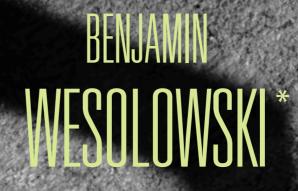
THORSTEN KLEINJUNG *



A NEW PERSPECTIVE ON THE POWERS OF TWO DESCENT for discrete logarithms in finite fields

PRESENTED AT ANTS-XIII, MADISON, WI, USA, ON THE 20/07/2018 BY BENJAMIN WESOLOWSKI *EPFL, LAUSANNE, SWITZERLAND

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty$... think \mathbb{F}_{2^n}):

• Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element h, find an integer m such that $h = g^m$

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty$... think \mathbb{F}_{2^n}):

• Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element h, find an integer m such that $h = g^m$

This DLP is in an uncomfortable position: huge gap between

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty$... think \mathbb{F}_{2^n}):

• Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element h, find an integer m such that $h = g^m$

This DLP is in an uncomfortable position: huge gap between

The best known rigorous algorithm: Pomerance's variant of Hellman-Reyneri's of complexity L(1/2) [Pom87, HR82]

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty$... think \mathbb{F}_{2^n}):

• Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element h, find an integer m such that $h = g^m$

This DLP is in an uncomfortable position: huge gap between

- The best known rigorous algorithm: Pomerance's variant of Hellman-Reyneri's of complexity L(1/2) [Pom87, HR82]
- The best known heuristic algorithms: in quasi-polynomial time [BGJT14, GKZ18]

Discrete logarithm problem (DLP) in finite fields of fixed characteristic (\mathbb{F}_{p^n} with p fixed and $n \to \infty$... think \mathbb{F}_{2^n}):

• Given a generator g of $\mathbb{F}_{p^n}^{\times}$ and an arbitrary element h, find an integer m such that $h = g^m$

This DLP is in an uncomfortable position: huge gap between

- The best known rigorous algorithm: Pomerance's variant of Hellman-Reyneri's of complexity L(1/2) [Pom87, HR82]
- The best known heuristic algorithms: in quasi-polynomial time [BGJT14, GKZ18]

they need to be understood better

QUASI-POLYNOMIAL ALGORITHMS FOR DLP

 First heuristic quasi-poly. algorithm discovered by Barbulescu, Gaudry, Joux, Thomé [BGJT14]

[BGJT14] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. *A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic*, EUROCRYPT 2014.

 Soon after, Granger, Kleinjung, Zumbrägel [GKZ18] proposed another one, with a promise: getting closer to a rigorous algorithm

[GKZ18] R. Granger, T. Kleinjung, and J. Zumbrägel. *On the discrete logarithm problem in finite fields of fixed characteristic*, Transactions of the American Mathematical Society, 2018.

QUASI-POLYNOMIAL ALGORITHMS FOR DLP

Main theorem of [GKZ18]: the DLP in fixed characteristic can be solved in expected quasi-poly. time in fields that admit a suitable representation.

QUASI-POLYNOMIAL ALGORITHMS FOR DLP

Main theorem of [GKZ18]: the DLP in fixed characteristic can be solved in expected quasi-poly. time in fields that admit a suitable representation.

Suitable representation? Field $\mathbb{F}_{q^d}[x]/(J)$ where J is an irreducible polynomial in $\mathbb{F}_{q^d}[x]$ such that

 $x^q \equiv h_0/h_1 \bmod J$

with h_0 and h_1 polynomials in $\mathbb{F}_{q^d}[x]$ of degree at most 2

Expected time $q^{\log_2(\deg(J))} + O(d)$

First idea of the proof: a descent algorithm is sufficient

First idea of the proof: a descent algorithm is sufficient

Fix the factor base $\mathfrak{F} = \{ \text{ linear polynomials in } \mathbb{F}_{q^d}[x] \}$

First idea of the proof: a descent algorithm is sufficient

- Fix the factor base $\mathfrak{F} = \{ \text{ linear polynomials in } \mathbb{F}_{q^d}[x] \}$
- **Descent:** Given any polynomial Q in $\mathbb{F}_{q^d}[x]$ find integers e_f , for f in \mathfrak{F} , such that

$$Q \equiv \prod_{f \in \mathfrak{F}} f^{e_f} \mod J.$$

First idea of the proof: a descent algorithm is sufficient

- Fix the factor base $\mathfrak{F} = \{ \text{ linear polynomials in } \mathbb{F}_{q^d}[x] \}$
- **Descent:** Given any polynomial Q in $\mathbb{F}_{q^d}[x]$ find integers e_f , for f in \mathfrak{F} , such that

$$Q \equiv \prod_{f \in \mathfrak{F}} f^{e_f} \mod J.$$

To solve the DLP, it is sufficient to have an efficient descent

Main ingredient of the descent, the **degree two elimination**:

Main ingredient of the descent, the **degree two elimination**:

• Given an extension k of \mathbb{F}_{q^d} and an irreducible **quadratic** polynomial Q in k[x],

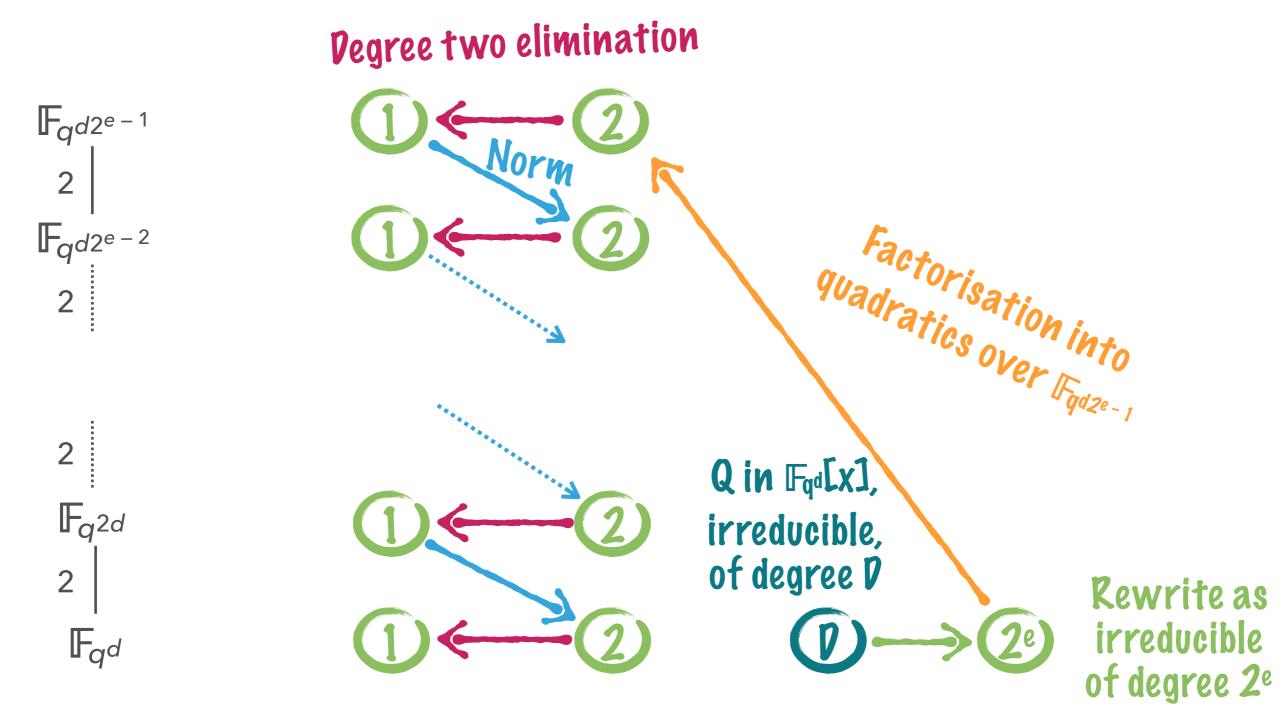
Main ingredient of the descent, the **degree two elimination**:

- Given an extension k of \mathbb{F}_{q^d} and an irreducible **quadratic** polynomial Q in k[x],
- Find **linear** polynomials L_1, L_2, \dots, L_m in k[x] such that

$$Q \equiv \prod_{i=1}^{m} L_i \mod J.$$

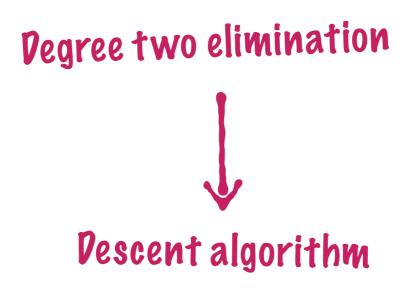
ZIGZAG DESCENT

The **zigzag descent**: transform the degree two elimination into a **full descent algorithm**

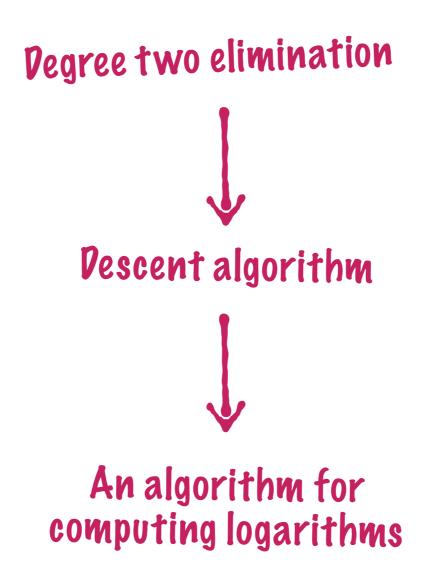


Degree two elimination

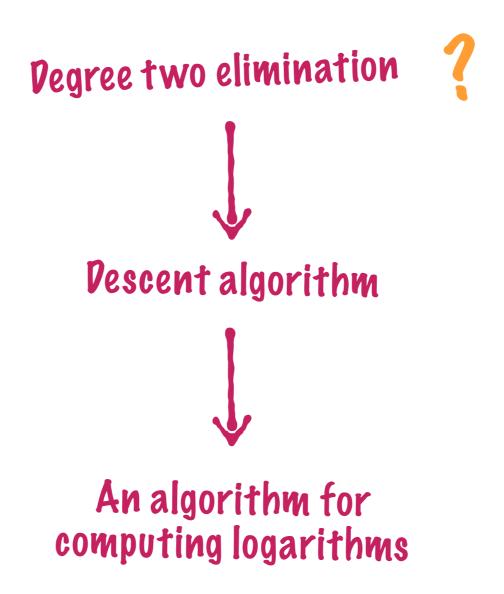
SUMMARY

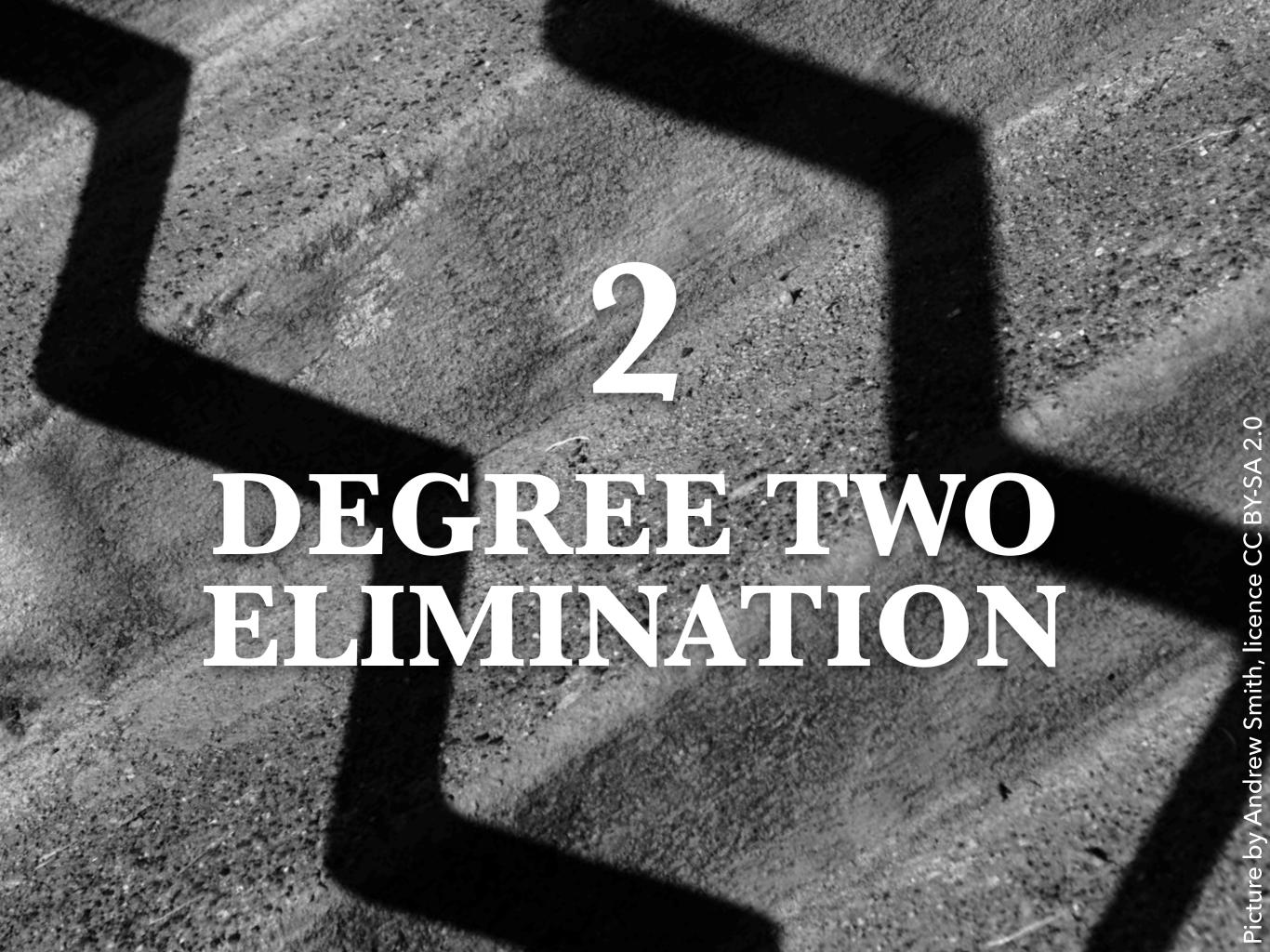


SUMMARY



SUMMARY





POLYNOMIALS WITH HIGHER SPLITTING PROBABILITY

Fix an extension k of \mathbb{F}_{q^d} , and let Q an irred. quadratic in k[x]

POLYNOMIALS WITH HIGHER SPLITTING PROBABILITY

Fix an extension k of \mathbb{F}_{q^d} , and let Q an irred. quadratic in k[x]

Key idea (from [GGMZ13]): polynomials of the form

$$ax^{q+1} + \beta x^q + \gamma x + \delta$$
 in $k[x]$

have a high probability to split over k (around q^{-3})

[GGMZ13] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. On the function field sieve and the impact of higher splitting probabilities. CRYPTO 2013.

POLYNOMIALS WITH HIGHER SPLITTING PROBABILITY

Fix an extension k of \mathbb{F}_{q^d} , and let Q an irred. quadratic in k[x]

Key idea (from [GGMZ13]): polynomials of the form

$$ax^{q+1} + \beta x^q + \gamma x + \delta$$
 in $k[x]$

have a high probability to split over k (around q^{-3})

• Let V be the vector space of dimension 4 of these polynomials, i.e., $V = \text{span}(x^{q+1}, x^q, x, 1) \subset k[x]$

[GGMZ13] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. On the function field sieve and the impact of higher splitting probabilities. CRYPTO 2013.

▶ $V = \text{span}(x^{q+1}, x^{q}, x, 1) \subset k[x]$

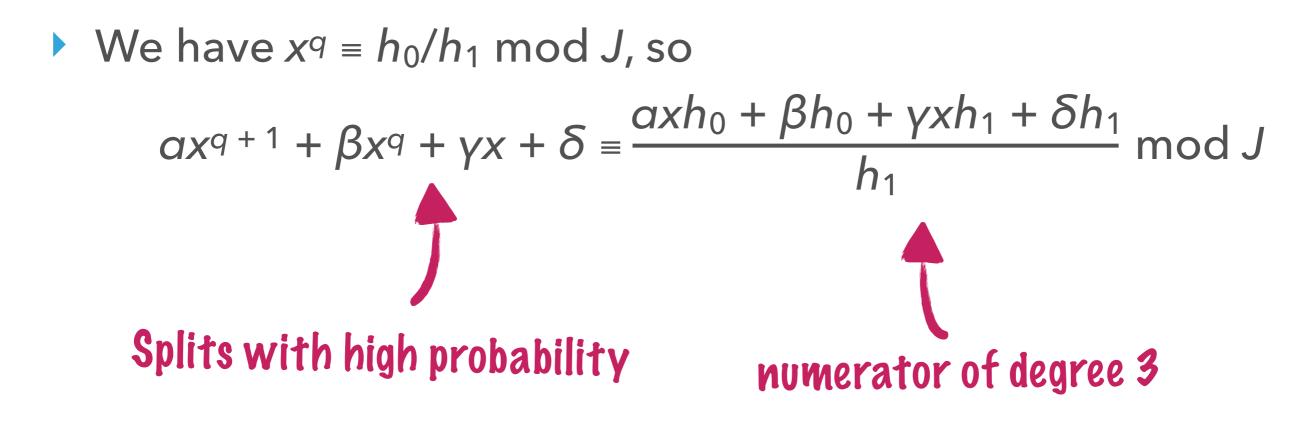
▶
$$V = \text{span}(x^{q+1}, x^{q}, x, 1) \subset k[x]$$

• We have
$$x^q \equiv h_0/h_1 \mod J$$
, so
 $ax^{q+1} + \beta x^q + \gamma x + \delta \equiv \frac{axh_0 + \beta h_0 + \gamma x h_1 + \delta h_1}{h_1} \mod J$

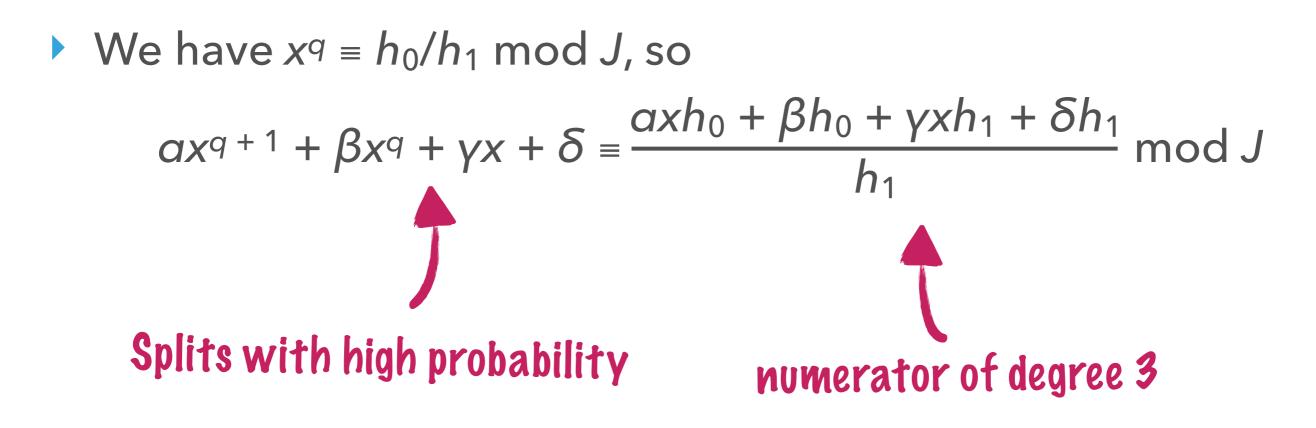
▶
$$V = \text{span}(x^{q+1}, x^{q}, x, 1) \subset k[x]$$

• We have
$$x^q \equiv h_0/h_1 \mod J$$
, so
 $ax^{q+1} + \beta x^q + \gamma x + \delta \equiv \frac{axh_0 + \beta h_0 + \gamma x h_1 + \delta h_1}{h_1} \mod J$
• Splits with high probability

▶
$$V = \text{span}(x^{q+1}, x^{q}, x, 1) \subset k[x]$$



▶
$$V = \text{span}(x^{q+1}, x^{q}, x, 1) \subset k[x]$$



Consider the vector subspace V_Q of dimension 2 in V, where Q divides the right-hand side:

 $V_{\mathcal{Q}} = \{ax^{q+1} + \beta x^q + \gamma x + \delta \mid axh_0 + \beta h_0 + \gamma x h_1 + \delta h_1 \equiv 0 \mod Q\}$

For any $f = \alpha x^{q+1} + \beta x^q + \gamma x + \delta \text{ in } V_Q$,

 $h_1 f \equiv a x h_0 + \beta h_0 + \gamma x h_1 + \delta h_1 \mod J$

For any
$$f = \alpha x^{q+1} + \beta x^q + \gamma x + \delta \text{ in } V_Q$$
,

 $h_1 f \equiv a x h_0 + \beta h_0 + \gamma x h_1 + \delta h_1 \mod J$

The quotient $L_0 = (\alpha x h_0 + \beta h_0 + \gamma x h_1 + \delta h_1)/Q$ is linear

 $h_1 f \equiv L_0 Q \mod J$

For any
$$f = \alpha x^{q+1} + \beta x^q + \gamma x + \delta \text{ in } V_Q$$
,

 $h_1 f \equiv a x h_0 + \beta h_0 + \gamma x h_1 + \delta h_1 \mod J$

• The quotient $L_0 = (axh_0 + \beta h_0 + \gamma x h_1 + \delta h_1)/Q$ is linear

 $h_1 f \equiv L_0 Q \mod J$

If f splits into linears L_1, \ldots, L_{q+1} in k[x], then

$$Q = h_1 L_0^{-1} L_1 \dots L_{q+1} \mod J$$

For any
$$f = ax^{q+1} + \beta x^q + \gamma x + \delta$$
 in V_Q ,

 $h_1 f \equiv a x h_0 + \beta h_0 + \gamma x h_1 + \delta h_1 \mod J$

• The quotient $L_0 = (\alpha x h_0 + \beta h_0 + \gamma x h_1 + \delta h_1)/Q$ is linear

 $h_1 f \equiv L_0 Q \mod J$

If f splits into linears L_1, \dots, L_{q+1} in k[x], then

$$Q = h_1 L_0^{-1} L_1 \dots L_{q+1} \mod J$$

• Algorithm: choose random polynomials f in V_Q until it splits over k. Equivalently, sample f from the projective line $\mathbb{P}(V_Q)$.

How many polynomials on the curve $\mathbb{P}(V_Q)$ split over k? Here is the new approach:

How many polynomials on the curve $\mathbb{P}(V_Q)$ split over k? Here is the new approach:

• Construct a curve C defined over k, and a surjective morphism $\theta : C \to \mathbb{P}(V_Q)$ such that

How many polynomials on the curve $\mathbb{P}(V_{Q})$ split over k? Here is the new approach:

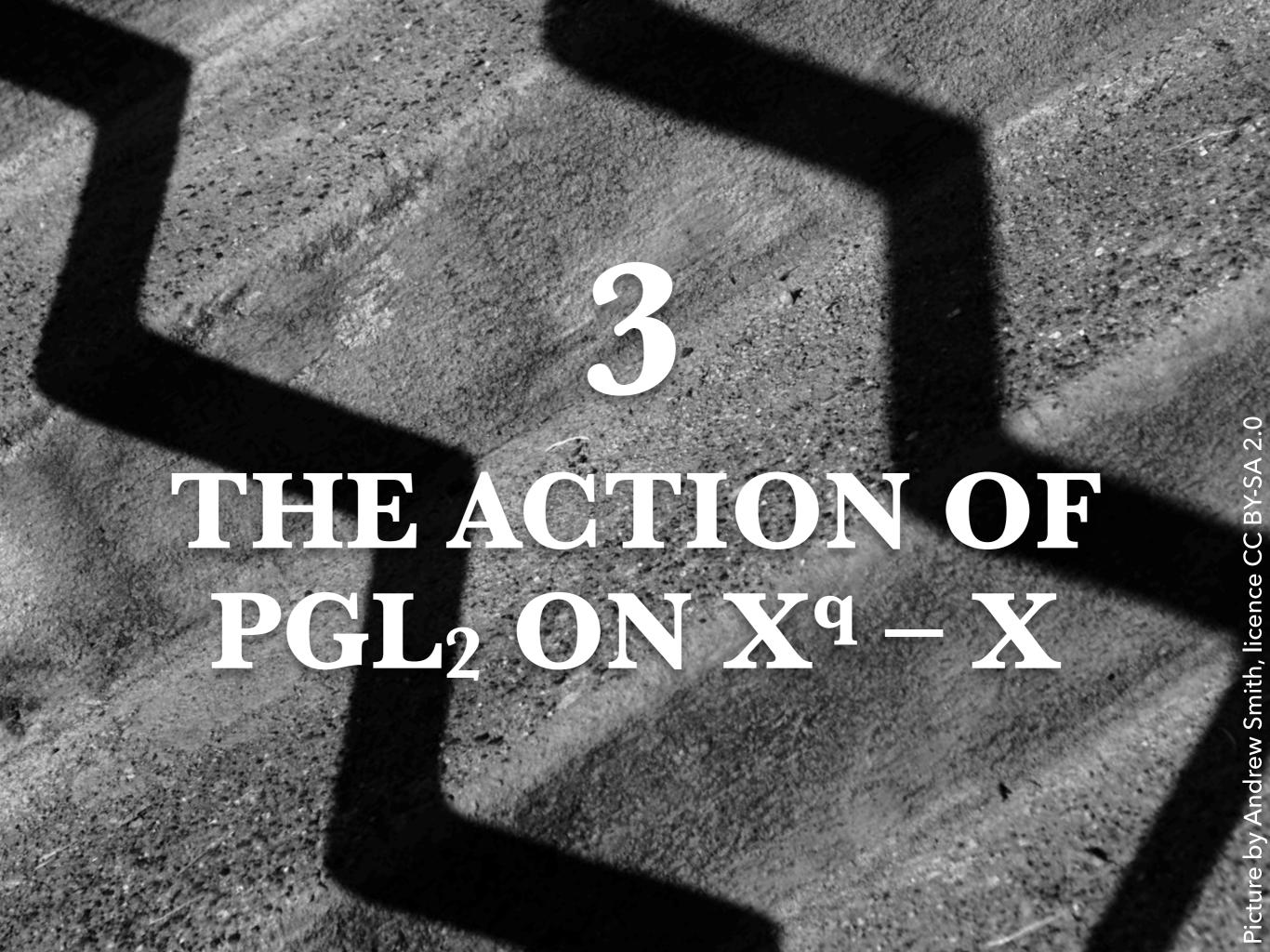
- Construct a curve C defined over k, and a surjective morphism $\theta : C \to \mathbb{P}(V_Q)$ such that
- → C is absolutely irreducible

How many polynomials on the curve $\mathbb{P}(V_Q)$ split over k? Here is the new approach:

- Construct a curve C defined over k, and a surjective morphism $\theta : C \to \mathbb{P}(V_Q)$ such that
- ➡ C is absolutely irreducible
- For any rational point P in C(k), the polynomial $\theta(P)$ splits over k

How many polynomials on the curve $\mathbb{P}(V_Q)$ split over k? Here is the new approach:

- Construct a curve C defined over k, and a surjective morphism $\theta : C \to \mathbb{P}(V_Q)$ such that
- ➡ C is absolutely irreducible
- For any rational point P in C(k), the polynomial $\theta(P)$ splits over k
- Then, by the absolute irreducibility, C(k) has a lot of points, therefore a lot of polynomials in P(V_Q) split over k



THE ACTION OF PGL₂

Given $f \in k[x]$ and a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in GL₂, we define

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} * f(x) = (cx + d)^{\deg f} f\left(\frac{ax + b}{cx + d}\right)$$

THE ACTION OF PGL₂ on X^q - X

$$V = span(x^{q+1}, x^{q}, x, 1)$$

For any *m* in PGL₂, $m * (x^q - x)$ is in $\mathbb{P}(V)$

THE ACTION OF PGL₂ ON X^q - X

$$V = span(x^{q+1}, x^{q}, x, 1)$$

- For any *m* in PGL₂, $m * (x^q x)$ is in $\mathbb{P}(V)$
- The (q + 1) distinct roots of $m * (x^q x)$ are $m^{-1}\mathbb{P}^1(\mathbb{F}_q)$

THE ACTION OF PGL₂ ON X^q - X

$$V = span(x^{q+1}, x^{q}, x, 1)$$

- For any *m* in PGL₂, $m * (x^q x)$ is in $\mathbb{P}(V)$
- The (q + 1) distinct roots of $m * (x^q x)$ are $m^{-1}\mathbb{P}^1(\mathbb{F}_q)$
- Is there anything in $\mathbb{P}(V)$ that is not of this form $m * (x^q x)$?

THE ACTION OF PGL₂ on X^q - X

$$V = span(x^{q+1}, x^{q}, x, 1)$$

- For any *m* in PGL₂, $m * (x^q x)$ is in $\mathbb{P}(V)$
- The (q + 1) distinct roots of $m * (x^q x)$ are $m^{-1}\mathbb{P}^1(\mathbb{F}_q)$
- Is there anything in $\mathbb{P}(V)$ that is not of this form $m * (x^q x)$?
- → Yes, for instance $(x a)^q (x b)$... These polynomials form a quadratic surface S in $\mathbb{P}(V)$

THE ACTION OF PGL₂ on X^q - X

$$V = span(x^{q+1}, x^{q}, x, 1)$$

- For any *m* in PGL₂, $m * (x^q x)$ is in $\mathbb{P}(V)$
- The (q + 1) distinct roots of $m * (x^q x)$ are $m^{-1}\mathbb{P}^1(\mathbb{F}_q)$
- ▶ Is there anything in $\mathbb{P}(V)$ that is not of this form $m * (x^q x)$?
- Yes, for instance $(x a)^q (x b)$... These polynomials form a quadratic surface S in $\mathbb{P}(V)$

Lemma: $\mathbb{P}(V) \setminus S = \mathrm{PGL}_2 * (x^q - x).$

Recall that we want to construct a curve C defined over k, and a surjective morphism $\theta : C \to \mathbb{P}(V_Q)$ such that

- → *C* is absolutely irreducible
- For any rational point P in C(k), the polynomial $\theta(P)$ splits over k

$C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then u splits over k.

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then *u* splits over *k*.

Proof: Recall the lemma $\mathbb{P}(V) \setminus S = PGL_2 * (x^q - x)$.

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then *u* splits over *k*.

Proof: Recall the lemma $\mathbb{P}(V) \setminus S = PGL_2 * (x^q - x)$.

• *u* has three distinct roots r_1 , r_2 , r_3 , so it is not in S

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then *u* splits over *k*.

Proof: Recall the lemma $\mathbb{P}(V) \setminus S = PGL_2 * (x^q - x)$.

- *u* has three distinct roots r_1 , r_2 , r_3 , so it is not in S
- $u = m * (x^q x)$ where $m \in PGL_2$ is the automorphism of \mathbb{P}^1 sending the three points r_1 , r_2 , r_3 to the points 0, 1, ∞

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

Proposition: If $(u, r_1, r_2, r_3) \in C(k)$ then *u* splits over *k*.

Proof: Recall the lemma $\mathbb{P}(V) \setminus S = PGL_2 * (x^q - x)$.

- *u* has three distinct roots r_1 , r_2 , r_3 , so it is not in S
- u = m * (x^q − x) where m ∈ PGL₂ is the automorphism of \mathbb{P}^1 sending the three points r₁, r₂, r₃ to the points 0, 1, ∞
- *m* is defined over *k*, so all the roots $m^{-1}\mathbb{P}^1(\mathbb{F}_q)$ are over *k*

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$$

$$\theta_{3} \downarrow$$

$$X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1}$$

$$\theta_{2} \downarrow$$

$$X_{1} = \{(u, r_{1})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1}$$

$$\theta_{1} \downarrow$$

$$X_{0} = \{(u)\} = \mathbb{P}(V_{Q})$$

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible?}$$

$$\theta_{3} \downarrow$$

$$X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1}$$

$$\theta_{2} \downarrow$$

$$X_{1} = \{(u, r_{1})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1}$$

$$\theta_{1} \downarrow$$

$$X_{0} = \{(u)\} = \mathbb{P}(V_{Q})$$

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible?}$$

$$\theta_{3} \downarrow$$

$$X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1}$$

$$\theta_{2} \downarrow$$

$$X_{1} = \{(u, r_{1})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1}$$

$$\theta_{1} \downarrow$$

$$X_{0} = \{(u)\} = \mathbb{P}(V_{Q}) \text{ Irreducible: isomorphic to } \mathbb{P}^{1}$$

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible}\}$$

$$\theta_{3} \downarrow$$

$$X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1}$$

$$\theta_{2} \downarrow$$

$$X_{1} = \{(u, r_{1})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \text{ Irreducible: also isomorphic to } \mathbb{P}^{1}$$

$$\theta_{1} \downarrow$$

$$X_{0} = \{(u)\} = \mathbb{P}(V_{Q}) \text{ Irreducible: isomorphic to } \mathbb{P}^{1}$$

 $C = \{(u, r_1, r_2, r_3) \mid r_1, r_2, r_3 \text{ are three dist. roots of } u\}$ $\subset \mathbb{P}(V_Q) \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible}\}$$

$$\theta_{3} \downarrow$$

$$X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible}\}$$

$$\theta_{2} \downarrow$$

$$X_{1} = \{(u, r_{1})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \text{ Irreducible: also}$$

$$isomorphic to \mathbb{P}^{1}$$

$$X_{0} = \{(u)\} = \mathbb{P}(V_{Q}) \text{ Irreducible: isomorphic to } \mathbb{P}^{1}$$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible}\}$$

$$\theta_{3} \downarrow$$

$$X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible}\}$$

$$\theta_{2} \downarrow$$

$$X_{1} = \{(u, r_{1})\} \cong \mathbb{P}^{1} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1}$$

$$\theta_{1} \downarrow$$

$$X_{0} = \{(u)\} \cong \mathbb{P}^{1} = \mathbb{P}(V_{Q})$$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible}\}$$

$$\theta_{3} \downarrow$$

$$X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible}\}$$

$$\theta_{2} \downarrow$$

$$X_{1} = \{(u, r_{1})\} \cong \mathbb{P}^{1} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1}$$

$$\theta_{1} \downarrow$$

$$X_{0} = \{(u)\} \cong \mathbb{P}^{1} = \mathbb{P}(V_{Q})$$

For the irreducibility of X_2 : observe that $X_2 = X_1 \times_{X_0} X_1 \setminus \Delta$, and deduce the irreducibility from the ramification properties of $\theta_1 : X_1 \to X_0$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible}\}$$

$$\theta_{3} \downarrow$$

$$X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible}\}$$

$$\theta_{2} \downarrow$$

$$X_{1} = \{(u, r_{1})\} \cong \mathbb{P}^{1} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1}$$

$$\theta_{1} \downarrow$$

$$X_{0} = \{(u)\} \cong \mathbb{P}^{1} = \mathbb{P}(V_{Q})$$
Fibre product

For the irreducibility of X_2 : observe that $X_2 = X_1 \times_{X_0} X_1 \setminus \Delta$, and deduce the irreducibility from the ramification properties of $\theta_1 : X_1 \to X_0$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible?}$$

$$\theta_{3} \downarrow$$

$$X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible?}$$

$$\theta_{2} \downarrow$$

$$X_{1} = \{(u, r_{1})\} \cong \mathbb{P}^{1} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1}$$

$$\theta_{1} \downarrow$$

$$X_{0} = \{(u)\} \cong \mathbb{P}^{1} = \mathbb{P}(V_{Q})$$
Fibre product Piagonal

For the irreducibility of X_2 : observe that $X_2 = X_1 \times_{X_0} X_1 \setminus \Delta$, and deduce the irreducibility from the ramification properties of $\theta_1 : X_1 \to X_0$

$$X_{3} = C = \{(u, r_{1}, r_{2}, r_{3})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible?}$$

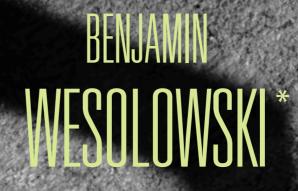
$$\theta_{3} \downarrow \qquad X_{2} = \{(u, r_{1}, r_{2})\} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1} \times \mathbb{P}^{1} \text{ Irreducible?}$$

$$\theta_{2} \downarrow \qquad X_{1} = \{(u, r_{1})\} \cong \mathbb{P}^{1} \subset \mathbb{P}(V_{Q}) \times \mathbb{P}^{1}$$

$$\theta_{1} \downarrow \qquad X_{0} = \{(u)\} \cong \mathbb{P}^{1} = \mathbb{P}(V_{Q})$$
Fibre product Piagonal

- For the irreducibility of X_2 : observe that $X_2 = X_1 \times_{X_0} X_1 \setminus \Delta$, and deduce the irreducibility from the ramification properties of $\theta_1 : X_1 \to X_0$
- For X_3 , same idea with $X_3 = X_2 \times_{X_1} X_2 \setminus \Delta$

THORSTEN KLEINJUNG *



A NEW PERSPECTIVE ON THE POWERS OF TWO DESCENT for discrete logarithms in finite fields

PRESENTED AT ANTS-XIII, MADISON, WI, USA, ON THE 20/07/2018 BY BENJAMIN WESOLOWSKI *EPFL, LAUSANNE, SWITZERLAND

- We have a cover $\theta : C \to \mathbb{P}(V_Q)$ defined over k such that
- ➡ C is absolutely irreducible
- For any P in C(k), the poly. $\theta(P)$ splits completely over k

- We have a cover $\theta : C \to \mathbb{P}(V_Q)$ defined over k such that
- ➡ C is absolutely irreducible
- For any P in C(k), the poly. $\theta(P)$ splits completely over k
- We want to show that $\theta(C(k))$ is a large part of $\mathbb{P}(V_Q)(k)$

- We have a cover $\theta : C \to \mathbb{P}(V_Q)$ defined over k such that
- ➡ C is absolutely irreducible
- For any P in C(k), the poly. $\theta(P)$ splits completely over k
- We want to show that $\theta(C(k))$ is a large part of $\mathbb{P}(V_Q)(k)$
- → C is of small degree, and absolutely irreducible, so $|C(k)| \approx |k|$

- We have a cover $\theta : C \to \mathbb{P}(V_Q)$ defined over k such that
- → C is absolutely irreducible
- For any P in C(k), the poly. $\theta(P)$ splits completely over k
- We want to show that $\theta(C(k))$ is a large part of $\mathbb{P}(V_Q)(k)$
- → C is of small degree, and absolutely irreducible, so $|C(k)| \approx |k|$
- $\rightarrow \theta$ is "(q³ q)-to-one", therefore

 $|\theta(C(k))|\approx |k|/q^3\approx |\mathbb{P}(V_{\mathcal{Q}})(k)|/q^3$