
Computing Zeta Functions of Cyclic Covers of P1 in
Large Characteristic

Vishal Arul, Alex J. Best, Edgar Costa, Richard Magner, Nicholas
Triantafillou

MIT, Boston U., Dartmouth/MIT, Boston U., MIT

17th July 2018
Thirteenth Algorithmic Number Theory Symposium

University of Wisconsin, Madison

Notation/Goal

Fq is the finite field with q = pn elements.

F ∈ Fq[x] is a square-free polynomial of degree d .

C is the cyclic cover of P1 of degree r with affine model y r = F (x).

g =
rd − r − d − gcd(r , d)

2
+ 1.

Goal:

Compute

Z (C, t) := exp

(∞∑
i=1

#C(Fqi)
t i

i

)
=

det
(
1− t · Frobq |H1(C)

)
(1− t)(1− qt)

,

as quickly as possible (in theory and practice!)

Why Compute Zeta Functions of Cyclic Covers?

Zeta Functions: Accumulate knowledge about arithmetic curves.

Sato-Tate.

Lang-Trotter.

Torsion subgroups of Jacobians.

Galois representations.

Much more!

Cyclic Covers:

Extra endomorphisms.

Understand what features of hyperelliptic curves are used.

Test our computational reach.

Main Result

Theorem

Suppose p > d2r2n/2 + logp(dr) + 2.

Let F ∈ Fpn [x] be a square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C : y r = F (x).

The zeta function of C can be computed in time

O
(
p1/2 · Polynomial in n, r , d , log p

)
.

We implemented our method in Sage. It performs well in practice.

Our examples were computed on one core of a desktop machine with an
Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz.

104 105 106 107 108 109 1010

101

102

103

104

105

–1 hr–

–1 min–

p

T
im

e
(s
)

g = 45, r = 11, d = 11
g = 25, r = 6, d = 12
g = 6, r = 5, d = 5

Figure: Timings on a log-log plot. Time is roughly proportional to p1/2.

History - Computing Zeta Fuctions

p-adic cohomology approach - variants of Kedlaya’s algorithm

p1/2+ε or average polynomial in log p over many primes, polynomial in
genus g .
Hyperelliptic/superelliptic versions are efficient in practice.

Other approaches:

`-adic approach - variants of Schoof’s method.
Deformation theory
Trace formulas

The dream:

Algorithm polynomial in log p and g simultaneously.

History of Kedlaya-style algorithms

Theorem

(Kedlaya 2001)
Let F ∈ Fq[x] be a monic square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C : y r = F (x).

When r = 2 and d is odd, the zeta function of C can be computed in time

O (p · Polynomial in n, r , d , log p) .

History of Kedlaya-style algorithms

Theorem

(Harvey 2007)
Let F ∈ Fq[x] be a monic square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C : y r = F (x).

When r = 2 and d is odd, the zeta function of C can be computed in time

O
(
p1/2 · Polynomial in n, r , d , log p

)
.

History of Kedlaya-style algorithms

Theorem

(Minzlaff 2010)
Let F ∈ Fq[x] be a monic square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C : y r = F (x).

When gcd(r , d) = 1, the zeta function of C can be computed in time

O
(
p1/2 · Polynomial in n, r , d , log p

)
.

History of Kedlaya-style algorithms

Theorem

(Gonçalves 2015)
Let F ∈ Fq[x] be a monic square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C : y r = F (x).

For any r , d, the zeta function of C can be computed in time

O (p · Polynomial in n, r , d , log p) .

History of Kedlaya-style algorithms

Theorem

(ABCMT 2018)
Let F ∈ Fq[x] be any square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C : y r = F (x).

For any r , d, the zeta function of C can be computed in time

O
(
p1/2 · Polynomial in n, r , d , log p

)
.

What is Z (C, t)?

The numerator of Z (C, t) is

det
(
1− t · Frobq |H1(C)

)
.

We use Monsky-Washnitzer cohomology of the punctured curve

C̃ := {y r = F (x)}r ({y = 0} ∪ {pts at ∞})

to compute this numerator.

H1(C̃) = Q†q[[x , y−1]]dx/(Relations).

The relations come from manipulating the equation y r − F (x) = 0.

Monomial Basis:

Bε :=

{
x i

y j
dx : i ∈ {0, . . . , d − 2}, j ∈ {εr + 1, . . . , (ε+ 1)r − 1}

}

Overview of Kedlaya-style algorithms

1 Compute action of Frobenius on Monsky-Washnitzer H1. Get a
matrix with respect to B0.

1 Expand Frob(x idx/y j) as a power series.
2 Truncate the power series.
3 ‘Reduce’ to a linear combination of basis elements.

2 Find the characteristic polynomial.

3 Divide out a factor corresponding to the punctures at infinity.

Degree = gcd(r , d)− 1.
Depends on gcd(r , d) and the leading coefficient of F .
Easy to compute.

[From previous slide] Monomial Basis:

B0 :=

{
x i

y j
dx : i ∈ {0, . . . , d − 2}, j ∈ {1, . . . , r − 1}

}
.

Overview of Kedlaya-style algorithms

1 Compute action of Frobenius on Monsky-Washnitzer H1. Get a
matrix with respect to B0.

1 Expand Frob(x idx/y j) as a power series.
2 Truncate the power series.
3 ‘Reduce’ to a linear combination of basis elements.

2 Find the characteristic polynomial.

3 Divide out a factor corresponding to the punctures at infinity.

Degree = gcd(r , d)− 1.
Depends on gcd(r , d) and the leading coefficient of F .
Easy to compute.

[From previous slide] Monomial Basis:

B0 :=

{
x i

y j
dx : i ∈ {0, . . . , d − 2}, j ∈ {1, . . . , r − 1}

}
.

Overview of Kedlaya-style algorithms

1 Compute action of Frobenius on Monsky-Washnitzer H1. Get a
matrix with respect to B1.

1 Expand Frob(x idx/y j) as a power series.
2 Truncate the power series.
3 ‘Reduce’ to a linear combination of basis elements.

2 Find the characteristic polynomial.

3 Divide out a factor corresponding to the punctures at infinity.

Degree = gcd(r , d)− 1.
Depends on gcd(r , d) and the leading coefficient of F .
Easy to compute.

[From previous slide] Monomial Basis:

B1 :=

{
x i

y j
dx : i ∈ {0, . . . , d − 2}, j ∈ {r + 1, . . . , 2r − 1}

}
.

Expanding Frob
(
x i

y j dx
)

Frob

(
x i

y j
dx

)
=

pxpi+p−1

y jp

∞∑
k=0

(
−j/r
k

)(
F (xp)

ypr
− 1

)k

dx .

Key Features:

For p-adic precision N, only need N + 1 terms.

Sparse - Only ≈ 1
2N

2d monomials x sdx/y t have non-zero coefficients.

Exponents are still big!

Truncating the power series

Frob

(
x i

y j
dx

)
=

pxpi+p−1

y jp

N∑
k=0

(
−j/r
k

)(
F (xp)

ypr
− 1

)k

dx .

Key Features:

For p-adic precision N, only need N + 1 terms.

Sparse - Only ≈ 1
2N

2d monomials x sdx/y t have non-zero coefficients.

Exponents are still big!

‘Reducing differentials’

Problem:

Have: Differentials
x s

y t
dx for s, t large.

Want: Cohomologous differentials
∑
i ,j

ai ,j
x i

y j
dx for i , j small.

Solution:

Use relations in cohomology to ‘reduce’
x s

y t
dx to linear combinations of differentials

with smaller exponents.

We use two types of relations:

Horizontal Reduction – reduces x-degree.

Vertical Reduction – reduces y -degree.

Reductions

There is a relation:

x s · xd−1

y t
dx ∼ x s−1 · (Degree d − 1 polynomial in x)

(d(t − r)− rs)y t
dx .

Note that the x-degree goes down and the y -degree is unchanged.

The denominator (d(t − r)− rs) could be zero if (r , d) 6= 1.

Reductions

There is a relation:

x s · xd−1

y t
dx ∼ x s−1 · (Degree d − 1 polynomial in x)

(d(t − r)− rs)y t
dx .

Note that the x-degree goes down and the y -degree is unchanged.

The denominator (d(t − r)− rs) could be zero if (r , d) 6= 1.

Reductions

There is a relation:

x s · xd−1

y t
dx ∼ x s−1 · (Degree d − 1 polynomial in x)

(d(t − r)− rs)y t
dx .

Set

Ws,t := spanQp

(
x s+i

y t
dx : 0 ≤ i ≤ d − 1

)
.

Horizontal Reduction: When d(t − r)− rs 6= 0, the relation above induces
a linear map Ws,t →Ws−1,t preserving cohomology class.

Vertical Reduction: When t 6= r , other relations induce linear maps
W0,t →W0,t−r preserving cohomology class.

Reductions

There is a relation:

x s · xd−1

y t
dx ∼ x s−1 · (Degree d − 1 polynomial in x)

(d(t − r)− rs)y t
dx .

Set

Ws,t := spanQp

(
x s+i

y t
dx : 0 ≤ i ≤ d − 1

)
.

Horizontal Reduction: When d(t − r)− rs 6= 0, the relation above induces
a linear map Ws,t →Ws−1,t preserving cohomology class.

Vertical Reduction: When t 6= r , other relations induce linear maps
W0,t →W0,t−r preserving cohomology class.

‘Picture of Reduction’ for r = 6, d = 3.
The point (i , j) represents Wi ,j .
Horizontal reduction fails on the red line.

First reduce horizontally. Then reduce vertically.

S

j

i

S

‘Picture of Reduction’ for r = 6, d = 3.
The point (i , j) represents Wi ,j .
Horizontal reduction fails on the red line.
First reduce horizontally.

Then reduce vertically.

S

j

i

S

‘Picture of Reduction’ for r = 6, d = 3.
The point (i , j) represents Wi ,j .
Horizontal reduction fails on the red line.
First reduce horizontally.

Then reduce vertically.

S

j

i

S

‘Picture of Reduction’ for r = 6, d = 3.
The point (i , j) represents Wi ,j .
Horizontal reduction fails on the red line.
First reduce horizontally. Then reduce vertically.

S

j

i

S

‘Picture of Reduction’ for r = 6, d = 3.
The point (i , j) represents Wi ,j .
Horizontal reduction fails on the red line.

We can’t reduce horizontally!

j

i

S

‘Picture of Reduction’ for r = 6, d = 3.
The point (i , j) represents Wi ,j .
Horizontal reduction fails on the red line.
We can’t reduce horizontally!

j

i

SX

‘Picture of Reduction’ for r = 6, d = 3, p = 7.
The shaded region shows where the terms to reduce live if we use the

naive basis B0 :=
{

x i

y j dx : 0 ≤ i ≤ d − 2, 1 ≤ j ≤ r − 1
}
.

This is a real problem when (r , d) 6= 1.

j

i

‘Picture of Reduction’ for r = 6, d = 3, p = 7.
If we use basis B1 :=

{
x i

y j dx : 0 ≤ i ≤ d − 2, r + 1 ≤ j ≤ 2r − 1
}

,

all terms lie to the left of the red line, so we can always reduce.

j

i

‘Picture of Reduction’ for r = 6, d = 3, p = 7.

If we use basis B1 :=
{

x i

y j dx : 0 ≤ i ≤ d − 2, r + 1 ≤ j ≤ 2r − 1
}

,

all terms lie to the left of the red line, so we can always reduce.

j

i

O(p1/2+ε) speed-up.

Reducing naively, we have an O(p) algorithm.

Reduction matrices are in linear progressions. Multiplying them with
Bostan-Gaudry-Schost, as in Harvey or Minzlaff, gives an O(p1/2+ε)
algorithm.

Technical Disclaimer:
Many crucial details have been swept under the rug.
E.g. Applying Bostan-Gaudry-Schost carefully allows us to do all
computations with only one extra digit of p-adic precision.

Restatement of Main Result

Theorem

Suppose p > d2r2n/2 + logp(dr) + 2.

Let F ∈ Fpn [x] be a square-free polynomial of degree d.
Let C be the smooth projective curve with affine model

C : y r = F (x).

The zeta function of C can be computed in time

O
(
p1/2 · Polynomial in n, r , d , log p

)
.

sage: p = 4999;

sage: x = PolynomialRing(GF(p),"x").gen();

sage: C = CyclicCover(5, x^5 + 1)

sage: C.frobenius_polynomial()

x^12 + 29994*x^10 + 374850015*x^8 + 2498500299980*x^6 + 9367502249700015*x^4 + 18731257498500149994*x^2 + 15606259372500374970001

Timings
Our examples were computed on one core of a desktop machine with an
Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz.

p time p time p time

214 − 3 1.21s 222 − 3 21.7s 230 − 35 5m58s

216 − 15 3.05s 224 − 3 40.9s 232 − 5 11m36s

218 − 5 5.74s 226 − 5 1m23s 234 − 41 32m59s

220 − 3 10.9s 228 − 57 2m54s 236 − 5 1h7m

Table: Genus 6 curve C : y5 = x5 − x4 + x3 − 2x2 + 2x + 1 with N = 4

p time p time p time

210 + 45 4m37s 218 − 5 12m2s 226 − 5 2h38m

212 − 3 5m31s 220 − 3 21m34s 228 − 57 5h24m

214 − 3 6m20s 222 − 3 37m21s 230 − 35 12h12m

216 − 15 8m15s 224 − 3 1h13m 232 − 5 23h35m

Table: Genus 25 curve C : y6 = x12 + 10x11 + x10 + 2x9 − x7 − x5 − 4x4 + 31x
with N = 13

Timings

Our examples were computed on one core of a desktop machine with an
Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz.

p time p time p time

212 − 3 24m1s 218 − 5 1h2m 224 − 3 7h21m

214 − 3 29m50s 220 − 3 1h52m 226 − 5 16h24m

216 − 15 37m14s 222 − 3 3h22m 228 − 57 33h17m

Table: Genus 45,
C : y11 = x11 + 21x9 + 22x8 + 12x7 + 5x4 + 15x3 + 6x2 + 99x + 11 with N = 23

