Fast Tabulation of Challenge Pseudoprimes

Andrew Shallue Jonathan Webster

Illinois Wesleyan University Butler University

ANTS-XIII, 2018

1 / 18

 Ω

K ロ > K @ > K 경 > K 경 > 시 경

Outline

• Elementary theorems and definitions

2 / 18

 299

メロトメ 御 トメ 差 トメ 差 トー 差

- Challenge pseudoprime
- Algorithmic theory
- Sketch of analysis
- **•** Future work

Fermat's Little Theorem

Theorem

If p is prime and $gcd(b, p) = 1$ then

 $b^{p-1} \equiv 1 \pmod{p}$.

$$
4 \Box \rightarrow 4 \Box \rightarrow 4 \Xi \rightarrow 4 \Xi \rightarrow \Xi \rightarrow 9 \%
$$
\n
$$
3/18
$$

Fermat's Little Theorem

Theorem

If p is prime and $gcd(b, p) = 1$ then

 $b^{p-1} \equiv 1 \pmod{p}$.

Definition

If *n* is a composite integer with $gcd(b, n) = 1$ and

 $b^{n-1} \equiv 1 \pmod{n}$

then we call n a base b Fermat pseudoprime.

Lucas Sequences

Definition

Let P,Q be integers, and let $D=P^2-4Q$ (called the discriminant). Let α and β be the two roots of x^2-Px+Q . Then we have an integer sequence U_k defined by

$$
U_k = \frac{\alpha^k - \beta^k}{\alpha - \beta}
$$

called the (P, Q) -Lucas sequence.

Definition

Equivalently, we may define this as a recurrence relation:

$$
U_0 = 0
$$
, $U_1 = 1$, and $U_n = PU_{n-1} - QU_{n-2}$.

റെ റ 4 / 18

 (1) (1)

An Analogous Theorem

Theorem

Let the (P, Q) -Lucas sequence be given, and let $\epsilon(n) = (D|n)$ be the Jacobi symbol. If p is an odd prime and $gcd(p, 2QD) = 1$, then

 $U_{p-\epsilon(p)} \equiv 0 \pmod{p}$

An Analogous Theorem

Theorem

Let the (P, Q) -Lucas sequence be given, and let $\epsilon(n) = (D|n)$ be the Jacobi symbol. If p is an odd prime and $gcd(p, 2QD) = 1$, then

$$
U_{p-\epsilon(p)} \equiv 0 \pmod{p}
$$

Definition

If *n* is a composite integer with $gcd(n, 2QD) = 1$ such that

$$
U_{n-\epsilon(n)} \equiv 0 \pmod{n}
$$

then we call $n \neq (P, Q)$ -Lucas pseudoprime.

Challenge Pseudoprimes

Definition

A composite number n is a (b, P, Q) -challenge pseudoprime if it is

6 / 18

K ロ > K @ > K 경 > K 경 > 시 경

- a base *b* Fermat pseudoprime,
- a (P*,* Q)-Lucas pseudoprime, and
- \bullet $\epsilon(n) = -1$.

Previously seen...

Pomerance, Selfridge, and Wagstaff offer \$620 for a (2*,* 1*,* −1)-challenge pseudoprime.

- Pomerance, Selfridge, and Wagstaff offer \$620 for a (2*,* 1*,* −1)-challenge pseudoprime.
- Jon Grantham offers \$6.20 for a (5*,* 5*,* −5)-challenge pseudoprime.

- Pomerance, Selfridge, and Wagstaff offer \$620 for a (2*,* 1*,* −1)-challenge pseudoprime.
- Jon Grantham offers \$6.20 for a (5*,* 5*,* −5)-challenge pseudoprime.
- Baillie-PSW test is built around (2*,* P*,* Q)-challenge pseudoprimes.

- Pomerance, Selfridge, and Wagstaff offer \$620 for a (2*,* 1*,* −1)-challenge pseudoprime.
- Jon Grantham offers \$6.20 for a (5*,* 5*,* −5)-challenge pseudoprime.
- Baillie-PSW test is built around (2*,* P*,* Q)-challenge pseudoprimes.
- Williams numbers are (b, P, Q) -challenge pseudoprimes for fixed D.

K ロ X x 何 X x モ X x モ X → 三 电 → の Q Q → 8 / 18

We can't.

K ロ X x 何 X x モ X x モ X → 三 电 → の Q Q → 8 / 18

We can't.

Two theoretical approaches:

Constructive: Computationally infeasible subset product problem.

8 / 18

 Ω

メロトメ 御 トメ 差 トメ 差 トー 差

- **Grantham and Alford**
- Chen and Greene

We can't.

Two theoretical approaches:

- Constructive: Computationally infeasible subset product problem.
	- **Grantham and Alford**
	- Chen and Greene
- \bullet Enumerate: List base b Fermat pseudoprime and hope you get lucky.

8 / 18

イロト 不優 トメ 差 トメ 差 トー 差

First View on Fermat's Little Theorem

Problem

Given an preproduct k, find a prime p such that $n = kp$ is a base b-Fermat pseudoprime.

Examining the exponent in Fermat's Little Theorem:

$$
n-1 = kp - 1 = k(p-1) + k - 1
$$

First View

Since
$$
\ell_b(p)
$$
 divides $n-1$ and $p-1$, $\ell_b(p)|k-1$. So

$$
p|b^{k-1}-1.
$$

Second View on Fermat's Little Theorem

Problem

Given an preproduct k, find a prime p such that $n = kp$ is a base b-Fermat pseudoprime.

Note, $b^{kp-1} \equiv 1 \pmod{p_i}$ for all $p_i | k$, so

 $kp \equiv 1 \pmod{\ell_b(p_i)}$.

Second View

Let $L = \text{lcm}(\ell_b(p_1), \ldots, \ell_b(p_t))$, then

 $p \equiv k^{-1} \pmod{L}.$

 Ω 10 / 18

Two Views on the Analogous Theorem

First View
$$
p|U_{k-\epsilon(k)}.
$$

Second View

Let
$$
W = \text{lcm}(\omega(p_1), \ldots, \omega(p_t))
$$
, then

$$
p \equiv -k^{-1} \pmod{W}.
$$

メロトメ 御 トメ 差 トメ 差 トー 差 298 11 / 18

Definition

A number k is admissible if

$$
\gcd(L,k)=1,\quad \gcd(W,k)=1,\quad \text{ and }\quad \gcd(L,W)<3.
$$

Finding k

Definition

A number k is admissible if

$$
\gcd(L,k)=1,\quad \gcd(W,k)=1,\quad \text{ and }\quad \gcd(L,W)<3.
$$

Consequences:

- Primes with $\epsilon(p) = -1$ will always be admissible.
- Primes with $\epsilon(p) = 1$ will rarely be admissible.

Tabulation of Challenge Pseudoprimes

Create all admissible k up to some bound.

- \textbf{D} If k is small, then find p as a divisor of $\gcd(b^{k-1}-1,U_{k-\epsilon(k)})$
- **2** If $\text{lcm}(L, W)$ is large, then find p by sieving

$$
p \equiv \left\{ \begin{array}{cc} k^{-1} & \text{mod } L \\ -k^{-1} & \text{mod } W \end{array} \right.
$$

Note:

- \bullet GCD computation time monotonically increases with k .
- \bullet Sieve time does not monotonically decrease with k .

Analysis: A Sketch

We want an estimate of

$$
\sum_{p < \sqrt{B}} \min\{\gcd\ cost, \text{ sieve cost}\}.
$$

We estimate

$$
\sum_{p < X} \gcd \, \cot + \sum_{X < p < \sqrt{B}} \text{ sieve cost.}
$$

14 / 18

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ K) Q Q

Analysis: A Sketch (cont.)

This is

$$
\sum_{p
$$

The interval length is B/p and the sieve step size is $\ell_b(p)\omega(p)$.

This requires we balance:

$$
O(X^2)+O(B/X)
$$

for a run-time of

 $O(B^{2/3})$.

15 / 18

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇

Actual Results

Theorem

There exists an algorithm which tabulates challenge pseudoprimes up to B with t prime factors using $O(B^{1-\frac{1}{3t-1}})$ bit operations. Under the heuristic assumption that factoring plays a minimal role, then the time is $O(B^{1-\frac{1}{2t-1}})$.

Actual Results

Theorem

There exists an algorithm which tabulates challenge pseudoprimes up to B with t prime factors using $O(B^{1-\frac{1}{3t-1}})$ bit operations. Under the heuristic assumption that factoring plays a minimal role, then the time is $O(B^{1-\frac{1}{2t-1}})$.

Theorem

There are no $(2, 1, -1)$ challenge pseudoprimes with 2 or 3 prime factors less than 280.

Challenging Challenges

- \$20 for a (2*,* 1*,* −1) challenge pseudoprime with an even number of prime factors.
- \$20 for a (2*,* 1*,* −1) challenge pseudoprime with exactly three prime factors.
- \$6 for a (2*,* 1*,* −1) challenge pseudoprime divisible by 3.

Future Work

• Strong challenge pseudoprimes

- \bullet Fewer admissible k .
- Smaller gcds.
- Large sieving moduli.

18 / 18

 Ω

K ロンス 御 ンズ ヨンズ ヨンバ ヨ

• Improved analysis.

Thank you for your time.