COMPUTATION OF TRIANGULAR INTEGRAL BASES

Jens Bauch & Ha Tran

Simon Fraser University & University of Calgary

ANTS XIII University of Wisconsin

July 16, 2018

Let $K = \mathbb{Q}(\theta)$ be a number field of degree n.

The ring of integers \mathbb{Z}_K of K is the integral closure of \mathbb{Z} in K.

A basis (b_0,\ldots,b_{n-1}) is called a **triangular basis** of \mathbb{Z}_K if

$$b_i = \frac{\theta^i + \sum_{j < i} \lambda_{i,j} \theta^j}{h_i}, \quad \lambda_{i,j}, h_i \in \mathbb{Z}.$$

Let $K = \mathbb{Q}(\theta)$ be a number field of degree n.

The **ring of integers** \mathbb{Z}_K of K is the **integral closure** of \mathbb{Z} in K.

A basis (b_0,\ldots,b_{n-1}) is called a **triangular basis** of \mathbb{Z}_K if

$$b_i = \frac{\theta^i + \sum_{j < i} \lambda_{i,j} \theta^j}{h_i}, \quad \lambda_{i,j}, h_i \in \mathbb{Z}.$$

For $K = \mathbb{Q}(\sqrt{5})$ we have

$$Z_{\mathcal{K}} = \left\langle 1, \frac{\sqrt{5}+1}{2} \right\rangle_{\mathbb{Z}}.$$

Approaches

 $K = \mathbb{Q}(\theta)$, f monic minimal polynomial of θ .

 $\mathsf{Disc}(f) = I \cdot \mathcal{S}^2$ with $I, \mathcal{S} \in \mathbb{Z}$ and $I \square$ -free and p prime dividing \mathcal{S} .

- lacktriangle Linear algebra over $\mathbb Z$
 - Round 2 Algorithm (Pohst-Zassenhaus)
- p-adic approach
 - Round 4 Algorithm (Zassenhaus, Ford, ...)
 - OM-Representation (Nart, Guardia, Stainsby, B.)
 - Puiseux expansion (v. Hoeij, Decker, ...)

Approaches

 $K = \mathbb{Q}(\theta)$, f monic minimal polynomial of θ .

 $\mathsf{Disc}(f) = I \cdot \mathcal{S}^2$ with $I, \mathcal{S} \in \mathbb{Z}$ and $I \square$ -free and p prime dividing \mathcal{S} .

- lacktriangle Linear algebra over $\mathbb Z$
 - Round 2 Algorithm (Pohst-Zassenhaus)
- p-adic approach
 - Round 4 Algorithm (Zassenhaus, Ford, ...)
 - OM-Representation (Nart, Guardia, Stainsby, B.)
 - Puiseux expansion (v. Hoeij, Decker, ...)

Our algorithm: p-adic initialization step and then linear algebra.

- A Dedekind domain, K the fraction field of A.
- Fix a non-zero prime ideal \mathfrak{p} of A with prime element π .
- A_p localization of A at p.
- θ is a root of a monic irreducible separable polynomial $f \in A[x]$ of degree n.
- $L = K(\theta)$ finite separable extension of K generated by θ .
- \mathcal{O} is the integral closure of A in L and $\mathcal{O}_{\mathfrak{p}}$ is the integral closure of $A_{\mathfrak{p}}$ in L.
- A \mathfrak{p} -integral basis is an $A_{\mathfrak{p}}$ -basis of $\mathcal{O}_{\mathfrak{p}}$.

- A Dedekind domain, K the fraction field of A.
- Fix a non-zero prime ideal \mathfrak{p} of A with prime element π .
- A_p localization of A at p.
- θ is a root of a monic irreducible separable polynomial $f \in A[x]$ of degree n.
- $L = K(\theta)$ finite separable extension of K generated by θ .
- \mathcal{O} is the integral closure of A in L and $\mathcal{O}_{\mathfrak{p}}$ is the integral closure of $A_{\mathfrak{p}}$ in L.
- A \mathfrak{p} -integral basis is an $A_{\mathfrak{p}}$ -basis of $\mathcal{O}_{\mathfrak{p}}$.

This talk: Construct a triangular p-integral basis.

- A Dedekind domain, K the fraction field of A.
- Fix a non-zero prime ideal \mathfrak{p} of A with prime element π .
- A_p localization of A at p.
- θ is a root of a monic irreducible separable polynomial $f \in A[x]$ of degree n.
- $L = K(\theta)$ finite separable extension of K generated by θ .
- \mathcal{O} is the integral closure of A in L and $\mathcal{O}_{\mathfrak{p}}$ is the integral closure of $A_{\mathfrak{p}}$ in L.
- A \mathfrak{p} -integral basis is an $A_{\mathfrak{p}}$ -basis of $\mathcal{O}_{\mathfrak{p}}$.

This talk: Construct a triangular p-integral basis.

Example: $A = \mathbb{Z}$, $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt{5})$, $f(x) = x^2 - 5$.

- A Dedekind domain, K the fraction field of A.
- Fix a non-zero prime ideal \mathfrak{p} of A with prime element π .
- $A_{\mathfrak{p}}$ localization of A at \mathfrak{p} .
- θ is a root of a monic irreducible separable polynomial $f \in A[x]$ of degree n.
- $L = K(\theta)$ finite separable extension of K generated by θ .
- \mathcal{O} is the integral closure of A in L and $\mathcal{O}_{\mathfrak{p}}$ is the integral closure of $A_{\mathfrak{p}}$ in L.
- A \mathfrak{p} -integral basis is an $A_{\mathfrak{p}}$ -basis of $\mathcal{O}_{\mathfrak{p}}$.

This talk: Construct a triangular p-integral basis.

Example:
$$A = \mathbb{Z}$$
, $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt{5})$, $f(x) = x^2 - 5$. Disc $(f) = 2^2 \cdot 5$, $\mathfrak{p} = 2 \cdot \mathbb{Z}$, $\pi = 2$.

 $(1,\frac{1+\sqrt{5}}{2})$ is a triangular 2-integral basis.

Construction of triangular bases

Let $\mathfrak{P}_1, \ldots, \mathfrak{P}_s$ be all prime ideals of \mathcal{O} lying over \mathfrak{p} . Denote by e_i the ramification index of \mathfrak{P}_i over \mathfrak{p} .

$$\omega: L \to \mathbb{Z} \cup \{\infty\}, \quad \omega(z) = \left[\min_{1 \le i \le s} \left\{\frac{v \mathfrak{P}_i(z)}{e_i}\right\}\right].$$

For $0 \le i \le n-1$, we call a monic degree i polynomial $g_i(x)$ in A[x] i-maximal if

$$\omega(g_i(\theta)) \geq \omega(g(\theta))$$

for all monic $g \in A[x]$ of degree i.

Construction of triangular bases

Theorem (H. D. Stainsby, 2018.)

Let $b_0, \ldots, b_{n-1} \in L$ with

$$b_i = \frac{g_i(\theta)}{\pi^{\omega(g_i(\theta))}}, \quad g_i(x) \in A[x] \text{ i-maximal},$$

then (b_0, \ldots, b_{n-1}) is a triangular \mathfrak{p} -integral basis.

Construction of triangular bases

Theorem (H. D. Stainsby, 2018.)

Let $b_0, \ldots, b_{n-1} \in L$ with

$$b_i = \frac{g_i(\theta)}{\pi^{\omega(g_i(\theta))}}, \quad g_i(x) \in A[x] \text{ i-maximal},$$

then (b_0, \ldots, b_{n-1}) is a triangular \mathfrak{p} -integral basis.

Idea of the algorithm: Construct $g_i(x) \in A[x]$ being *i*-maximal.

Denote by $\mathcal{R} \subset A$ a fixed system of representatives of $k_{\mathfrak{p}} = A/\mathfrak{p}$. Let c_0, \ldots, c_m be in L ordered by non-decreasing ω -value and

$$c_m^* = c_m + \sum_{j=0}^{m-1} \lambda_j \pi^{\omega(c_m) - \omega(c_j)} c_j \text{ with } \lambda_0, \ldots \lambda_{m-1} \in \mathcal{R}.$$

If $\omega(c_m^*) > \omega(c_m)$, then we call c_m^* an **augmentation-step**.

Denote by $\mathcal{R} \subset A$ a fixed system of representatives of $k_{\mathfrak{p}} = A/\mathfrak{p}$. Let c_0, \ldots, c_m be in L ordered by non-decreasing ω -value and

$$c_m^* = c_m + \sum_{j=0}^{m-1} \lambda_j \pi^{\omega(c_m) - \omega(c_j)} c_j \text{ with } \lambda_0, \dots \lambda_{m-1} \in \mathcal{R}.$$

If $\omega(c_m^*) > \omega(c_m)$, then we call c_m^* an **augmentation-step**.

The algorithm: Set $b_0 = 1$.

Denote by $\mathcal{R} \subset A$ a fixed system of representatives of $k_{\mathfrak{p}} = A/\mathfrak{p}$. Let c_0, \ldots, c_m be in L ordered by non-decreasing ω -value and

$$c_m^* = c_m + \sum_{j=0}^{m-1} \lambda_j \pi^{\omega(c_m) - \omega(c_j)} c_j ext{ with } \lambda_0, \dots \lambda_{m-1} \in \mathcal{R}.$$

If $\omega(c_m^*) > \omega(c_m)$, then we call c_m^* an **augmentation-step**.

The algorithm: Set $b_0 = 1$.

Find $\lambda_{0,0} \in \mathcal{R}$ s.t. $b_1^* = \theta + \lambda_{0,0}b_0$ is 1-maximal. Set $b_1 = b_1^*/\pi^{\omega(b_1^*)}$.

Denote by $\mathcal{R} \subset A$ a fixed system of representatives of $k_{\mathfrak{p}} = A/\mathfrak{p}$. Let c_0, \ldots, c_m be in L ordered by non-decreasing ω -value and

$$c_m^* = c_m + \sum_{j=0}^{m-1} \lambda_j \pi^{\omega(c_m) - \omega(c_j)} c_j \text{ with } \lambda_0, \dots \lambda_{m-1} \in \mathcal{R}.$$

If $\omega(c_m^*) > \omega(c_m)$, then we call c_m^* an **augmentation-step**.

The algorithm: Set $b_0 = 1$.

Find $\lambda_{0,0}\in\mathcal{R}$ s.t. $b_1^*=\theta+\lambda_{0,0}b_0$ is 1-maximal. Set $b_1=b_1^*/\pi^{\omega(b_1^*)}$.

Find $\lambda_{1,0}, \lambda_{1,1} \in \mathcal{R}$ s.t. $b_2^* = \theta^2 + \lambda_{1,1}b_1 + \lambda_{1,0}b_0$ is 2-maximal. Set $b_2 = b_2^*/\pi^{\omega(b_2^*)}$.

:

Denote by $\mathcal{R} \subset A$ a fixed system of representatives of $k_{\mathfrak{p}} = A/\mathfrak{p}$. Let c_0, \ldots, c_m be in L ordered by non-decreasing ω -value and

$$c_m^* = c_m + \sum_{j=0}^{m-1} \lambda_j \pi^{\omega(c_m) - \omega(c_j)} c_j ext{ with } \lambda_0, \ldots \lambda_{m-1} \in \mathcal{R}.$$

If $\omega(c_m^*) > \omega(c_m)$, then we call c_m^* an **augmentation-step**.

The algorithm: Set $b_0 = 1$.

Find $\lambda_{0,0}\in\mathcal{R}$ s.t. $b_1^*=\theta+\lambda_{0,0}b_0$ is 1-maximal. Set $b_1=b_1^*/\pi^{\omega(b_1^*)}$.

Find $\lambda_{1,0}, \lambda_{1,1} \in \mathcal{R}$ s.t. $b_2^* = \theta^2 + \lambda_{1,1}b_1 + \lambda_{1,0}b_0$ is 2-maximal. Set $b_2 = b_2^*/\pi^{\omega(b_2^*)}$.

:

 $\Rightarrow b_0, \ldots, b_{n-1}$ triangular with b_i is i maximal.

- Let $K_{\mathfrak{p}}$ be the completion of K at \mathfrak{p} , extend $v_{\mathfrak{p}}$ to $K_{\mathfrak{p}}$.
- Denote by $\hat{A}_{\mathfrak{p}}$ the valuation ring of $v_{\mathfrak{p}}$ in $K_{\mathfrak{p}}$.
- For $1 \leq i \leq s$, we denote by $L_{\mathfrak{P}_i}$ the completion of L at \mathfrak{P}_i .
- $f = f_1 \cdots f_s \in \hat{A}_{\mathfrak{p}}[x]$ and θ_i is a root of f_i .
- ullet We write $L_{\mathfrak{P}_i}=\mathcal{K}_{\mathfrak{p}}(heta_i)$ and define

$$\iota_i: L \to L_{\mathfrak{P}_i}, \quad \theta \mapsto \theta_i.$$

- $\mathcal{O}_{\mathfrak{P}_i}$ integral closure of $\hat{A}_{\mathfrak{p}}$ in $L_{\mathfrak{P}_i}$ with integral basis \mathcal{B}_i .
- For $z \in L_{\mathfrak{P}_i}$, we denote by $\mathcal{C}_{\mathcal{B}_i}(z) = (z_1, \dots, z_{n_i}) \in \mathcal{K}_{\mathfrak{p}}^{n_i}$ the coefficients of z w.r.t \mathcal{B}_i , where $n_i = e_i \cdot f(\mathfrak{P}_i/\mathfrak{p})$.

We define $\iota: L \to \prod_i K_{\mathfrak{p}}^{n_i} = K_{\mathfrak{p}}^n$, $\iota(z) = (\mathcal{C}_{\mathcal{B}_i}(\iota_i(z)))_{1 \leq i \leq s}$.

For $z \in L$ we write $\iota(z) = (z_1, \dots, z_n) \in \mathcal{K}_{\mathfrak{p}}^n$.

Lemma

$$\omega(z) = \min_{1 \leq i \leq n} \{ v_{\mathfrak{p}}(z_i) \}.$$

For $z \in L$ we write $\iota(z) = (z_1, \ldots, z_n) \in \mathcal{K}_{\mathfrak{p}}^n$.

Lemma

$$\omega(z) = \min_{1 \le i \le n} \{ v_{\mathfrak{p}}(z_i) \}.$$

For $\lambda \in \mathcal{K}_{\mathfrak{p}}$ with $v_{\mathfrak{p}}(\lambda) = m$, we write $\lambda = \sum_{j=m}^{\infty} \lambda_j \pi^j$ with $\lambda_j \in \mathcal{R}$. For an integer $r \geq m$, we define

$$\mathrm{lt_r}(\lambda) = egin{cases} \lambda_m & \text{if } r = m \\ 0 & \text{else.} \end{cases}$$

For $z \in L$ we write $\iota(z) = (z_1, \dots, z_n) \in \mathcal{K}_{\mathfrak{p}}^n$.

Lemma

$$\omega(z) = \min_{1 \le i \le n} \{ v_{\mathfrak{p}}(z_i) \}.$$

For $\lambda \in \mathcal{K}_{\mathfrak{p}}$ with $v_{\mathfrak{p}}(\lambda) = m$, we write $\lambda = \sum_{j=m}^{\infty} \lambda_j \pi^j$ with $\lambda_j \in \mathcal{R}$. For an integer $r \geq m$, we define

$$\mathrm{lt_r}(\lambda) = egin{cases} \lambda_m & \text{if } r = m \\ 0 & \text{else.} \end{cases}$$

For $z \in L$ and $r \ge \omega(z)$, we set

$$\mathrm{LT}_r(z) = (\mathrm{lt_r}(\mathrm{z_i}))_{1 \leq i \leq n} \in \mathit{k}_{\mathfrak{p}}^n.$$

Lemma

Let $c_0, \ldots, c_m \in L$ ordered by non-decreasing ω -value and $\alpha_0, \ldots, \alpha_m \in \mathcal{R}$ with $\alpha_m \neq 0$ such that

$$\sum_{0 \le i \le m} \alpha_i LT_{\omega(c_i)}(\iota(c_i)) = 0.$$
 (1)

Then, $c_m^* = c_m + \sum_{j=0}^{m-1} \frac{\alpha_j}{\alpha_m} \pi^{\omega(c_m) - \omega(c_j)} c_j$ realizes an augmentation-step.

Lemma

Let $c_0, \ldots, c_m \in L$ ordered by non-decreasing ω -value and $\alpha_0, \ldots, \alpha_m \in \mathcal{R}$ with $\alpha_m \neq 0$ such that

$$\sum_{0 \le i \le m} \alpha_i LT_{\omega(c_i)}(\iota(c_i)) = 0.$$
 (1)

Then, $c_m^* = c_m + \sum_{j=0}^{m-1} \frac{\alpha_j}{\alpha_m} \pi^{\omega(c_m) - \omega(c_j)} c_j$ realizes an augmentation-step.

Moreover, if the $LT_{\omega(c_i)}(\iota(c_i))$ are $k_{\mathfrak{p}}$ -linearly independent, then no augmentation-step is applicable.

Let $A = \mathbb{F}_{13}[t]$ and L be the function field defined by $f = x^4 + 4x^3 + (4t^2 + 4)x^2 + 8t^2x + 2t^8 + 4t^4 + 8t^2 \in A[x]$.

Let $A = \mathbb{F}_{13}[t]$ and L be the function field defined by $f = x^4 + 4x^3 + (4t^2 + 4)x^2 + 8t^2x + 2t^8 + 4t^4 + 8t^2 \in A[x]$. Disc $(f) = I \cdot S^2$ with $S = t^2(t^3 + 3)(t^3 + 10)$. We consider $\mathfrak{p} = t \cdot A$ with $\pi = t$, and $\mathfrak{p} \mathcal{O} = \mathfrak{P}_1 \cdot \mathfrak{P}_2$.

Let $A = \mathbb{F}_{13}[t]$ and L be the function field defined by $f = x^4 + 4x^3 + (4t^2 + 4)x^2 + 8t^2x + 2t^8 + 4t^4 + 8t^2 \in A[x]$. Disc $(f) = I \cdot S^2$ with $S = t^2(t^3 + 3)(t^3 + 10)$. We consider $\mathfrak{p} = t \cdot A$ with $\pi = t$, and $\mathfrak{p} \mathcal{O} = \mathfrak{P}_1 \cdot \mathfrak{P}_2$.

$$f = f_1 \cdot f_2$$
 over $\hat{A}_{\mathfrak{p}}[x] = \mathbb{F}_{13}[[t]][x]$

$$f_1 \approx \Phi_1 = x^2 + 2t^2$$
, $f_2 \approx \Phi_2 = x^2 + 4x + 2t^2 + 4$.

Let $A = \mathbb{F}_{13}[t]$ and L be the function field defined by $f = x^4 + 4x^3 + (4t^2 + 4)x^2 + 8t^2x + 2t^8 + 4t^4 + 8t^2 \in A[x]$. Disc $(f) = I \cdot S^2$ with $S = t^2(t^3 + 3)(t^3 + 10)$.

We consider $\mathfrak{p}=t\cdot A$ with $\pi=t$, and $\mathfrak{p}\mathcal{O}=\mathfrak{P}_1\cdot\mathfrak{P}_2$.

$$f = f_1 \cdot f_2$$
 over $\hat{A}_{\mathfrak{p}}[x] = \mathbb{F}_{13}[[t]][x]$

$$f_1 \approx \Phi_1 = x^2 + 2t^2, \qquad f_2 \approx \Phi_2 = x^2 + 4x + 2t^2 + 4.$$

$$L_{\mathfrak{P}_i} = \mathbb{F}_{13}((t))[x]/(f_i) \approx \mathbb{F}_{13}((t))[x]/(\Phi_i).$$

$$\mathcal{B}_1 = (1, \theta_1/t), \ \mathcal{B}_2 = (1, (\theta_2 + 2)/t) \text{ with } \Phi_i(\theta_i) = 0, \text{ for } i = 1, 2.$$

Let
$$A = \mathbb{F}_{13}[t]$$
 and L be the function field defined by $f = x^4 + 4x^3 + (4t^2 + 4)x^2 + 8t^2x + 2t^8 + 4t^4 + 8t^2 \in A[x]$.

Disc
$$(f) = I \cdot S^2$$
 with $S = t^2(t^3 + 3)(t^3 + 10)$.

We consider $\mathfrak{p}=t\cdot A$ with $\pi=t$, and $\mathfrak{p}\mathcal{O}=\mathfrak{P}_1\cdot\mathfrak{P}_2$.

$$f = f_1 \cdot f_2$$
 over $\hat{A}_{\mathfrak{p}}[x] = \mathbb{F}_{13}[[t]][x]$

$$f_1 pprox \Phi_1 = x^2 + 2t^2, \qquad f_2 pprox \Phi_2 = x^2 + 4x + 2t^2 + 4.$$

$$L_{\mathfrak{P}_i} = \mathbb{F}_{13}((t))[x]/(f_i) \approx \mathbb{F}_{13}((t))[x]/(\Phi_i).$$

$$\mathcal{B}_1 = (1, \theta_1/t), \ \mathcal{B}_2 = (1, (\theta_2 + 2)/t) \text{ with } \Phi_i(\theta_i) = 0, \text{ for } i = 1, 2.$$

	ι_1	ι_2
1	1	1
θ	$ heta_1$	$ heta_2$
θ^2	$11t^{2}$	$9\theta_2 + 11t^2 + 9$
θ^3	$11t^2\theta_1$	$(11t^2+12)\theta_2+8t^2+3$

	\mathcal{B}_1		\mathcal{B}_2		ω
$\iota(1)$	1	0	<u>'</u> 1	0	0
$\iota(\theta)$	0	t	11	t	0
$\iota(\theta^2)$	$11t^{2}$	0	$11t^2 + 4$	9 <i>t</i>	0
$\iota(\theta^3)$	0	$11t^{3}$	$12t^2 + 5$	t $9t$ $11t^3 + 12t$	0

$$M = egin{bmatrix} \mathrm{LT}_0(1) \ dots \ \mathrm{LT}_0(heta^3) \end{bmatrix} = egin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 0 & 11 & 0 \ 0 & 0 & 4 & 0 \ 0 & 0 & 5 & 0 \end{bmatrix} \in \mathbb{F}_{13}^{4 imes 4}, \quad \mathrm{rank}(M) = 2 < 4$$

$$\begin{split} M &= \begin{bmatrix} \mathrm{LT}_0(1) \\ \vdots \\ \mathrm{LT}_0(\theta^3) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 11 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 5 & 0 \end{bmatrix} \in \mathbb{F}_{13}^{4 \times 4}, \quad \mathrm{rank}(M) = 2 < 4 \\ \implies \theta^2 - \frac{4}{11}\theta = \theta^2 + 2\theta, \quad \theta^3 - \frac{5}{11}\theta = \theta^3 + 9\theta. \end{split}$$

$$M = egin{bmatrix} \mathrm{LT}_0(1) \ dots \ \mathrm{LT}_0(heta^3) \end{bmatrix} = egin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 0 & 11 & 0 \ 0 & 0 & 4 & 0 \ 0 & 0 & 5 & 0 \end{bmatrix} \in \mathbb{F}_{13}^{4 imes 4}, \quad \mathrm{rank}(M) = 2 < 4$$

$$\implies$$
 $\theta^2 - \frac{4}{11}\theta = \theta^2 + 2\theta, \quad \theta^3 - \frac{5}{11}\theta = \theta^3 + 9\theta.$

Updated basis: $1, \theta, \theta^2 + 2\theta, \theta^3 + 9\theta$.

	\mathcal{B}_1		\mathcal{B}_2		ω
$\iota(1)$	1	0	1 1	0	0
$\iota(\theta)$	0	t	11	t	0
$\iota(\theta^2+2)$	$11t^{2}$	2 t	$11t^{2}$	11 t	1
$\iota(\dot{\theta}^3 + 9\dot{\theta})$	0	$11t^3 + 9t$	$12t^{2}$	$11t^3 + 8t$	1

 $\Longrightarrow (1, \theta, \frac{\theta^2 + 2\theta}{t}, \frac{\theta^3 + 9\theta}{t})$ is a triangular p-integral basis.

Thank you! ... Questions?

Complexity

Theorem

The algorithm needs at most

$$O\left(n^3\delta + n^2\delta^2 + n^{1+\epsilon}\delta\log q + n^{1+\epsilon}\delta^{2+\epsilon}\right)$$

 \mathfrak{p} -small operations. In particular, the runtime after the initialization is equal to $O(n^2\delta^2)$ \mathfrak{p} -small operations.

Here
$$\delta := v_{\mathfrak{p}}(\mathsf{Disc}\, f)$$
 and $q = \#A/\mathfrak{p}$.)