THORSTEN KLEINJUNG*

A NEW PERSPECTIVE ON THE POWERS OF TWO DESCENT for discrete logarithms in finite fields

PRESENTED AT ANTS-XIII, MADISON, WI, USA, ON THE 20/07/2018 BY BENJAMIN WESOLOWSKI *EPFL, LAUSANNE, SWITZERLAND

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty...$ think \mathbb{F}_{2^n}):

Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element *h*, find an integer *m* such that *h* = *gm*

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty...$ think \mathbb{F}_{2^n}):

Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element *h*, find an integer *m* such that *h* = *gm*

This DLP is in an uncomfortable position: huge gap between

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty...$ think \mathbb{F}_{2^n}):

Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element *h*, find an integer *m* such that *h* = *gm*

This DLP is in an uncomfortable position: huge gap between

▸ The best known **rigorous** algorithm: Pomerance's variant of Hellman-Reyneri's of complexity *L*(1/2) [Pom87, HR82]

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty...$ think \mathbb{F}_{2^n}):

Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element *h*, find an integer *m* such that *h* = *gm*

This DLP is in an uncomfortable position: huge gap between

- ▸ The best known **rigorous** algorithm: Pomerance's variant of Hellman-Reyneri's of complexity *L*(1/2) [Pom87, HR82]
- ▸ The best known **heuristic** algorithms: in quasi-polynomial time [BGJT14, GKZ18]

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty...$ think \mathbb{F}_{2^n}):

Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element *h*, find an integer *m* such that *h* = *gm*

This DLP is in an uncomfortable position: huge gap between

- ▸ The best known **rigorous** algorithm: Pomerance's variant of Hellman-Reyneri's of complexity *L*(1/2) [Pom87, HR82]
- ▸ The best known **heuristic** algorithms: in quasi-polynomial time [BGJT14, GKZ18]

they need to be understood better

QUASI-POLYNOMIAL ALGORITHMS FOR DLP

‣ First heuristic quasi-poly. algorithm discovered by Barbulescu, Gaudry, Joux, Thomé [BGJT14]

[BGJT14] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé*. A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic*, EUROCRYPT 2014.

‣ Soon after, Granger, Kleinjung, Zumbrägel [GKZ18] proposed another one, with a promise: **getting closer to a rigorous algorithm**

[GKZ18] R. Granger, T. Kleinjung, and J. Zumbrägel. *On the discrete logarithm problem in finite fields of fixed characteristic*, Transactions of the American Mathematical Society, 2018.

QUASI-POLYNOMIAL ALGORITHMS FOR DLP

Main theorem of [GKZ18]: the DLP in fixed characteristic can be solved in expected quasi-poly. time in fields that admit a suitable representation.

QUASI-POLYNOMIAL ALGORITHMS FOR DLP

Main theorem of [GKZ18]: the DLP in fixed characteristic can be solved in expected quasi-poly. time in fields that admit a suitable representation.

▶ Suitable representation? Field F_{q} _{*d*}(*x*]/(*J*) where *J* is an irreducible polynomial in $F_{qd}[x]$ such that

 $xq = h_0/h_1$ mod *J*

with h_0 and h_1 polynomials in $\mathbb{F}_{q^d}[x]$ of degree at most 2

▶ Expected time $qlog_2(deg(J)) + O(d)$

First idea of the proof: **a descent algorithm is sufficient**

First idea of the proof: **a descent algorithm is sufficient**

 \triangleright Fix the factor base $\mathfrak{F} = \{$ linear polynomials in $\mathbb{F}_{q^d}[x]\}$

First idea of the proof: **a descent algorithm is sufficient**

- \triangleright Fix the factor base $\mathfrak{F} = \{$ linear polynomials in $\mathbb{F}_{q^d}[x]\}$
- ▶ **Descent:** Given any polynomial *Q* in $\mathbb{F}_{q^d}[x]$ find integers e_f , for f in \mathfrak{F} , such that

$$
Q \equiv \prod_{f \in \mathfrak{F}} f^{e_f} \mod J.
$$

First idea of the proof: **a descent algorithm is sufficient**

- \triangleright Fix the factor base $\mathfrak{F} = \{$ linear polynomials in $\mathbb{F}_{q^d}[x]\}$
- ▶ **Descent:** Given any polynomial Q in F_{q} _{*d*}[*x*] find integers *e*_f, for f in \mathfrak{F} , such that

$$
Q \equiv \prod_{f \in \mathfrak{F}} f^{e_f} \mod J.
$$

▶ To solve the DLP, it is sufficient to have an efficient descent

Main ingredient of the descent, the **degree two elimination**:

Main ingredient of the descent, the **degree two elimination**:

▶ Given an extension *k* of F_q *d* and an irreducible quadratic polynomial *Q* in *k*[*x*],

Main ingredient of the descent, the **degree two elimination**:

- ▶ Given an extension *k* of F_q *d* and an irreducible quadratic polynomial *Q* in *k*[*x*],
- ‣ Find **linear** polynomials *L*1,*L*2,…,*Lm* in *k*[*x*] such that

$$
Q \equiv \prod_{i=1}^{m} L_i \mod J.
$$

ZIGZAG DESCENT

The **zigzag descent**: transform the degree two elimination into a **full descent algorithm**

Degree two elimination

SUMMARY

SUMMARY

SUMMARY

POLYNOMIALS WITH HIGHER SPLITTING PROBABILITY

Fix an extension *k* of F_{q^d} , and let *Q* an irred. quadratic in *k*[*x*]

POLYNOMIALS WITH HIGHER SPLITTING PROBABILITY

Fix an extension *k* of F_{qd} , and let *Q* an irred. quadratic in *k*[*x*]

‣ Key idea (from [GGMZ13]): polynomials of the form

$$
ax^{q+1} + \beta x^{q} + \gamma x + \delta
$$
 in k[x]

have a high probability to split over *k* (around *q*—3)

[GGMZ13] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. *On the function field sieve and the impact of higher splitting probabilities*. CRYPTO 2013.

POLYNOMIALS WITH HIGHER SPLITTING PROBABILITY

Fix an extension *k* of F_{qd} , and let *Q* an irred. quadratic in *k*[*x*]

‣ Key idea (from [GGMZ13]): polynomials of the form

$$
ax^{q+1} + \beta x^{q} + \gamma x + \delta
$$
 in k[x]

have a high probability to split over *k* (around *q*—3)

‣ Let *V* be the vector space of dimension 4 of these polynomials, i.e., *V* = span(*xq* + 1 , *xq*, *x*, 1) ⊂ *k*[*x*]

[GGMZ13] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. *On the function field sieve and the impact of higher splitting probabilities*. CRYPTO 2013.

‣ *V* = span(*xq* + 1 , *xq*, *x*, 1) ⊂ *k*[*x*]

$$
V = span(x^{q+1}, x^q, x, 1) \subset k[x]
$$

We have
$$
x^q = h_0/h_1 \text{ mod } J
$$
, so
\n $ax^{q+1} + \beta x^q + \gamma x + \delta = \frac{axh_0 + \beta h_0 + \gamma xh_1 + \delta h_1}{h_1} \text{ mod } J$

$$
V = span(x^{q+1}, x^q, x, 1) \subset k[x]
$$

\n- We have
$$
x^q = h_0/h_1 \mod J
$$
, so $ax^{q+1} + \beta x^q + \gamma x + \delta = \frac{axh_0 + \beta h_0 + \gamma xh_1 + \delta h_1}{h_1}$ mod J
\n- Splits with high probability
\n

$$
V = span(x^{q+1}, x^q, x, 1) \subset k[x]
$$

$$
V = span(x^{q+1}, x^q, x, 1) \subset k[x]
$$

‣ Consider the vector subspace *VQ* of dimension 2 in *V*, where *Q* divides the right-hand side:

*V*_Q = {*αx*^{q + 1} + *βx*^q + *γx* + *δ* | *αxh*₀ + *βh*₀ + *γxh*₁ + *δh*₁ = 0 mod *Q*}

 \triangleright For any $f = \alpha x^{q+1} + \beta x^{q} + \gamma x + \delta$ in V_Q ,

 $h_1 f \equiv axh_0 + \beta h_0 + \gamma xh_1 + \delta h_1 \mod J$

For any
$$
f = \alpha x^{q+1} + \beta x^q + \gamma x + \delta
$$
 in V_Q ,

 $h_1 f \equiv axh_0 + \beta h_0 + \gamma xh_1 + \delta h_1 \mod J$

• The quotient $L_0 = (axh_0 + \beta h_0 + \gamma xh_1 + \delta h_1)/Q$ is linear

 $h_1 f \equiv L_0 Q \text{ mod } J$

For any
$$
f = ax^{q+1} + \beta x^q + \gamma x + \delta
$$
 in V_{Q_1}

 $h_1 f \equiv a x h_0 + \beta h_0 + y x h_1 + \delta h_1$ mod *J*

 \triangleright The quotient $L_0 = (a x h_0 + \beta h_0 + \gamma x h_1 + \delta h_1)/Q$ is linear

 $h_1 f \equiv L_0 Q \text{ mod } J$

If *f* splits into linears $L_1,...,L_{q+1}$ in $k[x]$, then

$$
Q = h_1 L_0^{-1} L_1 ... L_{q+1} \text{ mod } J
$$

For any
$$
f = ax^{q+1} + \beta x^q + \gamma x + \delta
$$
 in V_{Q_1}

 $h_1 f \equiv a x h_0 + \beta h_0 + y x h_1 + \delta h_1$ mod *J*

 \triangleright The quotient $L_0 = (a x h_0 + \beta h_0 + y x h_1 + \delta h_1)/Q$ is linear

 $h_1 f \equiv L_0 Q \text{ mod } J$

If *f* splits into linears $L_1,...,L_{q+1}$ in $k[x]$, then

$$
Q = h_1 L_0^{-1} L_1 ... L_{q+1} \text{ mod } J
$$

 \triangleright **Algorithm**: choose random polynomials *f* in $V_{\mathcal{Q}}$ until it splits over *k*. Equivalently, sample *f* from the projective line **ℙ**(*VQ*).

How many polynomials on the curve $\mathbb{P}(V_{Q})$ split over k? Here is the new approach:

‣ Construct a curve *C* defined over *k*, and a surjective m orphism θ : $C \rightarrow \mathbb{P}(V_Q)$ such that

- ‣ Construct a curve *C* defined over *k*, and a surjective m *m* orphism θ : $C \rightarrow \mathbb{P}(V_Q)$ such that
- ➡ *C* is absolutely irreducible

- ‣ Construct a curve *C* defined over *k*, and a surjective m *m* orphism θ : $C \rightarrow \mathbb{P}(V_{Q})$ such that
- ➡ *C* is absolutely irreducible
- \rightarrow For any rational point *P* in *C*(*k*), the polynomial θ (*P*) splits over *k*

- ‣ Construct a curve *C* defined over *k*, and a surjective m *m* orphism θ : $C \rightarrow \mathbb{P}(V_Q)$ such that
- ➡ *C* is absolutely irreducible
- \Rightarrow For any rational point *P* in *C*(*k*), the polynomial θ (*P*) splits over *k*
- ‣ Then, by the absolute irreducibility, *C*(*k*) has a lot of points, therefore a lot of polynomials in **ℙ**(*VQ*) split over *k*

THE ACTION OF PGL2

Given $f \in k[x]$ and a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in GL₂, we define *c d*

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} * f(x) = (cx + d)^{\deg f} f\left(\frac{ax + b}{cx + d}\right)
$$

$$
V = span(x^{q+1}, x^{q}, x, 1)
$$

 \triangleright For any *m* in PGL₂, *m* \ast (x ^q – x) is in $\mathbb{P}(V)$

THE ACTION OF PGL₂ ON X^q – X

$$
q_{-X} \t\t V = span(x^{q+1}, x^q, x, 1)
$$

- \triangleright For any *m* in PGL₂, *m* \ast (*x*^q *x*) is in $\mathbb{P}(V)$
- The $(q + 1)$ distinct roots of $m * (xq x)$ are $m^{-1} \mathbb{P}^1(\mathbb{F}_q)$

$$
V = span(x^{q+1}, x^q, x, 1)
$$

- \triangleright For any *m* in PGL₂, *m* \ast (*x*^q *x*) is in $\mathbb{P}(V)$
- The $(q + 1)$ distinct roots of $m * (xq x)$ are $m^{-1} \mathbb{P}^1(\mathbb{F}_q)$
- If Its there anything in $\mathbb{P}(V)$ that is not of this form $m * (xq x)$?

$$
V = span(x^{q+1}, x^q, x, 1)
$$

- \triangleright For any *m* in PGL₂, *m* \ast (*x*^q *x*) is in $\mathbb{P}(V)$
- The $(q + 1)$ distinct roots of $m * (xq x)$ are $m^{-1} \mathbb{P}^1(\mathbb{F}_q)$
- **E** Is there anything in $\mathbb{P}(V)$ that is not of this form $m * (xq x)$?
- \rightarrow Yes, for instance $(x a)q(x b)$... These polynomials form a quadratic surface *S* in **ℙ**(*V*)

$$
V = span(x^{q+1}, x^q, x, 1)
$$

- \triangleright For any *m* in PGL₂, *m* \ast (*x*^q *x*) is in $\mathbb{P}(V)$
- The $(q + 1)$ distinct roots of $m * (xq x)$ are $m^{-1} \mathbb{P}^1(\mathbb{F}_q)$
- \blacktriangleright Is there anything in $\mathbb{P}(V)$ that is not of this form $m * (xq x)$?
- \rightarrow Yes, for instance $(x a)q(x b)$... These polynomials form a quadratic surface *S* in **ℙ**(*V*)

Lemma: $P(V) \setminus S = PGL_2 * (x^q - x)$.

Recall that we want to construct a curve *C* defined over *k*, and a surjective morphism $\theta: C \rightarrow \mathbb{P}(V_{Q})$ such that

- ➡ *C* is absolutely irreducible
- ➡ For any rational point *P* in *C*(*k*), the polynomial *θ*(*P*) splits over *k*

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ ⊂ **ℙ**(*VQ*) × **ℙ**¹ × **ℙ**¹ × **ℙ**¹

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then *u* splits over *k*.

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then *u* splits over *k*.

Proof: Recall the lemma $\mathbb{P}(V) \setminus S = \mathbb{P}GL_2 * (x^q - x)$.

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_{\cap}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then *u* splits over *k*.

Proof: Recall the lemma $\mathbb{P}(V) \setminus S = \mathbb{P}GL_2 * (x^q - x)$.

‣ *u* has three distinct roots *r*1, *r*2, *r*3, so it is not in *S*

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ ⊂ **ℙ**(*VQ*) × **ℙ**¹ × **ℙ**¹ × **ℙ**¹

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then *u* splits over *k*.

Proof: Recall the lemma $\mathbb{P}(V) \setminus S = \mathbb{P}GL_2 * (x^q - x)$.

- ‣ *u* has three distinct roots *r*1, *r*2, *r*3, so it is not in *S*
- $\rightarrow u = m * (x^q x)$ where $m \in \text{PGL}_2$ is the automorphism of \mathbb{P}^1 sending the three points r_1 , r_2 , r_3 to the points 0, 1, ∞

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then *u* splits over *k*.

Proof: Recall the lemma $\mathbb{P}(V) \setminus S = \mathbb{P}GL_2 * (x^q - x)$.

- ‣ *u* has three distinct roots *r*1, *r*2, *r*3, so it is not in *S*
- \triangleright $u = m * (x^q x)$ where $m \in \text{PGL}_2$ is the automorphism of \mathbb{P}^1 sending the three points r_1 , r_2 , r_3 to the points 0, 1, ∞
- \triangleright *m* is defined over *k*, so all the roots $m^{-1} \mathbb{P}^1(\mathbb{F}_q)$ are over *k*

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ ⊂ **ℙ**(*VQ*) × **ℙ**¹ × **ℙ**¹ × **ℙ**¹

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ ⊂ **ℙ**(*VQ*) × **ℙ**¹ × **ℙ**¹ × **ℙ**¹

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_{\mathcal{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1
$$

\n
$$
\theta_3 \downarrow \qquad \qquad \subset \mathbb{P}(V_{\mathcal{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1
$$

\n
$$
\theta_2 \downarrow \qquad \qquad \subset \mathbb{P}(V_{\mathcal{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1
$$

\n
$$
\theta_1 \downarrow \qquad \qquad \subset \mathbb{P}(V_{\mathcal{Q}}) \times \mathbb{P}^1
$$

\n
$$
X_0 = \{(u)\} \qquad \qquad = \mathbb{P}(V_{\mathcal{Q}})
$$

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ ⊂ **ℙ**(*VQ*) × **ℙ**¹ × **ℙ**¹ × **ℙ**¹

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_\mathbb{Q}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_3 \downarrow \qquad \qquad \vdots
$$
\n
$$
X_2 = \{(u, r_1, r_2)\} \qquad \qquad \subset \mathbb{P}(V_\mathbb{Q}) \times \mathbb{P}^1 \times \mathbb{P}^1
$$
\n
$$
\theta_2 \downarrow \qquad \qquad \vdots
$$
\n
$$
X_1 = \{(u, r_1)\} \qquad \qquad \subset \mathbb{P}(V_\mathbb{Q}) \times \mathbb{P}^1
$$
\n
$$
\theta_1 \downarrow \qquad \qquad \vdots
$$
\n
$$
X_0 = \{(u)\} \qquad \qquad = \mathbb{P}(V_\mathbb{Q})
$$

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ ⊂ **ℙ**(*VQ*) × **ℙ**¹ × **ℙ**¹ × **ℙ**¹

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_3 \downarrow \qquad \qquad \angle \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1
$$
\n
$$
\theta_2 \downarrow \qquad \qquad \angle \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1
$$
\n
$$
\theta_1 \downarrow \qquad \qquad \angle \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1
$$
\n
$$
X_0 = \{(u)\} \qquad \qquad = \mathbb{P}(V_{\Omega}) \text{ Irreducible: isomorphic to } \mathbb{P}^1
$$

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ ⊂ **ℙ**(*VQ*) × **ℙ**¹ × **ℙ**¹ × **ℙ**¹

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_3 \downarrow \qquad \qquad \angle \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1
$$
\n
$$
\theta_2 \downarrow \qquad \qquad \angle \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1
$$
\n
$$
\theta_1 \downarrow \qquad \qquad \qquad \angle \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \text{ Irreducible: also isomorphic to } \mathbb{P}^1
$$
\n
$$
X_0 = \{(u)\} \qquad \qquad = \mathbb{P}(V_{\mathbb{Q}}) \text{ Irreducible: isomorphic to } \mathbb{P}^1
$$

 $C = \{(u, r_1, r_2, r_3) | r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ ⊂ **ℙ**(*VQ*) × **ℙ**¹ × **ℙ**¹ × **ℙ**¹

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_3 \downarrow \qquad \qquad \subset \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_2 \downarrow \qquad \qquad \subset \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible: also isomorphic to } \mathbb{P}^1
$$
\n
$$
\theta_1 \downarrow \qquad \qquad \text{isomorphic to } \mathbb{P}^1
$$
\n
$$
X_0 = \{(u)\} \qquad \qquad = \mathbb{P}(V_{\Omega}) \text{ Irreducible: isomorphic to } \mathbb{P}^1
$$

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_3 \downarrow \qquad \qquad \subset \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_2 \downarrow \qquad \qquad X_1 = \{(u, r_1)\} \cong \mathbb{P}^1 \qquad \qquad \subset \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1
$$
\n
$$
\theta_1 \downarrow \qquad \qquad X_0 = \{(u)\} \cong \mathbb{P}^1 \qquad \qquad = \mathbb{P}(V_{\mathbb{Q}})
$$

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_{\mathcal{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_3 \downarrow \qquad \qquad \subset \mathbb{P}(V_{\mathcal{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_2 \downarrow \qquad \qquad \qquad X_1 = \{(u, r_1)\} \cong \mathbb{P}^1 \qquad \qquad \subset \mathbb{P}(V_{\mathcal{Q}}) \times \mathbb{P}^1
$$
\n
$$
\theta_1 \downarrow \qquad \qquad \qquad X_0 = \{(u)\} \cong \mathbb{P}^1 \qquad \qquad = \mathbb{P}(V_{\mathcal{Q}})
$$

 \triangleright For the irreducibility of X_2 : observe that $X_2 = X_1 \times_{X_0} X_1 \setminus \Delta$, and deduce the irreducibility from the ramification properties of θ_1 : $X_1 \rightarrow X_0$

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_3 \downarrow \qquad \qquad \leq \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_2 \downarrow \qquad \qquad \leq \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_1 \downarrow \qquad \qquad \theta_1 \downarrow \qquad \qquad \leq \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \text{ I}
$$
\n
$$
X_0 = \{(u)\} \cong \mathbb{P}^1 \qquad \qquad = \mathbb{P}(V_{\Omega}) \qquad \qquad \text{Fibre product}
$$

 \triangleright For the irreducibility of X_2 : observe that $X_2 = X_1 \times_{X_0} X_1 \setminus \Delta$, and deduce the irreducibility from the ramification properties of θ_1 : $X_1 \rightarrow X_0$

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_3 \downarrow \qquad \qquad \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_2 \downarrow \qquad \qquad \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_1 \downarrow \qquad \qquad \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1 \text{ in } \mathbb{P}(V_{\mathbb{Q}}) \times \mathbb{P}^1
$$
\n
$$
X_0 = \{(u)\} \cong \mathbb{P}^1 \qquad \qquad \mathbb{P}(V_{\mathbb{Q}}) \qquad \qquad \text{Fibre product} \qquad \text{Diagonal}
$$

 \triangleright For the irreducibility of X_2 : observe that $X_2 = X_1 \times_{X_0} X_1 \setminus \Delta$, and deduce the irreducibility from the ramification properties of θ_1 : $X_1 \rightarrow X_0$

$$
X_3 = C = \{(u, r_1, r_2, r_3)\} \subset \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_3 \downarrow \qquad \qquad \angle \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_2 \downarrow \qquad \qquad \angle \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1 \times \mathbb{P}^1 \text{ Irreducible?}
$$
\n
$$
\theta_1 \downarrow \qquad \qquad \theta_1 \downarrow \qquad \qquad \angle \mathbb{P}(V_{\Omega}) \times \mathbb{P}^1
$$
\n
$$
X_0 = \{(u)\} \cong \mathbb{P}^1 \qquad \qquad = \mathbb{P}(V_{\Omega}) \qquad \qquad \text{Fibre product} \qquad \text{Diagonal}
$$

- \triangleright For the irreducibility of X_2 : observe that $X_2 = X_1 \times_{X_0} X_1 \setminus \Delta$, and deduce the irreducibility from the ramification properties of $\theta_1 : X_1 \rightarrow X_0$
- \triangleright For X_3 , same idea with $X_3 = X_2 \times_{X_1} X_2 \setminus \Delta$

THORSTEN KLEINJUNG*

A NEW PERSPECTIVE ON THE POWERS OF TWO DESCENT for discrete logarithms in finite fields

PRESENTED AT ANTS-XIII, MADISON, WI, USA, ON THE 20/07/2018 BY BENJAMIN WESOLOWSKI *EPFL, LAUSANNE, SWITZERLAND

- ‣ We have a cover *θ* : *C →* **ℙ**(*VQ*) defined over *k* such that
- ➡ *C* is absolutely irreducible
- ➡ For any *P* in *C*(*k*), the poly. *θ*(*P*) splits completely over *k*

- ‣ We have a cover *θ* : *C →* **ℙ**(*VQ*) defined over *k* such that
- ➡ *C* is absolutely irreducible
- \rightarrow For any *P* in *C*(*k*), the poly. θ (*P*) splits completely over *k*
- \triangleright We want to show that $\theta(C(k))$ is a large part of $\mathbb{P}(V_Q)(k)$

- ‣ We have a cover *θ* : *C →* **ℙ**(*VQ*) defined over *k* such that
- ➡ *C* is absolutely irreducible
- \Rightarrow For any P in $C(k)$, the poly. $\theta(P)$ splits completely over *k*
- \triangleright We want to show that $\theta(C(k))$ is a large part of $\mathbb{P}(V_{Q})(k)$
- ➡ *C* is of small degree, and absolutely irreducible, so $|C(k)| \approx |k|$

- ‣ We have a cover *θ* : *C →* **ℙ**(*VQ*) defined over *k* such that
- ➡ *C* is absolutely irreducible
- \Rightarrow For any P in $C(k)$, the poly. $\theta(P)$ splits completely over k
- \triangleright We want to show that $\theta(C(k))$ is a large part of $\mathbb{P}(V_{Q})(k)$
- ➡ *C* is of small degree, and absolutely irreducible, so $|C(k)| \approx |k|$
- $\rightarrow \theta$ is "($q^3 q$)-to-one", therefore |*θ*(*C*(*k*))| ≈ |*k*|/*q*³ ≈ |**ℙ**(*VQ*)(*k*)|/*q*³