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HEURISTIC AND RIGOROUS ALGORITHMS FOR DLP
Discrete logarithm problem (DLP) in finite fields of fixed 
characteristic (𝔽pn with p fixed and n → ∞… think 𝔽2n):

‣ Given a generator g of 𝔽pn and an arbitrary element h, find 
an integer m such that h = gm 
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characteristic (𝔽pn with p fixed and n → ∞… think 𝔽2n):

‣ Given a generator g of 𝔽pn and an arbitrary element h, find 
an integer m such that h = gm 

This DLP is in an uncomfortable position: huge gap between

▸ The best known rigorous algorithm: Pomerance’s variant 
of Hellman-Reyneri’s of complexity L(1/2) [Pom87, HR82]

▸ The best known heuristic algorithms: in quasi-polynomial 
time [BGJT14, GKZ18]

×

they need to be 
understood  better



QUASI-POLYNOMIAL ALGORITHMS FOR DLP
‣ First heuristic quasi-poly. algorithm discovered by 

Barbulescu, Gaudry, Joux, Thomé [BGJT14] 

[BGJT14] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-polynomial 
algorithm for discrete logarithm in finite fields of small characteristic, EUROCRYPT 2014. 

‣ Soon after, Granger, Kleinjung, Zumbrägel [GKZ18] 
proposed another one, with a promise: getting closer to a 
rigorous algorithm 

[GKZ18] R. Granger, T. Kleinjung, and J. Zumbrägel. On the discrete logarithm problem in 
finite fields of fixed characteristic, Transactions of the American Mathematical Society, 2018.
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QUASI-POLYNOMIAL ALGORITHMS FOR DLP
Main theorem of [GKZ18]: the DLP in fixed characteristic 
can be solved in expected quasi-poly. time in fields that 
admit a suitable representation.

‣ Suitable representation? Field 𝔽qd[x]/(J) where J is an 
irreducible polynomial in 𝔽qd[x] such that

 with h0 and h1 polynomials in 𝔽qd[x] of degree at most 2

‣ Expected time qlog2(deg(J)) + O(d) 

xq ≡ h0/h1 mod J
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A DESCENT IS SUFFICIENT
First idea of the proof: a descent algorithm is sufficient

‣ Fix the factor base 𝔉 = { linear polynomials in 𝔽qd[x] }

‣ Descent: Given any polynomial Q in 𝔽qd[x] find integers ef, 
for f in 𝔉, such that

‣ To solve the DLP, it is sufficient to have an efficient descent

Q ≡ ∏ f ef  mod J.
f ∊ 𝔉
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DEGREE TWO ELIMINATION
Main ingredient of the descent, the degree two elimination:

‣ Given an extension k of 𝔽qd and an irreducible quadratic 
polynomial Q in k[x],

‣ Find linear polynomials L1,L2,…,Lm in k[x] such that

Q ≡ ∏ Li  mod J.
i = 1

m



The zigzag descent: transform the degree two elimination 
into a full descent algorithm

ZIGZAG DESCENT

2

Factorisation into 

quadratics over 𝔽qd2 e – 1

1
Degree two elimination

2

Norm

1

21

1 2𝔽qd

𝔽q2d

𝔽qd2e — 1

𝔽qd2e — 2

2

2

2

2

D

Q in 𝔽qd[x], 
irreducible,                 
of degree D

2e
Rewrite as 
irreducible                 

of degree 2e
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POLYNOMIALS WITH HIGHER SPLITTING PROBABILITY
Fix an extension k of 𝔽qd, and let Q an irred. quadratic in k[x]

‣ Key idea (from [GGMZ13]): polynomials of the form

have a high probability to split over k (around q—3)

‣ Let V be the vector space of dimension 4 of these 
polynomials, i.e., V = span(xq + 1, xq, x, 1) ⊂ k[x]

αxq + 1 + βxq + γx + δ     in k[x]

[GGMZ13] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. On the function field sieve 
and the impact of higher splitting probabilities. CRYPTO 2013.
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‣ V = span(xq + 1, xq, x, 1) ⊂ k[x]

‣ We have xq ≡ h0/h1 mod J, so

‣ Consider the vector subspace VQ of dimension 2 in V, 
where Q divides the right-hand side:

SMOOTH RELATIONS

αxh0 + βh0 + γxh1 + δh1αxq + 1 + βxq + γx + δ ≡                                             mod Jh1

Splits with high probability numerator of degree 3

VQ = {αxq + 1 + βxq + γx + δ | αxh0 + βh0 + γxh1 + δh1 ≡ 0 mod Q}
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THE DEGREE TWO ELIMINATION
‣ For any f = αxq + 1 + βxq + γx + δ in VQ, 

‣ The quotient L0 = (αxh0 + βh0 + γxh1 + δh1)/Q is linear

‣ If f splits into linears L1,…,Lq + 1 in k[x], then

‣ Algorithm: choose random polynomials f in VQ until it splits 
over k. Equivalently, sample f from the projective line ℙ(VQ).

h1f ≡ αxh0 + βh0 + γxh1 + δh1 mod J

Q ≡ h1 L0  L1 … Lq + 1 mod J—1

h1f ≡ L0Q mod J
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STRATEGY
How many polynomials on the curve ℙ(VQ) split over k? Here 
is the new approach:

‣ Construct a curve C defined over k, and a surjective 
morphism θ : C → ℙ(VQ) such that

➡ C is absolutely irreducible

➡ For any rational point P in C(k), the polynomial θ(P) splits 
over k

‣ Then, by the absolute irreducibility, C(k) has a lot of points, 
therefore a lot of polynomials in ℙ(VQ) split over k
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THE ACTION OF PGL2

Given f ∊ k[x] and a matrix                in GL2, we define(   )a   b
c   d

(   )a   b
c   d f(x) = (cx + d)deg f f(     )ax + b ٭

cx + d
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THE ACTION OF PGL2 ON X  - X
‣ For any m in PGL2, m ٭ (xq — x) is in ℙ(V)

‣ The (q + 1) distinct roots of m ٭ (xq — x) are m-1ℙ1(𝔽q)

‣ Is there anything in ℙ(V) that is not of this form m ٭ (xq — x)?

➡ Yes, for instance (x — a)q(x — b)… These polynomials form a 
quadratic surface S in ℙ(V)

Lemma: ℙ(V) \ S = PGL2 ٭ (xq — x).

q V = span(xq + 1, xq, x, 1)
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IRREDUCIBLE COVER
Recall that we want to construct a curve C defined over k, 
and a surjective morphism θ : C → ℙ(VQ) such that 

➡ C is absolutely irreducible 

➡ For any rational point P in C(k), the polynomial θ(P) splits 
over k
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Proposition: If (u, r1, r2, r3) ∊ C(k) then u splits over k.

Proof: Recall the lemma ℙ(V) \ S = PGL2 ٭ (xq — x).

‣ u has three distinct roots r1, r2, r3, so it is not in S

‣ u = m ٭ (xq — x) where m ∊ PGL2 is the automorphism of ℙ1 
sending the three points r1, r2, r3 to the points 0, 1, ∞

‣ m is defined over k, so all the roots m-1ℙ1(𝔽q) are over k

C = {(u, r1, r2, r3) | r1, r2, r3 are three dist. roots of u}
ℙ(VQ) × ℙ1 × ℙ1 × ℙ1⊂
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IRREDUCIBLE COVERS

‣ For the irreducibility of X2: observe that X2 = X1 ×X0 X1 \ Δ, 
and deduce the irreducibility from the ramification 
properties of θ1 : X1 → X0 

‣ For X3, same idea with X3 = X2 ×X1 X2 \ Δ 

X3 = C = {(u, r1, r2, r3)}   ⊂ ℙ(VQ) × ℙ1 × ℙ1 × ℙ1

X2 = {(u, r1, r2)}               ⊂ ℙ(VQ) × ℙ1 × ℙ1

X1 = {(u, r1)}                    ⊂ ℙ(VQ) × ℙ1

X0 = {(u)}                         = ℙ(VQ)
θ1

θ2

θ3

Irreducible?

Irreducible?

≅ ℙ1

≅ ℙ1

Fibre product Diagonal
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COUNTING SPLIT POLYNOMIALS
‣ We have a cover θ : C → ℙ(VQ) defined over k such that

➡ C is absolutely irreducible

➡ For any P in C(k), the poly. θ(P) splits completely over k
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COUNTING SPLIT POLYNOMIALS
‣ We have a cover θ : C → ℙ(VQ) defined over k such that

➡ C is absolutely irreducible

➡ For any P in C(k), the poly. θ(P) splits completely over k

‣ We want to show that θ(C(k)) is a large part of ℙ(VQ)(k)

➡ C is of small degree, and absolutely irreducible, so

➡ θ is “(q3 — q)-to-one”, therefore

|C(k)| ≈ |k|

|θ(C(k))| ≈ |k|/q3 ≈ |ℙ(VQ)(k)|/q3


