Effective Chebotarev density theorems for families of number fields without GRH

Melanie Matchett Wood

University of Wisconsin-Madison

K ロ B (K @ B (K @ B (K @ B) 를 …

 Ω

joint with Lillian Pierce and Caroline Turnage-Butterbaugh

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q @

 K a Galois number field

 K a Galois number field Count primes based on their behavior in K

 K a Galois number field Count primes based on their behavior in K

 π _C (X, K) =

 K a Galois number field Count primes based on their behavior in K

$$
\pi_C(X, K) = \#\{p \text{ prime}: p \text{ unramified in } K, \left[\frac{K/\mathbb{Q}}{p}\right] = C, p \le X\}
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

 K a Galois number field Count primes based on their behavior in K

$$
\pi_C(X, K) = \#\{p \text{ prime}: p \text{ unramified in } K, \left[\frac{K/\mathbb{Q}}{p}\right] = C, p \le X\}
$$

 K/\mathbb{Q} $\left\lfloor \frac{1}{p} \right\rfloor$ Artin symbol

 K a Galois number field Count primes based on their behavior in K

$$
\pi_C(X, K) = \#\{p \text{ prime}: p \text{ unramified in } K, \left[\frac{K/\mathbb{Q}}{p}\right] = C, p \le X\}
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

$$
\left[\frac{K/\mathbb{Q}}{p}\right]
$$
Artin symbol

C a fixed conjugacy class in Gal (K/\mathbb{Q})

 K a Galois number field Count primes based on their behavior in K

$$
\pi_C(X, K) = \#\{p \text{ prime}: p \text{ unramified in } K, \left[\frac{K/\mathbb{Q}}{p}\right] = C, p \le X\}
$$

KEL KARIK KEL KEL KARIK

$$
\left\lceil \frac{K/\mathbb{Q}}{p} \right\rceil \text{ Artin symbol}
$$

C a fixed conjugacy class in Gal (K/\mathbb{Q})

Theorem (Chebotarev Density Theorem, 1926)

 K a Galois number field Count primes based on their behavior in K

$$
\pi_C(X, K) = \#\{p \text{ prime}: p \text{ unramified in } K, \left[\frac{K/\mathbb{Q}}{p}\right] = C, p \le X\}
$$

$$
\left[\frac{K/\mathbb{Q}}{p}\right]
$$
Artin symbol

C a fixed conjugacy class in Gal (K/\mathbb{Q})

Theorem (Chebotarev Density Theorem, 1926)

$$
\pi_C(X,K)\sim \frac{|C|}{|G|}\mathrm{Li}(X)
$$

KORKA REPARATION ADD

 K a Galois number field Count primes based on their behavior in K

$$
\pi_C(X, K) = \#\{p \text{ prime}: p \text{ unramified in } K, \left[\frac{K/\mathbb{Q}}{p}\right] = C, p \le X\}
$$

$$
\left[\frac{K/\mathbb{Q}}{p}\right]
$$
Artin symbol
C a fixed conjugacy class in Gal(K/ \mathbb{Q})

Theorem (Chebotarev Density Theorem, 1926)

$$
\pi_C(X,K)\sim \frac{|C|}{|G|}\mathrm{Li}(X)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

 $\operatorname{Li}(X) = \int_{2}^{X} dt / \log t = X / \log X + O(X / \log^{2} X)$

$$
\pi_C(X,K)\sim \frac{|C|}{|G|}\mathrm{Li}(X)
$$

$$
\text{Li}(X) = \int_2^X dt / \log t = X / \log X + O(X / \log^2 X)
$$

$$
\pi_C(X,K)\sim \frac{|C|}{|G|}\mathrm{Li}(X)
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

$$
\text{Li}(X) = \int_2^X dt / \log t = X / \log X + O(X / \log^2 X)
$$

But I want primes now!

$$
\pi_C(X,K)\sim \frac{|C|}{|G|}\mathrm{Li}(X)
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

$$
\text{Li}(X) = \int_2^X dt / \log t = X / \log X + O(X / \log^2 X)
$$

But I want primes now!

How big does X have to be to get any such primes?

$$
\pi_C(X,K) \sim \frac{|C|}{|G|} \mathrm{Li}(X)
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

$$
\text{Li}(X) = \int_2^X dt / \log t = X / \log X + O(X / \log^2 X)
$$

But I want primes now!

How big does X have to be to get any such primes? many?

$$
\pi_C(X,K) \sim \frac{|C|}{|G|} \mathrm{Li}(X)
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

$$
\text{Li}(X) = \int_2^X dt / \log t = X / \log X + O(X / \log^2 X)
$$

But I want primes now!

How big does X have to be to get any such primes? many?

"Effective": error term and lower bound on X

An effective Chebotarev density theorem

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

$$
n_F:=[F:\mathbb{Q}]
$$

An effective Chebotarev density theorem

 $n_F := [F : \mathbb{Q}]$

 $D_F := |\text{Disc } F|$

An effective Chebotarev density theorem

 $n_F := [F : \mathbb{Q}]$

 $D_F := |\text{Disc } F|$

Theorem (Lagarias and Odlyzko '75, Serre '82)

 $n_F := [F : \mathbb{Q}]$

 $D_F := |\text{Disc } F|$

Theorem (Lagarias and Odlyzko '75, Serre '82)

If $K \neq \mathbb{Q}$, then $\zeta_K(s)$ has at most one zero β_0 in a standard zero-free region.

KORK STRAIN ABY COMPARING

 $n_F := [F : \mathbb{Q}]$

 $D_F := |\text{Disc } F|$

Theorem (Lagarias and Odlyzko '75, Serre '82)

If $K \neq \mathbb{Q}$, then $\zeta_K(s)$ has at most one zero β_0 in a standard zero-free region. We have

$$
\left|\pi_C(X) - \frac{|C|}{|G|} \mathrm{Li}(X)\right| \leq \frac{|C|}{|G|} \mathrm{Li}(X^{\beta_0}) + C_1 X \exp(-C_2 n_K^{-1/2} (\log X)^{1/2})
$$

KORK STRAIN ABY COMPARING

 $n_F := [F : \mathbb{Q}]$

 $D_F := |\text{Disc } F|$

Theorem (Lagarias and Odlyzko '75, Serre '82)

If $K \neq \mathbb{Q}$, then $\zeta_K(s)$ has at most one zero β_0 in a standard zero-free region. We have

$$
\left|\pi_C(X) - \frac{|C|}{|G|} \mathrm{Li}(X)\right| \leq \frac{|C|}{|G|} \mathrm{Li}(X^{\beta_0}) + C_1 X \exp(-C_2 n_K^{-1/2} (\log X)^{1/2})
$$

KORKA REPARATION ADD

for all $X \geq \exp(10n_K(\log D_K)^2)$.

We have

$$
\left|\pi_C(X) - \frac{|C|}{|G|} \mathrm{Li}(X)\right| \leq \frac{|C|}{|G|} \mathrm{Li}(X^{\beta_0}) + C_1 X \exp(-C_2 n_K^{-1/2} (\log X)^{1/2})
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

for all $X \geq \exp(10n_K(\log D_K)^2),$

We have

$$
\left|\pi_C(X) - \frac{|C|}{|G|} \mathrm{Li}(X)\right| \leq \frac{|C|}{|G|} \mathrm{Li}(X^{\beta_0}) + C_1 X \exp(-C_2 n_K^{-1/2} (\log X)^{1/2})
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

for all $X \geq \exp(10n_K(\log D_K)^2),$

want to apply in families,

We have

$$
\left|\pi_C(X) - \frac{|C|}{|G|} \mathrm{Li}(X)\right| \leq \frac{|C|}{|G|} \mathrm{Li}(X^{\beta_0}) + C_1 X \exp(-C_2 n_K^{-1/2} (\log X)^{1/2})
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

for all $X \geq \exp(10n_K(\log D_K)^2),$

want to apply in families, β_0 not uniform,

We have

$$
\left|\pi_C(X) - \frac{|C|}{|G|} \mathrm{Li}(X)\right| \leq \frac{|C|}{|G|} \mathrm{Li}(X^{\beta_0}) + C_1 X \exp(-C_2 n_K^{-1/2} (\log X)^{1/2})
$$

for all $X \geq \exp(10n_K(\log D_K)^2),$

want to apply in families, β_0 not uniform, need to remove effect of exceptional zero

KORK STRAIN ABY COMPARING

We have

$$
\left|\pi_C(X) - \frac{|C|}{|G|} \mathrm{Li}(X)\right| \leq \frac{|C|}{|G|} \mathrm{Li}(X^{\beta_0}) + C_1 X \exp(-C_2 n_K^{-1/2} (\log X)^{1/2})
$$

for all $X \geq \exp(10n_K(\log D_K)^2),$

u want to apply in families, β_0 not uniform, need to remove effect of exceptional zero

KORK STRAIN ABY COMPARING

need to apply to smaller X ,

We have

$$
\left|\pi_C(X) - \frac{|C|}{|G|} \mathrm{Li}(X)\right| \leq \frac{|C|}{|G|} \mathrm{Li}(X^{\beta_0}) + C_1 X \exp(-C_2 n_K^{-1/2} (\log X)^{1/2})
$$

for all $X \geq \exp(10n_K(\log D_K)^2),$

want to apply in families, β_0 not uniform, need to remove effect of exceptional zero

KORK STRAIN ABY COMPARING

need to apply to smaller X, e.g. $X = D_K^{\epsilon}$,

We have

$$
\left|\pi_C(X) - \frac{|C|}{|G|} \mathrm{Li}(X)\right| \leq \frac{|C|}{|G|} \mathrm{Li}(X^{\beta_0}) + C_1 X \exp(-C_2 n_K^{-1/2} (\log X)^{1/2})
$$

for all $X \geq \exp(10n_K(\log D_K)^2),$

u want to apply in families, β_0 not uniform, need to remove effect of exceptional zero

KORK EX KEY KEY YOUR

need to apply to smaller X , e.g. $X=D_K^\epsilon$, need bigger zero-free region

Our main result

Theorem (Pierce, Turnage-Butterbaugh, W. '17)

For each appropriate family $\mathcal{F}(G)$ of number fields,

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

For each appropriate family $\mathcal{F}(G)$ of number fields, for every $A > 2$, and $\epsilon > 0$,

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

For each appropriate family $\mathcal{F}(G)$ of number fields, for every $A \geq 2$, and $\epsilon > 0$, for almost all $K \in \mathscr{F}(G)$,

KORK EX KEY KEY YOUR

For each appropriate family $\mathcal{F}(G)$ of number fields, for every $A \ge 2$, and $\epsilon > 0$, for almost all $K \in \mathcal{F}(G)$, (except a power saving exceptional family), we have

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

For each appropriate family $\mathcal{F}(G)$ of number fields, for every $A \ge 2$, and $\epsilon > 0$, for almost all $K \in \mathcal{F}(G)$, (except a power saving exceptional family), we have

$$
\left|\pi_C(X,K)-\frac{|C|}{|G|}\mathrm{Li}(X)\right|\leq \frac{|C|}{|G|}\frac{X}{(\log X)^A},
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

For each appropriate family $\mathcal{F}(G)$ of number fields, for every $A \ge 2$, and $\epsilon > 0$, for almost all $K \in \mathcal{F}(G)$, (except a power saving exceptional family), we have

$$
\left|\pi_C(X,K)-\frac{|C|}{|G|}\mathrm{Li}(X)\right|\leq \frac{|C|}{|G|}\frac{X}{(\log X)^A},
$$

for

 $X \geq D_K^{\epsilon}$.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →
For each appropriate family $\mathcal{F}(G)$ of number fields, for every $A \geq 2$, and $\epsilon > 0$, for almost all $K \in \mathscr{F}(G)$, (except a power saving exceptional family), we have

$$
\left|\pi_C(X,K)-\frac{|C|}{|G|}\mathrm{Li}(X)\right|\leq \frac{|C|}{|G|}\frac{X}{(\log X)^A},
$$

for

 $X \geq D_K^{\epsilon}$.

KORKA REPARATION ADD

dihedral D_p fields without order p ramification

For each appropriate family $\mathcal{F}(G)$ of number fields, for every $A \geq 2$, and $\epsilon > 0$, for almost all $K \in \mathscr{F}(G)$, (except a power saving exceptional family), we have

$$
\left|\pi_C(X,K)-\frac{|C|}{|G|}\mathrm{Li}(X)\right|\leq \frac{|C|}{|G|}\frac{X}{(\log X)^A},
$$

for

$$
X\geq D_{K}^{\epsilon}.
$$

- dihedral D_p fields without order p ramification
- S_3 , S_4 fields with square-free discriminant

For each appropriate family $\mathcal{F}(G)$ of number fields, for every $A > 2$, and $\epsilon > 0$, for almost all $K \in \mathscr{F}(G)$, (except a power saving exceptional family), we have

$$
\left|\pi_C(X,K)-\frac{|C|}{|G|}\mathrm{Li}(X)\right|\leq \frac{|C|}{|G|}\frac{X}{(\log X)^A},
$$

for

 $X \geq D_K^{\epsilon}$.

- dihedral D_p fields without order p ramification
- S_3 , S_4 fields with square-free discriminant
- A_4 fields, all ramification order 3

For each appropriate family $\mathcal{F}(G)$ of number fields, for every $A > 2$, and $\epsilon > 0$, for almost all $K \in \mathscr{F}(G)$, (except a power saving exceptional family), we have

$$
\left|\pi_C(X,K)-\frac{|C|}{|G|}\mathrm{Li}(X)\right|\leq \frac{|C|}{|G|}\frac{X}{(\log X)^A},
$$

for

 $X \geq D_K^{\epsilon}$.

- dihedral D_p fields without order p ramification
- S_3 , S_4 fields with square-free discriminant
- A_4 fields, all ramification order 3
- s cyclic fields, all ramification total

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

Theorem (PTW)

Given G, for every $A \ge 2$, and $\epsilon > 0$, and $0 < \delta \le 1/(2A)$,

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

Given G, for every $A \ge 2$, and $\epsilon > 0$, and $0 < \delta \le 1/(2A)$, for any number field K with Gal(K/\mathbb{Q}) \simeq G and $D_K \geq D_0$ and

KORK EX KEY KEY YOUR

Given G, for every $A \ge 2$, and $\epsilon > 0$, and $0 < \delta \le 1/(2A)$, for any number field K with Gal(K/\mathbb{Q}) \simeq G and $D_K \ge D_0$ and

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

 $\mathcal{L}_K(s)/\zeta(s)$ has no zero in the region $[1-\delta,1]\times[-(\log D_K)^{2/\delta},(\log D_K)^{2/\delta}]$

Given G, for every $A \ge 2$, and $\epsilon > 0$, and $0 < \delta \le 1/(2A)$, for any number field K with Gal(K/\mathbb{Q}) $\simeq G$ and $D_K \geq D_0$ and

■
$$
\zeta_K(s)/\zeta(s)
$$
 has no zero in the region
[1 – δ , 1] × [–(log D_K)^{2/δ}, (log D_K)^{2/δ}]

we have

$$
\left|\pi_C(X,K)-\frac{|C|}{|G|}\mathrm{Li}(X)\right|\leq \frac{|C|}{|G|}\frac{X}{(\log X)^A},
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Given G, for every $A \ge 2$, and $\epsilon > 0$, and $0 < \delta \le 1/(2A)$, for any number field K with Gal(K/\mathbb{Q}) \simeq G and $D_K \ge D_0$ and

■
$$
\zeta_K(s)/\zeta(s)
$$
 has no zero in the region
[1 – δ , 1] × [–(log D_K)^{2/δ}, (log D_K)^{2/δ}]

we have

$$
\left|\pi_C(X,K)-\frac{|C|}{|G|}\mathrm{Li}(X)\right|\leq \frac{|C|}{|G|}\frac{X}{(\log X)^A},
$$

for all

 $X \geq D_K^{\epsilon}$.

KORK EX KEY KEY YOUR

Zero-free regions

 $2Q$

Kowalski and Michel: zeroes of automorphic L-functions

Theorem (Kowalski and Michel, '02)

K □ ▶ K @ ▶ K 할 X K 할 X | 할 X 1 9 Q Q *

Let $S(X)$ be a family of cuspidal automorphic representations of $GL_m(\mathbb{Q})$ satisfying several conditions,

Let $S(X)$ be a family of cuspidal automorphic representations of $GL_m(\mathbb{Q})$ satisfying several conditions, then the total number of zeroes of all their L functions in the box

$$
[1-\delta,1]\times[-\mathcal{T},\mathcal{T}]
$$

is at most $O(X^{\gamma})$.

Let $S(X)$ be a family of cuspidal automorphic representations of $GL_m(\mathbb{Q})$ satisfying several conditions, then the total number of zeroes of all their L functions in the box

$$
[1-\delta,1]\times[-\mathit{T},\mathit{T}]
$$

KORKA REPARATION ADD

is at most $O(X^{\gamma})$.

Choose δ so almost all have no zeroes

Let $S(X)$ be a family of cuspidal automorphic representations of $GL_m(\mathbb{Q})$ satisfying several conditions, then the total number of zeroes of all their L functions in the box

$$
[1-\delta,1]\times[-\mathit{T},\mathit{T}]
$$

KORKA REPARATION ADD

is at most $O(X^{\gamma})$.

Choose δ so almost all have no zeroes

Let $S(X)$ be a family of cuspidal automorphic representations of $GL_m(\mathbb{O})$ satisfying several conditions, then the total number of zeroes of all their L functions in the box

$$
[1-\delta,1]\times[-\mathit{T},\mathit{T}]
$$

KORKA REPARATION ADD

is at most $O(X^{\gamma})$.

Choose δ so almost all have no zeroes

Conditions:

size of family

Let $S(X)$ be a family of cuspidal automorphic representations of $GL_m(\mathbb{O})$ satisfying several conditions, then the total number of zeroes of all their L functions in the box

$$
[1-\delta,1]\times[-\mathit{T},\mathit{T}]
$$

KORKA REPARATION ADD

is at most $O(X^{\gamma})$.

Choose δ so almost all have no zeroes

- size of family
- control of conductors

Let $S(X)$ be a family of cuspidal automorphic representations of $GL_m(\mathbb{O})$ satisfying several conditions, then the total number of zeroes of all their L functions in the box

$$
[1-\delta,1]\times[-\mathit{T},\mathit{T}]
$$

KORKA REPARATION ADD

is at most $O(X^{\gamma})$.

Choose δ so almost all have no zeroes

- size of family
- control of conductors
- **Ramanujan-Petersson conjecture**

Let $S(X)$ be a family of cuspidal automorphic representations of $GL_m(\mathbb{O})$ satisfying several conditions, then the total number of zeroes of all their L functions in the box

$$
[1-\delta,1]\times[-\mathit{T},\mathit{T}]
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

is at most $O(X^{\gamma})$.

Choose δ so almost all have no zeroes

- size of family
- control of conductors
- Ramanujan-Petersson conjecture
- **n** convexity and joint convexity bounds

Our L-functions

$\zeta_{\mathcal{K}}(s) = \prod L(s, \rho, K)$ ρ irrep. of G

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 19 Q Q ·

$$
\zeta_K(s) = \prod_{\substack{\rho \\ \text{irrep. of } G}} L(s, \rho, K)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

product of Artin L-functions

$$
\zeta_K(s) = \prod_{\substack{\rho \\ \text{irrep. of } G}} L(s, \rho, K)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

product of Artin L-functions

$$
\zeta_K(s) = \prod_{\substack{\rho \\ \text{irrep. of } G}} L(s, \rho, K)
$$

product of Artin L-functions

Strong Artin Conjecture: each $L(s, \rho, K)$ is cuspidal

$$
\zeta_{K}(s) = \prod_{\substack{\rho \\ \text{irrep. of } G}} L(s, \rho, K)
$$

product of Artin L-functions

Strong Artin Conjecture: each $L(s, \rho, K)$ is cuspidal

Kowalski-Michel fails for products of cuspidal L-functions

$$
\zeta_{K}(s) = \prod_{\substack{\rho \\ \text{irrep. of } G}} L(s, \rho, K)
$$

product of Artin L-functions

Strong Artin Conjecture: each $L(s, \rho, K)$ is cuspidal

Kowalski-Michel fails for products of cuspidal L-functions \blacksquare One bad cuspidal *L*-function L_{bad}

$$
\zeta_K(s) = \prod_{\substack{\rho \\ \text{irrep. of } G}} L(s, \rho, K)
$$

product of Artin L-functions

Strong Artin Conjecture: each $L(s, \rho, K)$ is cuspidal

Kowalski-Michel fails for products of cuspidal L-functions

- \blacksquare One bad cuspidal *L*-function L_{bad}
- Consider the family $L_{bad}L_i$ for cuspidal L_i

Extending to products of cuspidal *L*-functions

K □ ▶ K @ ▶ K 할 X K 할 X (할 X) 할 X 10 Q Q O

Extending to products of cuspidal L-functions

Key:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 19 Q Q ·

Key: ensuring any bad cuspidal L-function does not propogate into too many $\zeta_L(s)$

Key: ensuring any bad cuspidal L-function does not propogate into too many $\zeta_L(s)$

Task:

Key: ensuring any bad cuspidal L-function does not propogate into too many $\zeta_L(s)$

Task: counting number fields with fixed subfields (corresponding to ker ρ)

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Some G known, many G wide open

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Some G known, many G wide open

Dihedral groups D_p open

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Some G known, many G wide open

Dihedral groups D_p open

Easier—only need upper and lower bounds

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Some G known, many G wide open

Dihedral groups D_p open

Easier—only need upper and lower bounds

upper: no problem

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Some G known, many G wide open

Dihedral groups D_p open

Easier—only need upper and lower bounds

- upper: no problem
- lower: more subtle

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Some G known, many G wide open

Dihedral groups D_p open

Easier—only need upper and lower bounds

- upper: no problem
- lower: more subtle

Harder—need to count with fixed subfields

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Some G known, many G wide open

Dihedral groups D_p open

Easier—only need upper and lower bounds

- upper: no problem
- lower: more subtle

Harder—need to count with fixed subfields

 \blacksquare in some cases what we need is not true

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Some G known, many G wide open

Dihedral groups D_n open

Easier—only need upper and lower bounds

- upper: no problem
- lower: more subtle

Harder—need to count with fixed subfields

 \blacksquare in some cases what we need is not true (a positive proportion of $\mathbb{Z}/4\mathbb{Z}$ fields contain any given quadratic field)

4 D X 4 P X 3 X 4 B X 3 B X 9 Q O

Asymptotics of $\#\{G\text{-number fields } K : |D_K| \leq X\}$?

Some G known, many G wide open

Dihedral groups D_p open

Easier—only need upper and lower bounds

upper: no problem

lower: more subtle

Harder—need to count with fixed subfields

- \blacksquare in some cases what we need is not true (a positive proportion of $\mathbb{Z}/4\mathbb{Z}$ fields contain any given quadratic field)
- **n** main tool: pointwise upper bounds on $\#{K : |D_K| = X}$ and control ramification

Example arguments

Example arguments

(as many arguments as there are families)

Lower bounds (e.g. A_n):

Example arguments

(as many arguments as there are families)

```
Lower bounds (e.g. A_n):
```

```
f f(x, t) Galois group G over \mathbb{Q}(t)
```
Lower bounds (e.g. A_n):

- **f** $f(x, t)$ Galois group G over $\mathbb{Q}(t)$
- **show** $f(x, t_1)f(x, t_2)$ typically has Galois group $G \times G$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Lower bounds (e.g. A_n):

- **f** $f(x, t)$ Galois group G over $\mathbb{Q}(t)$
- **show** $f(x, t_1)f(x, t_2)$ typically has Galois group $G \times G$

 $f(x, t_1)$ must have produced many different fields

Lower bounds (e.g. A_n):

- **f** $f(x, t)$ Galois group G over $\mathbb{Q}(t)$
- **show** $f(x, t_1)f(x, t_2)$ typically has Galois group $G \times G$

KORKA REPARATION ADD

 $f(x, t_1)$ must have produced many different fields

Upper bounds with fixed discriminant, for dihedral D_p :

Lower bounds (e.g. A_n):

- **f** $f(x, t)$ Galois group G over $\mathbb{Q}(t)$
- **show** $f(x, t_1)f(x, t_2)$ typically has Galois group $G \times G$

KORKA REPARATION ADD

 $f(x, t_1)$ must have produced many different fields

Upper bounds with fixed discriminant, for dihedral D_p :

 \blacksquare cyclic p extensions of quadratic fields

Lower bounds (e.g. A_n):

- **f** $f(x, t)$ Galois group G over $\mathbb{Q}(t)$
- **show** $f(x, t_1)f(x, t_2)$ typically has Galois group $G \times G$

KORKAR KERKER EL VOLO

F $f(x, t_1)$ must have produced many different fields

Upper bounds with fixed discriminant, for dihedral D_{p} :

- \blacksquare cyclic p extensions of quadratic fields
- class field theory to count cyclic p -extensions

Lower bounds (e.g. A_n):

- **f** $f(x, t)$ Galois group G over $\mathbb{Q}(t)$
- **show** $f(x, t_1)f(x, t_2)$ typically has Galois group $G \times G$

KORKAR KERKER EL VOLO

 $f(x, t_1)$ must have produced many different fields

Upper bounds with fixed discriminant, for dihedral D_{p} :

- \blacksquare cyclic p extensions of quadratic fields
- class field theory to count cyclic p -extensions
- \blacksquare reduce to local counting question

Lower bounds (e.g. A_n):

- **f** $f(x, t)$ Galois group G over $\mathbb{Q}(t)$
- **show** $f(x, t_1)f(x, t_2)$ typically has Galois group $G \times G$

KORKAR KERKER EL VOLO

 $f(x, t_1)$ must have produced many different fields

Upper bounds with fixed discriminant, for dihedral D_p :

- \blacksquare cyclic p extensions of quadratic fields
- class field theory to count cyclic p -extensions
- \blacksquare reduce to local counting question
- (not a tight upper bound)

K □ ▶ K @ ▶ K 할 X K 할 X (할 X) 할 X 10 Q Q O

 $|\text{Cl}_K[\ell]| \leq |\text{Cl}_K| \ll_{n,\epsilon} D_K^{1/2+\epsilon}$ $K^{\frac{1}{2+\epsilon}},$

$$
|\mathrm{Cl}_K[\ell]| \leq |\mathrm{Cl}_K| \ll_{n,\epsilon} D_K^{1/2+\epsilon},
$$

Conjecture

$$
|\mathrm{Cl}_K[\ell]| \ll_{n_K,\ell,\epsilon} D_K^\epsilon
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

$$
|\mathrm{Cl}_K[\ell]| \leq |\mathrm{Cl}_K| \ll_{n,\epsilon} D_K^{1/2+\epsilon},
$$

Conjecture

$$
|\mathrm{Cl}_K[\ell]| \ll_{n_K,\ell,\epsilon} D_K^\epsilon
$$

Theorem (PTW)

Let $\mathcal{F}(G)$ be an appropriate family of number fields of degree n.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
|\mathrm{Cl}_K[\ell]| \leq |\mathrm{Cl}_K| \ll_{n,\epsilon} D_K^{1/2+\epsilon},
$$

Conjecture

$$
|\mathrm{Cl}_K[\ell]| \ll_{n_K,\ell,\epsilon} D_K^\epsilon
$$

Theorem (PTW)

Let $\mathcal{F}(G)$ be an appropriate family of number fields of degree n. Then almost every $K \in \mathscr{F}(G)$ (except power saving exceptions) satisfies

KORKA REPARATION ADD

$$
|\mathrm{Cl}_K[\ell]| \leq |\mathrm{Cl}_K| \ll_{n,\epsilon} D_K^{1/2+\epsilon},
$$

Conjecture

$$
|\mathrm{Cl}_K[\ell]| \ll_{n_K,\ell,\epsilon} D_K^\epsilon
$$

Theorem (PTW)

Let $\mathcal{F}(G)$ be an appropriate family of number fields of degree n. Then almost every $K \in \mathscr{F}(G)$ (except power saving exceptions) satisfies

$$
|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\epsilon} D_K^{\frac{1}{2}-\frac{1}{2\ell(n-1)}+\epsilon}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

for all $\epsilon > 0$.

Theorem (Ellenberg and Venkatesh '07)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1990

Theorem (Ellenberg and Venkatesh '07)

K □ ▶ K @ ▶ K 할 X K 할 X | 할 X 1 9 Q Q *

$$
\text{Let } \delta < \frac{1}{2\ell(n_K-1)}
$$

Let $\delta < \frac{1}{2\ell(n_{\mathsf{K}}-1)}$ and suppose that there are at least M rational primes with $p \leq D_K^{\delta}$ that are unramified and split completely in K .

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

Let $\delta < \frac{1}{2\ell(n_{\mathsf{K}}-1)}$ and suppose that there are at least M rational primes with $p \leq D_K^{\delta}$ that are unramified and split completely in K . Then for any $\epsilon > 0$,

$$
|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\epsilon} D_K^{\frac{1}{2}+\epsilon} M^{-1}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

Let $\delta < \frac{1}{2\ell(n_{\mathsf{K}}-1)}$ and suppose that there are at least M rational primes with $p \leq D_K^{\delta}$ that are unramified and split completely in K . Then for any $\epsilon > 0$,

$$
|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\epsilon} D_K^{\frac{1}{2}+\epsilon} M^{-1}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

Note the requirement for small primes

Let $\delta < \frac{1}{2\ell(n_{\mathsf{K}}-1)}$ and suppose that there are at least M rational primes with $p \leq D_K^{\delta}$ that are unramified and split completely in K . Then for any $\epsilon > 0$,

$$
|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\epsilon} D_K^{\frac{1}{2}+\epsilon} M^{-1}.
$$

KORKA REPARATION ADD

Note the requirement for small primes

Assuming GRH, Ellenberg and Venkatesh get

Let $\delta < \frac{1}{2\ell(n_{\mathsf{K}}-1)}$ and suppose that there are at least M rational primes with $p \leq D_K^{\delta}$ that are unramified and split completely in K . Then for any $\epsilon > 0$,

$$
|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\epsilon} D_K^{\frac{1}{2}+\epsilon} M^{-1}.
$$

Note the requirement for small primes

Assuming GRH, Ellenberg and Venkatesh get

$$
|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\epsilon} D_K^{\frac{1}{2}-\frac{1}{2\ell(n-1)}+\epsilon}
$$

KORKA REPARATION ADD

Application to number fields with small generators

K □ ▶ K @ ▶ K 할 X K 할 X (할 X) 할 X 10 Q Q O

Application to number fields with small generators

K □ ▶ K @ ▶ K 할 X K 할 X | 할 X 1 9 Q Q *

Theorem (Vaaler and Widmer, '13)

Theorem (Vaaler and Widmer, '13)

Assuming GRH, every K of degree n has a generator of height $O(D_K^{\frac{1}{2n}})$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Theorem (Vaaler and Widmer, '13)

Assuming GRH, every K of degree n has a generator of height $O(D_K^{\frac{1}{2n}})$.

KOD KARD KED KED E VOOR

Theorem (PTW)

Theorem (Vaaler and Widmer, '13)

Assuming GRH, every K of degree n has a generator of height $O(D_K^{\frac{1}{2n}})$.

Theorem (PTW)

Let $\mathcal{F}(G)$ be an appropriate family of number fields of degree n.

KORKA REPARATION ADD
Theorem (Vaaler and Widmer, '13)

Assuming GRH, every K of degree n has a generator of height $O(D_K^{\frac{1}{2n}})$.

Theorem (PTW)

Let $\mathcal{F}(G)$ be an appropriate family of number fields of degree n. Almost every $K\in \mathscr{F}(G)$ has a generator of height $O(D_K^{\frac{1}{2n}}).$

KORKA REPARATION ADD