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Number theoretic problems for crypto

For about 40 years, we’ve been used to having:

Integer Factorization (IF)

and (finite field) discrete logarithms (FF-DLP)

as prominent mathematical problems for public-key cryptography.

Hardness of IF is the security assumption behind RSA, FF-DLP
backs Diffie-Hellman, DSA, and others.

Pervasive software assumes these are really hard problems: TLS,
SSH, IPsec, . . .
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Pairing-based crypto

Other application context of FF-DLP

Some cryptographic protocols use pairings.
(ID-based encryption, 3-way DH, Short signatures, . . . )

Context: E : elliptic curve over Fq.

G1 = E (Fq)[r ], with r prime; G2: a cousin.

k : embedding degree.

We have the map:
e : G1 ×G2 → F∗qk .

In this context, study of the DLP in E and in F∗
qk

are equally
important. Whichever is weakest jeopardizes security of the
protocol.
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Motivations beyond crypto

Integer factorization was arguably already a problem with
mathematical relevance before RSA was invented.

First nontrivial algorithmic progress in the 70s (Pollard).

As for FF-DLP, very little seems to predate Diffie-Hellman.

In both cases, the crypto motivation was an excuse to do massive
computations.
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Algorithms

The same algorithmic setting can be used to factor integers as well
as to compute discrete logarithms: the Number Field Sieve.

Stem of the idea in the late 1980s (Pollard).

Formulated as a complete algorithm: early 1990s.

Computing records with NFS started in 1995-1996.

Many people contributed to the development of NFS.

It is almost one single algorithm with a variety of settings.

Most complexities look the same

Since 2006, DLP in Fpn costs at most

LQ(1/3, c + o(1)) for some constant c

where Q = pn and LQ(α, c) = exp
(
c(logQ)α(log logQ)1−α).

Computation of discrete logarithms over finite fields 5/41



Plan

Introduction

Various positions

Algorithms for key steps and recent computations

Does this really matter ?



Context

We have a finite field. Maybe Fp, maybe Fpn , maybe F2n .

We wish to compute discrete logarithms for elements in a
multiplicative subgroup of prime order `.

Typically ` is large (160 bits or more).

To determine the entire DL map for the finite field, proceed
piecewise (possibly varying techniques depending on `).
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Some handwaving

We find f with a known root m modulo p.

Let Q(α) be the number field defined by f .
For any polynomial P(x), we have:

the integer P(m);
the number field element P(α);

These are compatible: both map to P(m) mod p in Z/pZ.

Z[x ]

subring of Q Z[m] = Z Z[α] subring of Q(α)

Z/pZ

x → m x → α

mod p α→ m
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Write something multiplicative

group generated by
Z[x ]− 〈p, x −m〉

subgroup of Q∗ subgroup of Q(α)∗

F∗p

x → m x → α

mod p α→ m

We focus on elements on top that give smooth elements on both
sides: we then have finite-dimensional vector spaces.

Our two linear forms can be narrowed down by collecting many
relations, and solving a large linear system.

Still some work to do afterwards.
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Polynomial Selection Two Z/̀ Z-vector spaces.

Two compatible linear
forms.

We focus on elements on top that give smooth elements on both
sides: we then have finite-dimensional vector spaces.

Our two linear forms can be narrowed down by collecting many
relations, and solving a large linear system.

Still some work to do afterwards.

Relation collection

Linear Algebra

Individual Logarithms (descent)
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Finite dimension: how ?

Elements of Q(α)∗ can be uniquely identified by valuations at
prime ideals, and contributions of units.

Modulo `-th powers: coordinates in Z/̀ Z.

In most NFS-like cases, computation of units is intractable.
However some arbitrary `-adic character maps can be used,
and are equally useful (Schirokauer maps).

Smoothness condition: only the valuation at a finite number
of ideals matters.
This typically means many ideals, though.

We identify our linear form by its values at each coordinate
(including at Schirokauer maps), usually called virtual
logarithms.
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Other settings

The NFS framework is quite versatile, and we have several useful
variations.

Straightforward: use two number fields. Pick two number
fields Q(α) and Q(β) with one prime ideal “in common”:
〈p, α−m〉 and 〈p, β −m〉 both prime.

More interesting: change the base ring Z.

Obstructions are dealt with via Schirokauer maps. Basically the
main challenge is to find a setup with appropriate degrees and
coefficient sizes.

Note: Most DL-related NFS-like construction are DL-specific
because roots modulo p are needed.
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Size of log p versus n

Different zones

Using Lpn(α, c) = exp
(
c(log pn)α(log log pn)1−α), we define:

small char.: p = Lpn(α, c) for α ≤ 1/3 and some c ;

medium char.: p = Lpn(α, c) for 1/3 ≤ α ≤ 2/3 and some c ;

large char.: p = Lpn(α, c) for 2/3 ≤ α and some c .

Some setups are known to work only in select cases, and
boundaries are messy.

log log p

log n p = Lpn [1/3, ·]

p = Lpn [2/3, ·]
medium

large

small

Complexity in all areas is

Lpn(1/3, γ + o(1))

with various constants γ.

(o(1) from Canfield-Erdős-Pomerance.)
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A brief timeline

1984: Coppersmith, DLP for F2n . Very first L(1/3) algorithm.
In retrospect, does fit in the NFS framework.

1990 to 1993: NFS for factoring, for DL mod p.

2000 to 2003: better NFS-DL versions.

2006: L(1/3) for all finite fields.

2013: F2n becomes quasi-polynomial.

2015-now: More polynomial selection methods for various
settings.
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An obsolete cousin: the Function Field Sieve

FFS (1994–2013) inherits from NFS. Works in small characteristic.

Consider two plane curves defined over Fp (p small):
C1 : C1(x , y) = 0; C2 : C2(x , y) = 0

such that C1 ∩ C2 has a point (µ, ν) defining Fpn ;
i.e. Res(C1,C2) has an irreducible factor of degree n.

φ ∈ Fp[x , y ]

function on C1 function on C2

evaluation on (µ, ν)

(as before, only the multiplicative diagram is of interest to us)
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(obsolete) FFS Setting for Fn
p

Fp[x , y ]

function on C1 function on C2

evaluation on (µ, ν)

want smoothness here want smoothness here

want relations here

We want smoothness on both sides;
This occurs in the degree 0 divisor class group of both curves;
We get relations from the fact that the diagram commutes.

How much complication this means depends on the curves chosen
(we can make the unit thing trivial here).

Computation of discrete logarithms over finite fields 14/41



NFS for non-prime fields

Define two number fields with polynomials f , g that have a
common root in Fpn (deg f , deg g may be ≥ n).
i.e., both pf = 〈p, µ(α)〉 and pg = 〈p, µ(β)〉 are prime ideals of
norm pn, for the same degree-n polynomial µ.

Z[x ]

Kf = Q(α) Kg = Q(β)

OKf
/pf = Fpn = OKg /pg

x → α x → β

Working setups in medium and large characteristic (JLSV,
conjugation, generalized JL; all post-2006).
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NFS with towers

Base number field Kh = Q[x ]/h of degree n. Pick two polynomials
f , g irreducible in Kh, but with a common root in OKh

/p.

Kf Kg

Kh

Q

OKh
[x ]

Kf = Kh(α) Kg = Kh(β)

Fpn

First suggested by Schirokauer in 1999.

Revived in 2015. Works well for large characteristic and n > 1.

The first key to assessing smoothness is the Norm map.
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Which construction?

Each method has its own asymptotic complexity, subject to the
condition that p and n are within some prescribed scenario.

We have some “best” constructions,

and some ties or close calls.

In practice

For a given target finite field, we try out various constructions and
easily assess the smoothness probabilities, (heuristically) based on
the size of the (absolute) norms.
Important extra topics:

arrange for f and/or g to favour smoothness (= have many
prime ideals of small norms).

if/when Galois properties can be enforced, nice benefit.
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NFS for special primes

Sometimes p has a special form, e.g. given by the evaluation of a
low-degree polynomial with small coefficients.

It is often possible to take advantage of this.

Once in a blue moon, p has precisely the ideal kind of
expression to allow for a choice of number fields where the
typical norms are small on one of the two sides;

Some pairing-based setups give way to such attacks (= allow
for unusually efficient NFS-like DLP computation).

This is also useful for showcasing ideal situations where
algorithms perform well.
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Examples: GNFS for factoring

GNFS for factoring N cannot play many tricks because polynomial
solving modulo N is not an option.

Typical situation:

deg f = d , deg g = 1. Coefficients of similar size.

It is sufficient to search for relations that come from a− bx .

Factoring ⇒ linear algebra mod 2.

Complexity LN(1/3, (64/9)1/3 + o(1)).

Also, more variants:

Non-linear: bi-quadratic and more;

Multiple number fields (better complexity).
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Examples: SNFS for factoring

Historically the very first instance. Adapts to the case where N is a
of a very special form that allows a very efficient setup.

Typical situation:

deg f = d , deg g = 1. Coefficients NOT of the same size:

Coefficients of f typically small;
Coefficients of g might be larger.

It is sufficient to search for relations that come from a− bx .

As f is small, the number field computations are more
accessible, but it is not really useful.

Factoring ⇒ linear algebra mod 2.

Complexity LN(1/3, (32/9)1/3 + o(1)).
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Examples: GNFS for DLP over Fp

Two options:

Either deg f = d , deg g = 1 similar to factoring;

Or use Joux-Lercier polynomial selection method which gives
deg f = d , deg g = d − 1. (DLP-only!).

Which one wins depends on the size of p.

In both cases:

DLP ⇒ linear algebra mod `. Harder.
Typically dominates, but dominates less if ` is tiny.

Search for relations with a− bx is ok, but per-logarithm cost is
asymptotically lower if we search for higher-degree functions.

Complexity Lp(1/3, (64/9)1/3 + o(1)).
(multiple number fields variant also exists)
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Examples: SNFS for DLP over Fp

Applies when p allows for exceptionally good polynomial selection.

“ideal” set-up similar to SNFS-factoring.

Complexity Lp(1/3, (32/9)1/3 + o(1)).
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Examples: NFS for DLP over Fpn

Method deg f deg g ||f ||∞ ||g ||∞
Joux-Lercier-Smart-Vercauteren (1) n n

√
p

√
p

Joux-Lercier-Smart-Vercauteren (2) D ≥ n n pn/(D+1) pn/(D+1)

Generalized Joux-Lercier d + 1 d ≥ n 1 pn/(d+1)

Conjugation 2n n 1
√
p

GJL for large p: Lpn(1/3, (64/9)1/3 + o(1)).
Conj for medium p: Lpn(1/3, (96/9)1/3 + o(1)).

Sometimes better with tower variants:

Plain TNFS Lpn(1/3, (64/9)1/3 + o(1)).

Combinations of TNFS + methods above then n is
composite. At best, Lpn(1/3, (48/9)1/3 + o(1)).
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No one-size-fits-all

We have a much richer situation than for integer factoring.

The variety of setups is such that it is inappropriate to assess the
DLP hardness in Fpn with one single asymptotic formula.

Briefly put, it is a real mess.

Even asymptotically, the complexities at the boundary cases are
just horrible.

It is also common to include multi-NFS variants of all these
analyses. Mildly better constants.
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No one-size-fits-all

While LQ(1/3, (64/9)1/3 + o(1)) fits the case Q = p (prime fields),
it need not be so for larger degree.

Sometimes harder, sometimes easier.

Not only different asymptotics.
Case-by-case practical efficiency differs.

The case where p is special deserves extra care.

The size of the subgroup of F∗pn also matters because it
impacts the linear algebra step.

The bodacious assumption that FF-DLP in FQ (with Q = pn) is
harder than factoring N for N ≈ Q is just wrong.

Security claims of some pairing-based systems are sometimes based
on shaky grounds (special p, composite n, small `, . . . ).
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Collecting relations

The Number Field Sieve involves sieving.

To search for a, b such that a− bx gives smooth norms on both
sides, we can:

trial-divide factor the norms with ECM, keep the smooth ones;

sieve for a, b. Candidate divisors p run through a factor base.
special-q sieving + sieving by vectors are key instruments.

Multiply everything together, and use remainder trees to
check for smoothness.

Appropriate scheduling varies. Examples:

Sieve on both sides up to some bound, finish with ECM.

Sieve on one side, remainder tree on the other side, then ECM.
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Higher degree sieving

Several of the variations of NFS call for sieving not only for good
a− bx :

Sometimes higher degree functions are needed;

Sometimes a and b live in a number field.

The algorithms for higher-degree sieving are not (yet?) as efficient
as for 2-dimensional sieving.

See talk by L. Grémy.
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Linear algebra

The virtual logarithms are obtained by solving an N × N sparse
linear system defined over Z/̀ Z. We let γ denote the average row
weight (typically < 200).

The block Wiedemann algorithm is commonly used.

The blocking parameters allow for some flexibility in the
organization of the computation.

Needs (1 + o(1))N matrix-times-vector products.
Each costs γN additions and N reductions mod p, plus
communication (threads / MPI).

Fast, parallel computation of linear generators for matrix
power series is a key step.
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2015: the Logjam attack

We learned that the security community lived peacefully under the
assumption that 512-bit DLP was fine:

Because it was harder than factoring. (yet, 2007 record).

And because anyway, a large computation just to break one
session key is no big deal.

512-bit DLP was still offered as a compatibility solution for key
exchange by web sites such as fbi.gov.

Logjam results

Cryptanalysis: not a large precomputation (10 core-y)
and then roughly one minute per individual log (10 core-mn).

Computation of discrete logarithms over finite fields 29/41



2016: 768-bit DLP

Largest FF-DLP to date for “honest” primes.

Took about 5300 core-years.

Most interesting is the fact that sieving was done only on one side.
The norm on the other side was factored with remainder trees.
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RFC5114
Network Working Group M. Lepinski
Request for Comments: 5114 S. Kent
Category: Informational BBN Technologies

January 2008

Additional Diffie-Hellman Groups for Use with IETF Standards

2. Additional Diffie-Hellman Groups

This section contains the specification for eight groups for use in
IKE, TLS, SSH, etc. There are three standard prime modulus groups
and five elliptic curve groups. All groups were taken from
publications of the National Institute of Standards and Technology,
specifically [DSS] and [NIST80056A]. Test data for each group is
provided in Appendix A.

2.1. 1024-bit MODP Group with 160-bit Prime Order Subgroup

The hexadecimal value of the prime is:

p = B10B8F96 A080E01D DE92DE5E AE5D54EC 52C99FBC FB06A3C6
9A6A9DCA 52D23B61 6073E286 75A23D18 9838EF1E 2EE652C0
13ECB4AE A9061123 24975C3C D49B83BF ACCBDD7D 90C4BD70
98488E9C 219A7372 4EFFD6FA E5644738 FAA31A4F F55BCCC0
A151AF5F 0DC8B4BD 45BF37DF 365C1A65 E68CFDA7 6D4DA708
DF1FB2BC 2E4A4371

The hexadecimal value of the generator is:

g = A4D1CBD5 C3FD3412 6765A442 EFB99905 F8104DD2 58AC507F
D6406CFF 14266D31 266FEA1E 5C41564B 777E690F 5504F213
160217B4 B01B886A 5E91547F 9E2749F4 D7FBD7D3 B9A92EE1
909D0D22 63F80A76 A6A24C08 7A091F53 1DBF0A01 69B6A28A
D662A4D1 8E73AFA3 2D779D59 18D08BC8 858F4DCE F97C2A24
855E6EEB 22B3B2E5

The generator generates a prime-order subgroup of size:

q = F518AA87 81A8DF27 8ABA4E7D 64B7CB9D 49462353

Here is p
Here is q | (p − 1)
Please use for crypto.

Supported by:

900K (2.3%) HTTPS
hosts

340K (13%) IPsec
hosts
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2016: kilobit SNFS

What if the standards designer played the Texas sharpshooter ?

Two possible scenarios. Not sure we can tell them apart.

p chosen really at random. Attacker wants good NFS setup to
attack p.

Standards is rigged. Agency first chose f and g , and then
published p, while f and g are kept secret.

Is there a real possibility to have such a “trapdoor” ?

Would it be a game changer to the DL computation ?

Would it be conspicuous ?
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Back to 1992

This question was raised long back in 1992.

So far, it has not been demonstrated that trapdoor moduli for the discrete logarithm
problem can be constructed such that a) they are hard to detect, and b) knowledge of
the trapdoor provides a quantifiable computational advantage for parameter sizes that
could actually be computed by known methods, even with foreseeable machines.

—K. S. McCurley, EC92 panel.

Part of the 1992 discussions focused on why a lower bound on p
should be 1024 bits, not 512.

But the above points seemed to suffice to settle the discussion on
the trapdoor: too conspicuous, and not a game-changer anyway.

However:

NFS technology has gone a long way since 1992.

And we’re not speaking of the same parameter range.

Computation of discrete logarithms over finite fields 33/41



Exploiting the trapdoor in the modern era

We generated a target 1024-bit prime in 12 core-hours.

The public part:

p = 16332398724044367910140207009304915503098943980691751
91735800707915692277289328503584988628543993514237336
97660534800194492724828721314980248259450358792069235
99182658894420044068709413666950634909369176890244055
53414932372965552542473794227022215159298376298136008
12082006124038089463610239236157651252180491

q = 1120320311183071261988433674300182306029096710473 ,

and the hidden polynomials:

f = 1155 x6 + 1090 x5 + 440 x4 + 531 x3 − 348 x2 − 223 x − 1385
g = 567162312818120432489991568785626986771201829237408 x

−663612177378148694314176730818181556491705934826717 .
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NFS-DL with Cado-NFS

We used Cado-NFS to do the DL computations.

Complete, LGPL-licensed NFS and NFS-DL implementation;

developed in Nancy since 2007;

14,000 commits. 230,000 lines of C and C++ code;

Used for several DL records.
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Computation timings

Linear algebra was done on higher-end hardware with fast
interconnect (Infiniband FDR 56Gbps, Cisco UCS 40Gbps)

Used parameters m = 24, n = 12 for block Wiedemann.

sieving linear algebra individual log

sequence generator solution

cores ≈3000 2056 576 2056 500–352

CPU time (core) 240 years 123 years 13 years 9 years 10 days

calendar time 1 month 1 month 80 minutes
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Lessons from kilobit SNFS

1024-bit DLP can be easy for an attacker that maliciously chose
the prime to his liking.

We found no easy way to prove that a trapdoor is present.

Verifiable randomness is necessary.

It’s not even the question of accusing anyone of wrongdoing.
We found no smoking gun.

But the lack of verifiable randomness is a major hindrance for
trust in cryptographic standards.

Of course people still get it awfully wrong.

E.g. the standardized French and Chinese elliptic curves are really
really bad to this regard.
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Successors to IF and FF-DLP

Finite fields for crypto look quaint, we have much better!

Elliptic curves (+ genus 2):

part of the the crypto portfolio for years. Hardness of EC-DLP
has arguably been a well-studied, mature topic for about 20
years.

Took off in widely deployed software around 2005–2010.
(Your phone most likely does EC-DH).

BUT...
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The quantum threat

Post-quantum crypto:

Ongoing effort to propose new primitives for standardization;

No reason to believe that time-to-market is less than 10 to 20
years away.

Interim suggestion of NSA to not switch to ECs now that
they’re not the long-term solution they seemed to be.
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How to change the world ?

“Compatibility” often works against security:
“be strict in what you provide,

be liberal in what you accept”
. . . is not always a good idea

See the different attacks presented !

Hard facts are essential instruments towards getting rid of
outdated crypto.

I would rather not like seeing FF-DLP still back a large share of the
world’s public key crypto in 15+ years when PQ deployment starts
being real.
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Thanks for your attention
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