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Discrete logarithm problem (DLP) in finite fields of fixed
characteristic ([For with p fixed and n — ... think Fn»):

» Given a generator g of F3» and an arbitrary element h, find
an integer m such that h = gm

This DLP is in an uncomfortable position: huge gap between

» The best known rigorous algorithm: Pomerance’s variant
of Hellman-Reyneri's of complexity L(1/2) [Pom87, HR82]

» The best known heuristic algorithms: in quasi-polynomial

time [BGJT14, GKZ18] '\
‘ they need to be
Understood bettfer



QUASI-POLYNOMIAL ALGORITHMS FOR DLP

» First heuristic quasi-poly. algorithm discovered by
Barbulescu, Gaudry, Joux, Thomé [BGJT14]

[BGJT14]R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic, EUROCRYPT 2014.

» Soon after, Granger, Kleinjung, Zumbragel [GKZ18]
proposed another one, with a promise: getting closer to a
rigorous algorithm

[GKZ18] R. Granger, T. Kleinjung, and J. Zumbragel. On the discrete logarithm problem in
finite fields of fixed characteristic, Transactions of the American Mathematical Society, 2018.
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QUASI-POLYNOMIAL ALGORITHMS FOR DLP

Main theorem of [GKZ18]: the DLP in fixed characteristic
can be solved in expected quasi-poly. time in fields that
admit a suitable representation.

» Suitable representation? Field F,q4[x]/(J) where J is an

irreducible polynomial in F,d[x] such that

x9 = ho/h1 mod J

with hg and hq polynomials in F,d[x] of degree at most 2

» Expected time glogaldegiJ)) + O(d)
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A DESCENT IS SUFFICIENT

First idea of the proof: a descent algorithm is sufficient

» Fix the factor base & ={ linear polynomials in Fd[x] }

» Descent: Given any polynomial Q in Fyd[x] find integers ey,
for fin &, such that

Q=][fe modJ.
fegd

» To solve the DLP, it is sufficient to have an efficient descent
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DEGREE TWO ELIMINATION

Main ingredient of the descent, the degree two elimination:

» Given an extension k of [« and an irreducible quadratic
polynomial Q in k[x],

» Find linear polynomials L1,L5,...,L, in k[x] such that

Q E.]___[ L,’ mod J.

| =1



[IGZAG DESCENT

The zigzag descent: transform the degree two elimination
into a full descent algorithm

Pegree two elimination

u:qdze 1 @ % @r.

2
[qu:ze -2 @,g-—-‘ 2 /.aafo
5 ......... q”ﬂdra .,‘/‘9 af/b
: '%A f,‘l h,.
$ hy.
o,,er 0
L B,
20 Ty .
. . Q in Falx],
Fy2d (D€—(2) irreducible,
2 of degree I

Rewrite as

Foo @é——-—'—)@ @-—-—-}@ irreducible

of degree 2¢
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POLYNOMIALS WITH HIGHER SPLITTING PROBABILITY

Fix an extension k of Fy¢, and let Q an irred. quadratic in k[x]

» Key idea (from [GGMZ13]): polynomials of the form
axd*1 + Bxa+yx+ 0O inklx]
have a high probability to split over k (around g-3)

» Let V be the vector space of dimension 4 of these
polynomials, i.e., V =span(xa+1,x9, x, 1) c k|x]

[GGMZ13] F. Gologlu, R. Granger, G. McGuire, and J. Zumbragel. On the function field sieve
and the impact of higher splitting probabilities. CRYPTO 2013.
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SMOOTH RELATIONS

» V =span(xa+1,x9,x, 1) c k[x]

» We have x9 = ho/h1 mod J, so

axd+1 + ﬁXq + yx + 5 EGXI‘)O + ﬁhoh+ YXh1 + 5h1
1

) !

Splits with high probability numerator of degree 3

mod J

» Consider the vector subspace Vg of dimension 2in V,
where Q divides the right-hand side:

Vo ={axa+1 + Bxda + yx + 6 | axho + Bho + yxh1 + 6hy = 0 mod Q}
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THE DEGREE TWO ELIMINATION

» Foranyf=axa+1 + Bx9 + yx + O in Vg,

h.f = axhg + Bho + yxh1 + 6hy mod J
» The quotient Ly = (axho + Bho + yxh1 + 6h41)/Q is linear
h.f=LoQ mod J
> If f splits into linears Ly,...,Ly + 1 in k[x], then
Q=hily Ly...Lg+ 1 modJ

» Algorithm: choose random polynomials fin Vg until it splits
over k. Equivalently, sample f from the projective line P(Vy).
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STRATEGY

How many polynomials on the curve P(V() split over k? Here
is the new approach:

» Construct a curve C defined over k, and a surjective
morphism 6 : C — [P(V) such that

= C is absolutely irreducible

= For any rational point P in C(k), the polynomial 8(P) splits
over k

» Then, by the absolute irreducibility, C(k) has a lot of points,
therefore a lot of polynomials in P(V() split over k
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THE ACTION OF PGL;
Given f € k[x] and a matrix (i 2) in GL,, we define

(a b>* f(x) = (cx + d)degff<

ax + b
c d

cx + d
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THE ACTION OF PGL, ON X"- X V=spanlxs+1 ys y 1)

» Forany m in PGLy, m * (xa — x) is in P(V)
» The (g + 1) distinct roots of m * (x9 — x) are m"PY([F,)
» |Is there anything in P(V) that is not of this form m * (x — x)?

= Yes, for instance (x — a)i(x — b)... These polynomials form a
quadratic surface S in P(V)

Lemma: P(V)\ S = PGL, * (x9 — x).
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IRREDUCIBLE COVER

Recall that we want to construct a curve C defined over k,
and a surjective morphism 6 : C — P(V() such that

= (C is absolutely irreducible

= For any rational point P in C(k), the polynomial 8(P) splits
over k
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IRREDUCIBLE COVER

C ={(u, r, ra, r3) | r1, r2, r3 are three dist. roots of u}
c P(Vp) x P! x P1 x [P1

Proposition: If (u, ri, ry, r3) € C(k) then u splits over k.

Proof: Recall the lemma P(V)\ S = PGL, * (x9 — x).

» u has three distinct roots rqi, rp, r3, soitis notin S

» u=m * (x3 —x) where m € PGL; is the automorphism of [P

sending the three points rq, ry, r3 to the points 0, 1, o

» m is defined over k, so all the roots m-'P([F,) are over k
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IRREDUCIBLE COVERS

C ={(u, r, ra, r3) | r1, r2, r3 are three dist. roots of u}
c P(Vp) x P! x P1 x [P1

» Is C absolutely irreducible? Consider a chain of covers

X3=C={(u,r,ror3)} cP(Vpo) x P1 x P! x [P lrreducible?

Xo ={(u, ri, rn)} c P(Vp) x P1 x P1 ln'edUCib,e?
6, l

X1 = (u, r1 )} C [FD(VQ) X [P1 .lrredUCible: a'SO
6. l [Somorphic to [P!

Xo ={(u)} = P(Vo)

Irreducible: isomorphic to P!



IRREDUCIBLE COVERS
X3=C={(u,r,r,r)} cP(Vpo) x P1 x P! x [P lrreducible?

Xo ={(u, r, rp)} c P(Vp) x P1 x [P1 lrreducible?
6, l
X1 ={(u, n)} = P! c P(Vq) x P?

Xo ={(u)} = P! = P(Vo)
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Xo ={(u)} = P! = P(Vo)

» For the irreducibility of X2: observe that X, = X1 xx, X1 \ A,
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properties of 61 : X1 — Xp



IRREDUCIBLE COVERS
X3=C={(u,r,r,r)} cP(Vpo) x P1 x P! x [P lrreducible?

Xo ={(u, ry, r)} c P(Vg) x P x P lrredueib|e?
6, l
X1={(u, n)} = P! c P(Vq) x P1
64 l : duet
fibre pYO
Xo ={(u)} = P! = P(Va) \

» For the irreducibility of X2: observe that X, = X1 xx, X1 \ A,

and deduce the irreducibility from the ramification
properties of 61 : X1 — Xp



IRREDUCIBLE COVERS
X3=C={(u,r,r,r)} cP(Vpo) x P1 x P! x [P lrreducible?

Xo = {(U, ri, r2)} C I]:D(VQ) x P1 x [P1 lrreducible?
0, l
X1 ={(u, n)} = P! c P(Vq) x P
6 l cibre product Piagonal

Xo = {(u)} = P! = P(Vq) \, ‘

» For the irreducibility of X2: observe that X, = X1 xx, X1 \ A,

and deduce the irreducibility from the ramification
properties of 61 : X1 — Xp



IRREDUCIBLE COVERS
X3=C={(u,r,r,r)} cP(Vpo) x P1 x P! x [P lrreducible?

Xo = {(U, ri, r2)} C I]:D(VQ) x P1 x [P1 lrreducible?
0, l
X1 ={(u, n)} = P! c P(Vq) x P
6 l cibre product Piagonal

Xo = {(u)} = P! = P(Vo) \, ‘

» For the irreducibility of X2: observe that X, = X1 xx, X1 \ A,

and deduce the irreducibility from the ramification
properties of 61 : X1 — Xp

» For X3, same idea with X3 = X2 xx, X2 \ A
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COUNTING SPLIT POLYNOMIALS

» We have a cover 8 : C — P(Vp) defined over k such that
= (C is absolutely irreducible

= For any P in C(k), the poly. 6(P) splits completely over k
» We want to show that 6(C(k)) is a large part of P(Vo)(k)
= C is of small degree, and absolutely irreducible, so

|C(k)| = |ki

= 0@ is “(g3 — g)-to-one”, therefore

O(C(K))| = |kl/q* = [P(Va)(k)|/q?



