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Fermat’s Little Theorem

Theorem
If p is prime and gcd(b, p) = 1 then

bp−1 ≡ 1 (mod p).

Definition
If n is a composite integer with gcd(b, n) = 1 and

bn−1 ≡ 1 (mod n)

then we call n a base b Fermat pseudoprime.
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Lucas Sequences

Definition
Let P,Q be integers, and let D = P2 − 4Q (called the
discriminant). Let α and β be the two roots of x2 −Px +Q. Then
we have an integer sequence Uk defined by

Uk =
αk − βk

α− β

called the (P,Q)-Lucas sequence.

Definition
Equivalently, we may define this as a recurrence relation:

U0 = 0, U1 = 1, and Un = PUn−1 − QUn−2.
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An Analogous Theorem

Theorem
Let the (P,Q)-Lucas sequence be given, and let ε(n) = (D|n) be
the Jacobi symbol. If p is an odd prime and gcd(p, 2QD) = 1, then

Up−ε(p) ≡ 0 (mod p)

Definition
If n is a composite integer with gcd(n, 2QD) = 1 such that

Un−ε(n) ≡ 0 (mod n)

then we call n a (P,Q)-Lucas pseudoprime.
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Challenge Pseudoprimes

Definition
A composite number n is a (b,P,Q)-challenge pseudoprime if it is

a base b Fermat pseudoprime,
a (P,Q)-Lucas pseudoprime, and
ε(n) = −1.
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Examples

Previously seen...

Pomerance, Selfridge, and Wagstaff offer $620 for a
(2, 1,−1)-challenge pseudoprime.
Jon Grantham offers $6.20 for a (5, 5,−5)-challenge
pseudoprime.
Baillie-PSW test is built around (2,P,Q)-challenge
pseudoprimes.
Williams numbers are (b,P,Q)-challenge pseudoprimes for
fixed D.
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How Can We Find These?

We can’t.

Two theoretical approaches:
Constructive: Computationally infeasible subset product
problem.

Grantham and Alford
Chen and Greene

Enumerate: List base b Fermat pseudoprime and hope you get
lucky.
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First View on Fermat’s Little Theorem

Problem
Given an preproduct k, find a prime p such that n = kp is a base
b-Fermat pseudoprime.

Examining the exponent in Fermat’s Little Theorem:

n − 1 = kp − 1 = k(p − 1) + k − 1

First View
Since `b(p) divides n − 1 and p − 1, `b(p)|k − 1. So

p|bk−1 − 1.
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Second View on Fermat’s Little Theorem

Problem
Given an preproduct k, find a prime p such that n = kp is a base
b-Fermat pseudoprime.

Note, bkp−1 ≡ 1 (mod pi) for all pi |k, so

kp ≡ 1 (mod `b(pi)).

Second View
Let L = lcm(`b(p1), . . . , `b(pt)), then

p ≡ k−1 (mod L).
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Two Views on the Analogous Theorem

First View

p|Uk−ε(k).

Second View
Let W = lcm(ω(p1), . . . , ω(pt)), then

p ≡ −k−1 (mod W ).
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Finding k

Definition
A number k is admissible if

gcd(L, k) = 1, gcd(W , k) = 1, and gcd(L,W ) <3.

Consequences:
Primes with ε(p) = −1 will always be admissible.
Primes with ε(p) = 1 will rarely be admissible.
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Tabulation of Challenge Pseudoprimes

Create all admissible k up to some bound.
1 If k is small, then find p as a divisor of gcd(bk−1 − 1,Uk−ε(k))

2 If lcm(L,W ) is large, then find p by sieving

p ≡
{

k−1 mod L
−k−1 mod W

Note:
1 GCD computation time monotonically increases with k.
2 Sieve time does not monotonically decrease with k.
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Analysis: A Sketch

We want an estimate of∑
p<
√

B

min{gcd cost, sieve cost}.

We estimate ∑
p<X

gcd cost +
∑

X<p<
√

B

sieve cost.
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Analysis: A Sketch (cont.)

This is ∑
p<X

O(p) +
∑

X<p<
√

B

O
( B

p`b(p)ω(p)

)
.

The interval length is B/p and the sieve step size is `b(p)ω(p).

This requires we balance:

O(X 2) + O(B/X )

for a run-time of

O(B2/3).
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Actual Results

Theorem
There exists an algorithm which tabulates challenge pseudoprimes
up to B with t prime factors using O(B1− 1

3t−1 ) bit operations.
Under the heuristic assumption that factoring plays a minimal role,
then the time is O(B1− 1

2t−1 ).

Theorem
There are no (2, 1,−1) challenge pseudoprimes with 2 or 3 prime
factors less than 280.
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Challenging Challenges

$20 for a (2, 1,−1) challenge pseudoprime with an even
number of prime factors.
$20 for a (2, 1,−1) challenge pseudoprime with exactly three
prime factors.
$6 for a (2, 1,−1) challenge pseudoprime divisible by 3.
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Future Work

Strong challenge pseudoprimes
Fewer admissible k.
Smaller gcds.
Large sieving moduli.

Improved analysis.

Thank you for your time.
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