Computing Zeta Functions of Cyclic Covers of P! in
Large Characteristic

Vishal Arul, Alex J. Best, Edgar Costa, Richard Magner, Nicholas
Triantafillou

MIT, Boston U., Dartmouth/MIT, Boston U., MIT

17th July 2018
Thirteenth Algorithmic Number Theory Symposium
University of Wisconsin, Madison

Notation /Goal

e Iy is the finite field with g = p” elements.

o F € Fy[x] is a square-free polynomial of degree d.

e C is the cyclic cover of P! of degree r with affine model y" = F(x).

rd —r —d — gcd(r, d)
2

Compute

+ 1

g:

Z(C,t) :=exp (i #C(Fq;)%f) _ det (1(1—_15 ;)F(rloliqcllgl(C))’

i=1

as quickly as possible (in theory and practice!)

Why Compute Zeta Functions of Cyclic Covers?

Zeta Functions: Accumulate knowledge about arithmetic curves.
Sato-Tate.
Lang-Trotter.

Torsion subgroups of Jacobians.

Galois representations.

Much more!

Cyclic Covers:
@ Extra endomorphisms.
@ Understand what features of hyperelliptic curves are used.

@ Test our computational reach.

Main Result

Theorem

Suppose p > d?r’n/2 + log,(dr) + 2.
Let F € Fpo[x] be a square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C:y" = F(x).

The zeta function of C can be computed in time

o) (p1/2 - Polynomial in n, r,d, log P) .

We implemented our method in Sage. It performs well in practice.

Our examples were computed on one core of a desktop machine with an
Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz.

o Sy
10% |

103 ¢

Time (s)

102 |

1015’ ——g=45r=11,d =11
F - g=25,r=6,d=12

—-— g=6,r=5d=5

Ll Lol o nl ol ol Lo
100 107 108 10° 1010
p

Ll Lol Lo
10* 10°

Figure: Timings on a log-log plot. Time is roughly proportional to p/2.

History - Computing Zeta Fuctions

@ p-adic cohomology approach - variants of Kedlaya’s algorithm
o pl/2*¢ or average polynomial in log p over many primes, polynomial in

genus g.
o Hyperelliptic/superelliptic versions are efficient in practice.

@ Other approaches:
e (-adic approach - variants of Schoof’'s method.
o Deformation theory
e Trace formulas
@ The dream:
e Algorithm polynomial in log p and g simultaneously.

History of Kedlaya-style algorithms

Theorem
(Kedlaya 2001)

Let F € Fy[x] be a monic square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C:y" = F(x).

When r = 2 and d is odd, the zeta function of C can be computed in time

O (p - Polynomial in n,r,d,log p) .

History of Kedlaya-style algorithms

Theorem
(Harvey 2007)

Let F € Fy[x] be a monic square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C:y" = F(x).
When r = 2 and d is odd, the zeta function of C can be computed in time

0] (p1/2 - Polynomial in n, r,d,log p) .

History of Kedlaya-style algorithms

Theorem
(Minzlaff 2010)

Let F € Fy[x] be a monic square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C:y" = F(x).
When ged(r,d) = 1, the zeta function of C can be computed in time

0] (p1/2 - Polynomial in n, r,d,log p) .

History of Kedlaya-style algorithms

Theorem
(Gongalves 2015)

Let F € Fy[x] be a monic square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C:y" = F(x).

For any r,d, the zeta function of C can be computed in time

O (p - Polynomial in n,r,d,logp).

History of Kedlaya-style algorithms

Theorem
(ABCMT 2018)

Let F € Fy[x] be any square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C:y" = F(x).

For any r,d, the zeta function of C can be computed in time

0] (p1/2 - Polynomial in n, r,d,log p) .

What is Z(C, t)?
The numerator of Z(C, t) is

det (1 — t - Frobg |H'(C)) .
We use Monsky-Washnitzer cohomology of the punctured curve

C:={y" = F(x)} ~ ({y = 0} U {pts at c0})

to compute this numerator.

HY(C) = Ql[[x, y!]]dx/(Relations).

The relations come from manipulating the equation y" — F(x) = 0.

Monomial Basis:

B, ::{dex:iE{O,...,d—2},j€{er+1,...,(e+1)r—1}}
Y-

Overview of Kedlaya-style algorithms

@ Compute action of Frobenius on Monsky-Washnitzer H!. Get a
matrix with respect to Bp.

© Expand Frob(x'dx/y’) as a power series.
@ Truncate the power series.
©® 'Reduce’ to a linear combination of basis elements.

© Find the characteristic polynomial.

[From previous slide] Monomial Basis:

By := {dex:ie{0,...,d—2},je{1,...,r—1}}.
¥

Overview of Kedlaya-style algorithms

@ Compute action of Frobenius on Monsky-Washnitzer H!. Get a
matrix with respect to Bp.

© Expand Frob(x'dx/y’) as a power series.
@ Truncate the power series.
©® 'Reduce’ to a linear combination of basis elements.

© Find the characteristic polynomial.
© Divide out a factor corresponding to the punctures at infinity.

o Degree = ged(r,d) — 1.
e Depends on gcd(r, d) and the leading coefficient of F.
e Easy to compute.

[From previous slide] Monomial Basis:

By := {dex:ie{0,...,d—2},je{1,...,r—1}}.
Y

Overview of Kedlaya-style algorithms

@ Compute action of Frobenius on Monsky-Washnitzer H'. Get a
matrix with respect to Bj.

© Expand Frob(x’dx/y/) as a power series.
@ Truncate the power series.
© ‘Reduce’ to a linear combination of basis elements.

@ Find the characteristic polynomial.
© Divide out a factor corresponding to the punctures at infinity.

o Degree = ged(r,d) — 1.
e Depends on gcd(r, d) and the leading coefficient of F.
e Easy to compute.

[From previous slide] Monomial Basis:

B = {dex:ie{0,...,d—2},j€{r+1,...,2r1}}.
Y

Expanding Frob (%dx)

i pi+p—1 X s _ p
Frob (dex> s < i/r) (F();r)
y yp - y

Key Features:

@ For p-adic precision N, only need N + 1 terms.

Truncating the power series

Frob (dex

> pxPie1 i <—j/r) (F(xp) 1>k J
= — X.
)% yJP — k yPr

Key Features:
@ For p-adic precision N, only need N + 1 terms.
@ Sparse - Only = %de monomials x*dx/y* have non-zero coefficients.

@ Exponents are still big!

‘Reducing differentials’

Problem:
XS
Have: Differentials —tdx for s, t large.
y o
Want: Cohomologous differentials Z a,-J—J.dX for i,j small.
— Y
i
Use relations in cohomology to ‘reduce’
. x® . . : :
Solution: ~ —dx to linear combinations of differentials

with smaller exponents.

We use two types of relations:
@ Horizontal Reduction — reduces x-degree.

@ Vertical Reduction — reduces y-degree.

Reductions

There is a relation:

x5 . xd-1 x5~1. (Degree d — 1 polynomial in x)
dx ~ X.

yt (d(t —r) = rs)yt

Note that the x-degree goes down and the y-degree is unchanged.

Reductions

There is a relation:

x5 . xd-1 x5~1. (Degree d — 1 polynomial in x)
dx ~ X.

yt (d(t —r) = rs)yt

Note that the x-degree goes down and the y-degree is unchanged.

The denominator (d(t — r) — rs) could be zero if (r,d) # 1.

Reductions

There is a relation:

s Xd—ld x5—1. (Degree d — 1 polynomial in x)
X ~

yt (d(t —=r) = rs)yt

X

X.

Set)
s+

X
Ws, := spang, (

JE dx:OSiSd—l).

Horizontal Reduction: When d(t — r) — rs # 0, the relation above induces
a linear map Wi ; — Ws_1 + preserving cohomology class.

Reductions

There is a relation:

x5 . xd-1 d x5~1. (Degree d — 1 polynomial in x)
X ~

yt (d(t —=r) = rs)yt

X.

Set)
s+

X
Ws, := spang, (

JE dx:OSiSd—l).

Horizontal Reduction: When d(t — r) — rs # 0, the relation above induces
a linear map Wi ; — Ws_1 + preserving cohomology class.

Vertical Reduction: When t # r, other relations induce linear maps
Wo,: — Wo,+—, preserving cohomology class.

‘Picture of Reduction’ for r =6,d = 3.
The point (i,) represents W; ;.
Horizontal reduction fails on the red line.

‘Picture of Reduction’ for r =6,d = 3.
The point (i,) represents W; ;.

Horizontal reduction fails on the red line.

First reduce horizontally.

‘Picture of Reduction’ for r =6,d = 3.
The point (i,) represents W; ;.

Horizontal reduction fails on the red line.

First reduce horizontally.

‘Picture of Reduction’ for r =6,d = 3.
The point (i,) represents W; ;.

Horizontal reduction fails on the red line.

First reduce horizontally. Then reduce vertically.

‘Picture of Reduction’ for r =6,d = 3.
The point (i,) represents W; ;.
Horizontal reduction fails on the red line.

‘Picture of Reduction’ for r =6,d = 3.
The point (i,) represents W; ;.

Horizontal reduction fails on the red line.

We can't reduce horizontally!

‘Picture of Reduction’ for r=6,d =3, p=17.

The shaded region shows where the terms to reduce live if we use the
naive basis By := {;—;dx:OSigd—Zl gjgr—l}.

This is a real problem when (r,d) # 1.

‘Picture of Reduction’ for r=6,d =3, p=17.
If we use basis B ::{;—}dx:ogigd—2,r—|—1§j§2r—1},

all terms lie to the left of the red line, so we can always reduce.

Picture of Reduction’ for r=6,d =3, p=17.

If we use basis By := ;—J'dxzogigd—Q,r+1§j§2r—1 ,
all terms lie to the left of the red line, so we can always reduce.

O(p*/?*%) speed-up.

Reducing naively, we have an O(p) algorithm.

Reduction matrices are in linear progressions. Multiplying them with
Bostan-Gaudry-Schost, as in Harvey or Minzlaff, gives an O(p!/2*¢)
algorithm.

Technical Disclaimer:

Many crucial details have been swept under the rug.

E.g. Applying Bostan-Gaudry-Schost carefully allows us to do all
computations with only one extra digit of p-adic precision.

Restatement of Main Result

Theorem

Suppose p > d?r’n/2 + log,(dr) + 2.

Let F € Fpo[x] be a square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C:y" = F(x).

The zeta function of C can be computed in time

o) (p1/2 - Polynomial in n, r,d, log P) .

sage: p = 4999;

sage: x = PolynomialRing(GF(p),"x").gen(Q);
sage: C = CyclicCover(5, x°5 + 1)

sage: C.frobenius_polynomial()

x712 + 29994%x710 + 374850015*x"8 + 2498500299980*x"6 + 93675

Timings

Our examples were computed on one core of a desktop machine with an

Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz.

p time | p time | p time
214 _3 1.21s [222 -3 21.7s | 230 35 5m58s
216 _ 15 3.06s | 2%* -3 40.9s | 2% -5 11m36s
218 _ 5 5.74s | 2% —5 1m23s | 23 — 41 32m59s
220 _3 10.9s | 222 —57 2mb4s | 236 5 1h7m

Table: Genus 6 curve C:

Y =xP—x*4+x3—2x2 +2x+1with N=4

p time | p time | p time
210 4 45 4m37s | 218 —5 12m2s | 2?6 — 5 2h38m
2123 5m31s | 220 —3 21m34s | 228 — 57 5h24m
214 3 6m20s | 222 —3 37m21s | 230 —35 12hi2m
216 _ 15 8mibs | 224 —3 1h13m | 232 -5 23h35m

Table: Genus 25 curve C: y® = x12 + 10x™ + x10 4+ 2x% — x7 — x5 — 4x* 4 31x

with N =13

Timings

Our examples were computed on one core of a desktop machine with an
Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz.

p time ‘ p time ‘ p time
212 _3 24mis | 218 —5 1hom | 2%4 —3 7h21m
214 3 29m50s | 220 —3 1h52m | 226 —5 16h24m
216 _ 15 37mi14s | 22 -3 3h22m | 228 —57 33h17m

Table: Genus 45,
C: oy = xM 4+ 21x°% +22x8 + 12x7 4 5x* + 15x3 + 6x% 4+ 99x + 11 with N = 23

