BENJAMIN WESOLOWSKI

GENERATING SUBGROUPS OF RAY CLASS GROUPS with small prime ideals

AT ANTS-XIII, MADISON, WI,USA, ON THE 19/07/2018 BY BENJAMIN WESOLOWSKI, EPFL, LAUSANNE, SWITZERLAND

The entire talk assumes the extended Riemann hypothesis

1

 \blacktriangleright Let *K* be a number field, with ring of integers \mathcal{O}_K

 \blacktriangleright Let K be a number field, with ring of integers \mathcal{O}_K

▸ The class group Cl(*K*) is the quotient

 $\mathcal{I}(K)$ / $P(K)$ = (ideals in \mathcal{O}_K) / (principal ideals)

 \blacktriangleright Let K be a number field, with ring of integers \mathcal{O}_K

▸ The class group Cl(*K*) is the quotient $\mathcal{I}(K)$ / $P(K)$ = (ideals in \mathcal{O}_K) / (principal ideals)

 \triangleright More generally any order $\mathcal O$ in K has a class group $\text{Cl}(\mathcal O)$

- \blacktriangleright Let K be a number field, with ring of integers \mathcal{O}_K
- ▸ The class group Cl(*K*) is the quotient $\mathcal{I}(K)$ / $P(K)$ = (ideals in \mathcal{O}_K) / (principal ideals)
- More generally any order $\mathcal O$ in *K* has a class group $Cl(\mathcal O)$
- All these are ray class groups (or quotients thereof)

- \blacktriangleright Let K be a number field, with ring of integers \mathcal{O}_K
- ▸ The class group Cl(*K*) is the quotient $\mathcal{I}(K)$ / $P(K)$ = (ideals in \mathcal{O}_K) / (principal ideals)
- \triangleright More generally any order $\mathcal O$ in *K* has a class group Cl($\mathcal O$)
- ▸ All these are ray class groups (or quotients thereof)
- \triangleright Fix a modulus m (essentially an ideal of \mathcal{O}_K). The m-ray **class group** $Cl_m(K)$ is the quotient

 $\mathcal{F}_{m}(K)$ / $P_{m}(K)$ = (ideals in \mathcal{O}_{K} coprime to m) / (some principal ideals)

 \blacktriangleright Given an ideal a coprime to m, we write $[a]_m$ for the class of α in $\text{Cl}_{m}(K)$

- \triangleright Given an ideal a coprime to m, we write $[a]_m$ for the class of α in $\text{Cl}_{m}(K)$
- \triangleright Fix a bound $B > 0$, consider the set of classes of "small" prime ideals

 $S = \{ [p]_m | p$ an ideal of prime norm, $(p, m) = 1$, $N(p) < B \}$

- \triangleright Given an ideal a coprime to m, we write $[a]_m$ for the class of α in $\text{Cl}_{m}(K)$
- \triangleright Fix a bound $B > 0$, consider the set of classes of "small" prime ideals

 $S = \{ [p]_m | p$ an ideal of prime norm, $(p, m) = 1, N(p) < B \}$

 \blacktriangleright For which bound *B* does *S* generate $\text{Cl}_{m}(K)$?

- \triangleright Given an ideal a coprime to m, we write $[a]_m$ for the class of α in $\text{Cl}_{m}(K)$
- \triangleright Fix a bound $B > 0$, consider the set of classes of "small" prime ideals

 $S = \{ [p]_m | p$ an ideal of prime norm, $(p, m) = 1, N(p) < B \}$

- \blacktriangleright For which bound *B* does *S* generate Cl_m(*K*)?
- Answer from [Bach90]: $B = 18 log(Disc(K)²N(m))²$ works!

[Bach90] Eric Bach. *Explicit bounds for primality testing and related problems*, Mathematics of Computation, 1990.

GENERATING SUBGROUPS OF RAY CLASS GROUPS

 \blacktriangleright What if we want generators of a subgroup of $\mathsf{Cl}_m(K)$, are small prime ideals still sufficient?

SUBGROUPS MATTER 222

WHY SUBGROUPS OF RAY CLASS GROUPS

Some applications need generators of subgroups. We give two examples

WHY SUBGROUPS OF RAY CLASS GROUPS

Some applications need generators of subgroups. We give two examples

▸ Bounds on degrees of computable isogenies to get connected isogeny graphs

WHY SUBGROUPS OF RAY CLASS GROUPS

Some applications need generators of subgroups. We give two examples

- ▸ Bounds on degrees of computable isogenies to get connected isogeny graphs
- ▶ An algorithm to find short vectors in cyclotomic ideal lattices

WHAT IS AN ISOGENY GRAPH?

Vertices represent abelian varieties (up to isomorphism)

WHAT IS AN ISOGENY GRAPH?

Vertices represent abelian varieties (up to isomorphism) Edges represent isogenies

Edges represent isogenies
between them

▸ Consider an ordinary, absolutely simple abelian variety *A* over a finite field

- ▸ Consider an ordinary, absolutely simple abelian variety *A* over a finite field
- ▸ Its endomorphism ring End(*A*) is an order in a number field of degree 2dim(*A*)

- ▸ Consider an ordinary, absolutely simple abelian variety *A* over a finite field
- ▸ Its endomorphism ring End(*A*) is an order in a number field of degree 2dim(*A*)
- \triangleright A **horizontal isogeny** is an isogeny $A \longrightarrow A'$ such that $End(A)$ $=$ End(A')

- ▸ Consider an ordinary, absolutely simple abelian variety *A* over a finite field
- ▸ Its endomorphism ring End(*A*) is an order in a number field of degree 2dim(*A*)
- \triangleright A **horizontal isogeny** is an isogeny $A \longrightarrow A'$ such that $End(A)$ $=$ End(A')
- ▸ Let Hor(*A*) be the set of abelian varieties isogenous to *A* with same endomorphism ring

- ▸ Consider an ordinary, absolutely simple abelian variety *A* over a finite field
- ▸ Its endomorphism ring End(*A*) is an order in a number field of degree 2dim(*A*)
- \triangleright A **horizontal isogeny** is an isogeny $A \longrightarrow A'$ such that $End(A)$ $=$ End(A')
- ▸ Let Hor(*A*) be the set of abelian varieties isogenous to *A* with same endomorphism ring
- \triangleright For any invertible ideal **I** in End(*A*), the isogeny $A \longrightarrow A/A[I]$ is horizontal, of degree $N(I)$

Graph with vertices Hor(*A*), and edges isogenies of prime norm at most *B*

Cayley graph of Cl(End(*A*)), with generators the ideals of prime norm at most *B* ≅

Graph with vertices Hor(*A*), and edges isogenies of prime norm at most *B*

Cayley graph of Cl(End(*A*)), with generators the ideals of prime norm at most *B*

If End(A) is Gorenstein

≅

▸ We can only compute isogenies between **principally polarisable** abelian varieties

- ▸ We can only compute isogenies between **principally polarisable** abelian varieties
- ▸ They correspond to a subgroup of Cl(End(*A*)), and the corresponding subgraph of the Cayley graph

- ▸ We can only compute isogenies between **principally polarisable** abelian varieties
- ▸ They correspond to a subgroup of Cl(End(*A*)), and the corresponding subgraph of the Cayley graph
- ▸ Bound *B* on the degree of isogenies to get a connected graph where the isogenies can be computed?

ISOGENY GRAPHS TO STUDY THE DLP

Isogeny graphs are a central tool for studying the DLP

- ▸ Galbraith, Hess, and Smart, *Extending the GHS Weil descent attack*, EUROCRYPT 2002
- ▸ Jao, Miller, and Venkatesan, *Do All Elliptic Curves of the Same Order Have the Same Difficulty of Discrete Log?*, ASIACRYPT 2005
- ▸ Smith, *Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3 Hyperelliptic Curves*, EUROCRYPT 2008
- ▸ Jetchev and Wesolowski, *Horizontal isogeny graphs of ordinary abelian varieties and the discrete logarithm problem* (preprint)

▶ A typical choice of lattices for lattice-based cryptographic schemes: ideals in a cyclotomic field *K* (seen as lattices via the Minkowski embedding)

- ▶ A typical choice of lattices for lattice-based cryptographic schemes: ideals in a cyclotomic field *K* (seen as lattices via the Minkowski embedding)
- ▶ Security based on difficulty of finding short vectors in lattice

- ▶ A typical choice of lattices for lattice-based cryptographic schemes: ideals in a cyclotomic field *K* (seen as lattices via the Minkowski embedding)
- ▶ Security based on difficulty of finding short vectors in lattice
- ▸ It was shown how to heuristically find unusually short vectors in **principal ideals** in quantum polynomial time [CDPR16]

[CDPR16] R. Cramer, L. Ducas, C. Peikert, and O. Regev. *Recovering short generators of principal ideals in cyclotomic rings*, EUROCRYPT 2016.

- ▶ A typical choice of lattices for lattice-based cryptographic schemes: ideals in a cyclotomic field *K* (seen as lattices via the Minkowski embedding)
- ▶ Security based on difficulty of finding short vectors in lattice
- ▸ It was shown how to heuristically find unusually short vectors in **principal ideals** in quantum polynomial time [CDPR16]
- ▸ Recently extended to **arbitrary ideals**, by transferring the problem to a principal ideal [CDW17]

[CDPR16] R. Cramer, L. Ducas, C. Peikert, and O. Regev. *Recovering short generators of principal ideals in cyclotomic rings*, EUROCRYPT 2016.

[CDW17] R. Cramer, L. Ducas, and B. Wesolowski. *Short Stickelberger class relations and applications to Ideal-SVP*, EUROCRYPT 2017.

- ▸ Recently extended to **arbitrary ideals**, by transferring the problem to a principal ideal [CDW17]
- ▸ The transferring assumes the **relative class group** is generated by a small number of small prime ideals

$$
Cl^{-}(K) = \text{ker}(Cl(K) \longrightarrow Cl(K_{0}))
$$

- ▸ Recently extended to **arbitrary ideals**, by transferring the problem to a principal ideal [CDW17]
- ▸ The transferring assumes the **relative class group** is generated by a small number of small prime ideals

$$
Cl^{-}(K) = \text{ker}(Cl(K) \longrightarrow Cl(K_{0}))
$$

K0 is the maximal real subfield of K

- ▸ Recently extended to **arbitrary ideals**, by transferring the problem to a principal ideal [CDW17]
- ▸ The transferring assumes the **relative class group** is generated by a small number of small prime ideals

$$
Cl^{-}(K) = \text{ker}(Cl(K) \longrightarrow Cl(K_{0}))
$$

K0 is the maximal real subfield of K

= the relative class group,

a subgroup of Cl(K)

RAY CLASS CHARACTERS

3

MAIN THEOREM

Theorem: Let *H* be any subgroup of $\text{Cl}_{m}(K)$, and consider a character *χ*: $Cl_m(K) \longrightarrow \mathbb{C}^\times$ that is not trivial on *H*. Then, there is an ideal p such that

- \blacktriangleright $N(p)$ is prime,
- \blacktriangleright (p, m) = 1,
- \blacktriangleright [p]_m \in *H*,
- \rightarrow $\chi(p) \neq 1$,
- \blacktriangleright *N*(p) ≤ ([Cl_m(*K*) : *H*] (2.71 log(Disc(*K*) *N*(m)) + 1.29 |m_∞| $+ 1.38 \omega(m) + 4.13$ ²

This bound is $O([Cl_m(K):H]^2 \log(Disc(K) N(m))^2)$

MAIN THEOREM

- ‣ Proof uses analytic methods similar to [Bach90]
- \blacktriangleright Play with characters of $\text{Cl}_{m}(K)/H$ to account for the extra condition that the ideals to consider are in the subgroup *H*

▶ Let S be the set of all ideals p of prime norm smaller than the bound *B* from the theorem, and such that $[p]_m \in H$

- Let S be the set of all ideals $\mathfrak p$ of prime norm smaller than the bound *B* from the theorem, and such that $[p]_m \in H$
- ‣ Suppose *S* generates a subgroup *N* ≠ *H*

- Let S be the set of all ideals $\mathfrak p$ of prime norm smaller than the bound *B* from the theorem, and such that $[p]_m \in H$
- ‣ Suppose *S* generates a subgroup *N* ≠ *H*
- ‣ There is a non-trivial character of *H* that is trivial on *N*

- Let S be the set of all ideals $\mathfrak p$ of prime norm smaller than the bound *B* from the theorem, and such that $[p]_m \in H$
- ‣ Suppose *S* generates a subgroup *N* ≠ *H*
- ‣ There is a non-trivial character of *H* that is trivial on *N*
- \triangleright This character extends to a character *χ*: Cl_m(*K*) → C[×] that is not trivial on *H*

- Let S be the set of all ideals $\mathfrak p$ of prime norm smaller than the bound *B* from the theorem, and such that $[p]_m \in H$
- ‣ Suppose *S* generates a subgroup *N* ≠ *H*
- ‣ There is a non-trivial character of *H* that is trivial on *N*
- \triangleright This character extends to a character *χ*: Cl_m(*K*) → C[×] that is not trivial on *H*
- **E** From the theorem, there is an ideal \mathfrak{p} in *S* such that $\chi(\mathfrak{p}) \neq 1$

- Let S be the set of all ideals $\mathfrak p$ of prime norm smaller than the bound *B* from the theorem, and such that $[p]_m \in H$
- ‣ Suppose *S* generates a subgroup *N* ≠ *H*
- ‣ There is a non-trivial character of *H* that is trivial on *N*
- \triangleright This character extends to a character *χ*: Cl_m(*K*) → C[×] that is not trivial on *H*
- **E** From the theorem, there is an ideal \mathfrak{p} in *S* such that $\chi(\mathfrak{p}) \neq 1$
- \triangleright So \upphi is in *N* and $\chi(\upphi) \neq 1$, a contradiction, so $N = H$

CONSEQUENCES

4

▸ Let *m* be a positive integer, and *H* a subgroup of (**ℤ**/*m***ℤ**)**[×]**

ON INTEGERS

- ▸ Let *m* be a positive integer, and *H* a subgroup of (**ℤ**/*m***ℤ**)**[×]**
- ▸ *H* is generated by the prime numbers *p* such that *p* mod *m* is in *H* and $p \le 16$ ([($\mathbb{Z}/m\mathbb{Z}$) \times : *H*] log *m*)²

▸ Let *A* be an absolutely simple, ordinary, principally polarised abelian variety (p.p.a.v.), with endomorphism algebra *K*

- ▸ Let *A* be an absolutely simple, ordinary, principally polarised abelian variety (p.p.a.v.), with endomorphism algebra *K*
- ▸ Let *V* be the set of p.p.a.v.'s isogenous to *A*, and with same endomorphism ring (which we assume Gorenstein, and with conductor f)

- ▸ Let *A* be an absolutely simple, ordinary, principally polarised abelian variety (p.p.a.v.), with endomorphism algebra *K*
- ▸ Let *V* be the set of p.p.a.v.'s isogenous to *A*, and with same endomorphism ring (which we assume Gorenstein, and with conductor f)
- ▸ For *B* > 0, let *G*(*B*) be the isogeny graph on vertices *V* with edges the cyclic isogenies of prime degree smaller than *B*

- ▸ Let *A* be an absolutely simple, ordinary, principally polarised abelian variety (p.p.a.v.), with endomorphism algebra *K*
- ▸ Let *V* be the set of p.p.a.v.'s isogenous to *A*, and with same endomorphism ring (which we assume Gorenstein, and with conductor f)
- ▸ For *B* > 0, let *G*(*B*) be the isogeny graph on vertices *V* with edges the cyclic isogenies of prime degree smaller than *B*
- \blacktriangleright *G*(26(*h*+log(Disc(*K*)*N*(f)))²) is connected, where *h*+ is the narrow class number of the real suborder of End(*A*)

BENJAMIN WESOLOWSKI

GENERATING SUBGROUPS OF RAY CLASS GROUPS with small prime ideals

AT ANTS-XIII, MADISON, WI,USA, ON THE 19/07/2018 BY BENJAMIN WESOLOWSKI, EPFL, LAUSANNE, SWITZERLAND

 \triangleright For any $0 < a < 1, x > 0$ and ideal α , let

$$
P(a, x) = \Lambda(a) \left(\frac{N(a)}{x}\right)^a \log\left(\frac{x}{N(a)}\right)
$$

 \triangleright For any $0 < a < 1, x > 0$ and ideal α , let

$$
P(a, x) = \Lambda(a) \left(\frac{N(a)}{x}\right)^a \log\left(\frac{x}{N(a)}\right)
$$

$$
\sum_{N(a) < x} \eta(a) P(a, x) = \frac{-1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \frac{x^s}{(s+a)^2} \frac{L'_\eta}{L_\eta} (s) ds
$$

 \triangleright For any $0 < a < 1, x > 0$ and ideal α , let

$$
P(a, x) = \Lambda(a) \left(\frac{N(a)}{x}\right)^a \log\left(\frac{x}{N(a)}\right)
$$

$$
\sum_{N(a) < x} \eta(a) P(a, x) = \frac{-1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \frac{x^s}{(s+a)^2} \frac{L'_\eta}{L_\eta}(s) ds
$$
\n**Logarithmic derivative of the Hecke Function of the Hecke factor of a in Exercise 1.5**

Lemma [Bach90]: For any character *η*,

$$
\sum_{N(a) < x} \eta(a) P(a, x) = \frac{-1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \frac{x^s}{(s+a)^2} \frac{L'_\eta}{L_\eta} (s) ds
$$

‣ **Proof of the bounds of [Bach90]:** consider the difference between two instances of this equality, at *η* = 1 and *η* = *χ*

$$
\sum_{N(a) < x} \eta(a) P(a, x) = \frac{-1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \frac{x^s}{(s+a)^2} \frac{L'_\eta}{L_\eta} (s) ds
$$

- ‣ **Proof of the bounds of [Bach90]:** consider the difference between two instances of this equality, at *η* = 1 and *η* = *χ*
- \triangleright The right-hand side is estimated as $x + O(x^{1/2})$

$$
\sum_{N(a) < x} \eta(a) P(a, x) = \frac{-1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \frac{x^s}{(s+a)^2} \frac{L'_\eta}{L_\eta} (s) ds
$$

- ‣ **Proof of the bounds of [Bach90]:** consider the difference between two instances of this equality, at *η* = 1 and *η* = *χ*
- \triangleright The right-hand side is estimated as $x + O(x^{1/2})$
- ‣ The left-hand side is zero if *χ* is trivial on ideals of norm < *x*

$$
\sum_{N(a) < x} \eta(a) P(a, x) = \frac{-1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \frac{x^s}{(s+a)^2} \frac{L'_\eta}{L_\eta} (s) ds
$$

- ‣ **Proof of the bounds of [Bach90]:** consider the difference between two instances of this equality, at *η* = 1 and *η* = *χ*
- \triangleright The right-hand side is estimated as $x + O(x^{1/2})$
- ‣ The left-hand side is zero if *χ* is trivial on ideals of norm < *x*
- ‣ So such an *x* cannot be too large

Lemma [Bach90]: For any character *η*,

$$
\sum_{N(a) < x} \eta(a) P(a, x) = \frac{-1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \frac{x^s}{(s+a)^2} \frac{L'_\eta}{L_\eta} (s) ds
$$

‣ **Proof of our new bounds:** similar ideas, but play with characters of $Cl_m(K)/H$ to account for the extra condition that the ideals are in the subgroup *H*