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NOTE

The entire talk assumes the extended Riemann hypothesis
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▸ Let K be a number field, with ring of integers 𝓞K 

▸ The class group Cl(K) is the quotient

▸ More generally any order 𝓞 in K has a class group Cl(𝓞)

▸ All these are ray class groups (or quotients thereof)

▸ Fix a modulus 𝖒 (essentially an ideal of 𝓞K). The 𝖒-ray 
class group Cl𝖒(K) is the quotient

𝓘(K) / P(K) = (ideals in 𝓞K) / (principal ideals)

𝓘𝖒(K) / P𝖒(K) = (ideals in 𝓞K coprime to 𝖒) / (some principal ideals)
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▸ Given an ideal 𝔞 coprime to 𝖒, we write [𝔞]𝖒 for the class 
of 𝔞 in Cl𝖒(K)

▸ Fix a bound B > 0, consider the set of classes of “small” 
prime ideals

▸ For which bound B does S generate Cl𝖒(K)?

▸ Answer from [Bach90]: B = 18 log(Disc(K)2N(𝖒))2 works!

[Bach90] Eric Bach. Explicit bounds for primality testing and related 
problems, Mathematics of Computation, 1990.

S = {[𝔭]𝖒 | 𝔭 an ideal of prime norm, (𝔭, 𝖒) = 1, N(𝔭) < B}
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▸ What if we want generators of a subgroup of Cl𝖒(K), are 
small prime ideals still sufficient?
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WHY SUBGROUPS OF RAY CLASS GROUPS

Some applications need generators of subgroups. We give 
two examples

▸ Bounds on degrees of computable isogenies to get 
connected isogeny graphs

▸ An algorithm to find short vectors in cyclotomic ideal 
lattices
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Vertices represent abelian 
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Edges represent isogenies 
between them
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▸ Consider an ordinary, absolutely simple abelian variety A over 
a finite field 

▸ Its endomorphism ring End(A) is an order in a number field of 
degree 2dim(A)

▸ A horizontal isogeny is an isogeny A ⟶ A’ such that End(A) 
= End(A’)

▸ Let Hor(A) be the set of abelian varieties isogenous to A with 
same endomorphism ring

▸ For any invertible ideal 𝖑 in End(A), the isogeny A ⟶ A/A[𝖑] is 
horizontal, of degree N(𝖑)
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CONNECTED ISOGENY GRAPHS

Graph with vertices Hor(A), 
and edges isogenies of 
prime norm at most B

Cayley graph of Cl(End(A)), 
with generators the ideals of 

prime norm at most B
≅

If End(A) is Gorenstein
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CONNECTED ISOGENY GRAPHS

▸ We can only compute isogenies between principally 
polarisable abelian varieties

▸ They correspond to a subgroup of Cl(End(A)), and the 
corresponding subgraph of the Cayley graph

▸ Bound B on the degree of isogenies to get a connected 
graph where the isogenies can be computed?



ISOGENY GRAPHS TO STUDY THE DLP

Isogeny graphs are a central tool for studying the DLP 

▸ Galbraith, Hess, and Smart, Extending the GHS Weil descent 
attack, EUROCRYPT 2002 

▸ Jao, Miller, and Venkatesan, Do All Elliptic Curves of the Same 
Order Have the Same Difficulty of Discrete Log?, ASIACRYPT 
2005 

▸ Smith, Isogenies and the Discrete Logarithm Problem in 
Jacobians of Genus 3 Hyperelliptic Curves, EUROCRYPT 2008 

▸ Jetchev and Wesolowski, Horizontal isogeny graphs of ordinary 
abelian varieties and the discrete logarithm problem (preprint)
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schemes: ideals in a cyclotomic field K (seen as lattices via 
the Minkowski embedding)

▸ Security based on difficulty of finding short vectors in lattice

▸ It was shown how to heuristically find unusually short vectors 
in principal ideals in quantum polynomial time [CDPR16]

▸ Recently extended to arbitrary ideals, by transferring the 
problem to a principal ideal [CDW17]

[CDW17] R. Cramer, L. Ducas, and B. Wesolowski. Short Stickelberger class 
relations and applications to Ideal-SVP, EUROCRYPT 2017.

[CDPR16] R. Cramer, L. Ducas, C. Peikert, and O. Regev. Recovering short 
generators of principal ideals in cyclotomic rings, EUROCRYPT 2016.
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SVP IN CYCLOTOMIC IDEAL LATTICES

▸ Recently extended to arbitrary ideals, by transferring the 
problem to a principal ideal [CDW17] 

▸ The transferring assumes the relative class group is 
generated by a small number of small prime ideals

Cl—(K) = ker(Cl(K) ⟶ Cl(K0))

K0 is the maximal 
real subfield of K

= the relative 
class group,

a subgroup of Cl(K)
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MAIN THEOREM

Theorem: Let H be any subgroup of Cl𝖒(K), and consider a 
character χ: Cl𝖒(K) ⟶ ℂ× that is not trivial on H. Then, there is 
an ideal 𝔭  such that 
‣ N(𝔭) is prime, 
‣ (𝔭, 𝖒) = 1, 
‣ [𝔭]𝖒 ∊ H, 
‣ χ(𝔭) ≠ 1,  
‣ N(𝔭) ≤ ([Cl𝖒(K) : H] (2.71 log(Disc(K) N(𝖒)) + 1.29 |𝖒∞|

+ 1.38 ω(𝖒)) + 4.13)2

This bound is O( [Cl𝖒(K) : H]2 log(Disc(K) N(𝖒))2)



MAIN THEOREM

‣ Proof uses analytic methods similar to [Bach90] 

‣ Play with characters of Cl𝖒(K)/H to account for the extra 
condition that the ideals to consider are in the subgroup H 
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MAIN THEOREM IMPLIES SMALL GENERATORS

‣ Let S be the set of all ideals 𝔭 of prime norm smaller than 
the bound B from the theorem, and such that [𝔭]𝖒 ∊ H 

‣ Suppose S generates a subgroup N ≠ H 

‣ There is a non-trivial character of H that is trivial on N

‣ This character extends to a character χ: Cl𝖒(K) ⟶ ℂ× that is 
not trivial on H

‣ From the theorem, there is an ideal 𝔭 in S such that χ(𝔭) ≠ 1

‣ So 𝔭 is in N and χ(𝔭) ≠ 1, a contradiction, so N = H
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ON INTEGERS

▸ Let m be a positive integer, and H a subgroup of (ℤ/mℤ)× 

▸ H is generated by the prime numbers p such that p mod m 
is in H and p ≤ 16 ([(ℤ/mℤ)× : H] log m)2 
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ON ISOGENY GRAPHS

▸ Let A be an absolutely simple, ordinary, principally polarised 
abelian variety (p.p.a.v.), with endomorphism algebra K

▸ Let V be the set of p.p.a.v.’s isogenous to A, and with same 
endomorphism ring (which we assume Gorenstein, and with 
conductor 𝔣)

▸ For B > 0, let G(B) be the isogeny graph on vertices V with 
edges the cyclic isogenies of prime degree smaller than B 

▸ G(26(h+log(Disc(K)N(𝔣)))2) is connected, where h+ is the 
narrow class number of the real suborder of End(A)
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PROOF OF THE MAIN THEOREM

‣ For any 0 < a < 1, x > 0 and ideal 𝔞, let
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Lemma [Bach90]: For any character η,

P(𝔞, x) = Λ(𝔞) (         )a log(         ) N(𝔞)
x N(𝔞)

x

2πi
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∫

2 — i∞

2 + i∞
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xs

Lη

L’η (s) ds

Logarithmic derivative 

of the Hecke L-function 

associated to η
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PROOF OF THE MAIN THEOREM

Lemma [Bach90]: For any character η,

‣ Proof of the bounds of [Bach90]: consider the difference 
between two instances of this equality, at η = 1 and η = χ

‣ The right-hand side is estimated as x + O(x1/2)

‣ The left-hand side is zero if χ is trivial on ideals of norm < x

‣ So such an x cannot be too large

2πi
—1η(𝔞) P(𝔞, x) = ∑

N(𝔞) < x
∫

2 — i∞

2 + i∞

(s + a)2
xs
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PROOF OF THE MAIN THEOREM

Lemma [Bach90]: For any character η, 

‣ Proof of our new bounds: similar ideas, but play with 
characters of Cl𝖒(K)/H to account for the extra condition 
that the ideals 𝔞 are in the subgroup H 

2πi
—1η(𝔞) P(𝔞, x) = ∑

N(𝔞) < x
∫

2 — i∞

2 + i∞

(s + a)2
xs

Lη

L’η (s) ds


