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Let K = Q(0) be a number field of degree n.
The ring of integers Zk of K is the integral closure of Z in K.
A basis (bo, ..., bs—1) is called a triangular basis of Z if
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For K = Q(v/5) we have

\/§—|—1>Z.

ZK:<1, .



Approaches

K = Q(#), f monic minimal polynomial of 6.
Disc(f) = /- S? with /,S € Z and | O-free and p prime dividing S.
© Linear algebra over Z
o Round 2 Algorithm (Pohst-Zassenhaus)

© p-adic approach

o Round 4 Algorithm (Zassenhaus, Ford, ...)
o OM-Representation (Nart, Guardia, Stainsby, B.)
o Puiseux expansion (v. Hoeij, Decker, ...)
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© p-adic approach

o Round 4 Algorithm (Zassenhaus, Ford, ...)
o OM-Representation (Nart, Guardia, Stainsby, B.)
o Puiseux expansion (v. Hoeij, Decker, ...)

Our algorithm: p-adic initialization step and then linear algebra.
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@ A Dedekind domain, K the fraction field of A.
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@ A Dedekind domain, K the fraction field of A.
@ Fix a non-zero prime ideal p of A with prime element 7.
@ A, localization of A at p.

@ 0 is a root of a monic irreducible separable polynomial
f € A[x] of degree n.

L = K(#) finite separable extension of K generated by 6.

O is the integral closure of A in L and O, is the integral
closure of A, in L.

@ A p-integral basis is an Ap-basis of O,.
This talk: Construct a triangular p-integral basis.

Example: A=7, K =Q, L=Q(+/5), f(x) = x> —5.
Disc(f) =225, p=2-7Z, 7 = 2.

(1, 1+2‘/§) is a triangular 2-integral basis.




Construction of triangular bases

Let B, ..., Bs be all prime ideals of O lying over p. Denote by ¢;
the ramification index of B3; over p.

L vp(2)
wi:l—=ZU{o}, w(z)= L min {’7”

1<i<s e

For 0 </ < n—1, we call a monic degree i polynomial g;(x) in
A[x] i-maximal if

w(gi(0)) = w(g(0))

for all monic g € A[x] of degree i.



Construction of triangular bases

Theorem (H. D. Stainsby, 2018.)
Let by, ...,b, 1 € L with

gi(0)

bi = gi(x) € A[x] i-maximal,

mw(&i(9))’

then (b, ..., b,_1) is a triangular p-integral basis.

v




Construction of triangular bases

Theorem (H. D. Stainsby, 2018.)

Let by, ...,b, 1 € L with
&%) _ S
bi = — ) gi(x) € A[x] i-maximal,
then (b, ..., b,_1) is a triangular p-integral basis.

v

Idea of the algorithm: Construct gj(x) € A[x] being i-maximal.



Augmentation-Step

Denote by R C A a fixed system of representatives of k, = A/p.

Let ¢p,...,Cm be in L ordered by non-decreasing w-value and
m—1

h=cm+ > Nmlm) =) with Ao,... Ap_1 € R.
j=0

If w(c,’;,) > w(cm), then we call ¢, an augmentation-step.
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Augmentation-Step

Denote by R C A a fixed system of representatives of k, = A/p.

Let ¢p,...,Cm be in L ordered by non-decreasing w-value and
m—1

h=cm+ > Nmlm) =) with Ao,... Ap_1 € R.
j=0

If w(c,’;,) > w(cm), then we call ¢, an augmentation-step.

The algorithm: Set by = 1.

Find )\070 € R s.t. bi‘ =0+ )\o,obo is 1-maximal. Set
by = b /n(b1),

Find A1,0,A1,1 € R s.t. by = 02 + A1,1b1 + A1obp is 2-maximal.
Set by = b /m(b2).

= bg,...,by_1 triangular with b; is i maximal.



Realization of Augmentation

Let K, be the completion of K at p, extend v, to K.

Denote by AA,J the valuation ring of v, in K.

For 1 <i <'s, we denote by Ly, the completion of L at ;.
f:fl---fsef\p[x] and 0; is a root of f.
We write Ly, = K,(6;) and define

L;ZL—)Lsp[, 0— 0.

@ O, integral closure of AAP in Ly, with integral basis B;.
o For z € Ly,, we denote by Cp,(z) = (21,...,2s) € K," the
coefficients of z w.r.t B;, where n; = e; - f(Bi/p).

We define ¢ : L — [; Ky" = K, u(z) = (Cp,(1i(2)))1<i<s-
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Realization of Augmentation

For z € L we write «(z) = (z1,...,2,) € K.

w(z) = min1<i<n{w(z)}-

For A € K, with v,(\) = m, we write A =32 Mo with Aj € R.
For an integer r > m, we define

Am if r=m
() = {0 else

For z € L and r > w(z), we set

LT,(Z) = (ltr(zi))lgign S k;.



Realization of Augmentation

Lemma

Let ¢y, ..., Cm € L ordered by non-decreasing w-value and
o, ..., am € R with a,,, # 0 such that
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Realization of Augmentation

Lemma

Let ¢y, ..., Cm € L ordered by non-decreasing w-value and
o, ..., am € R with a,,, # 0 such that

> LTy (i(c)) = 0. (1)

0<i<m

Then, & = cm+ >4t Sigelem)=A9)¢; realizes an
augmentation-step.

Moreover, if the LT, (t(ci)) are ky-linearly independent,
then no augmentation-step is applicable.
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L1 L2
1 1 1
01 0>
6% | 11t2 96, + 11t> +9
03 | 11t26, | (112 + 12)0, + 8t> +3
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(1) | 1 0o 1 0

(9) 0 t 11 t 0

W(6?) | 112 0 | 1182 + 4 ot 0

W3 | 0 118 1128245 1183412t | 0
LTo(1) (lJ 8 111 8
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4
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Updated basis: 1,6,6% + 26,63 + 96.



| By . B> | w

(1) 1 0 1 0 0
1(0) 0 t P11 t 0
W6%+2) | 1112 2t | 11¢2 11t 1
W(0P490) | 0 112 +9t 11262 1183 +8t | 1



‘ Bl ; BQ w
(1) 1 0 1 0 0
1(0) 0 t 11 t 0
W6%+2) | 1112 2t | 11¢2 11t 1
W(0P490) | 0 112 +9t 11262 1183 +8t | 1
101 0
M= 8 g 101 101 , rank(M) =4
09 0 8

2 3 . . . .
= (1,0, 320 490 is 3 triangular p-integral basis.




Thank you! ... Questions?




Complexity

Theorem

The algorithm needs at most
1) (n35 + n252 + nH—E(;lqu + n1+652+6)

p-small operations. In particular, the runtime after the initialization
is equal to O(n?62) p-small operations.

Here ¢ := v,(Disc f) and q = #A/p.)
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