generator of height
1
O(Dg").

Theorem (PTW)

Let #(G) be an appropriate family of number fields of degree n.
1

Almost every K € #(G) has a generator of height O(Dy").



