
Fast Jacobian arithmetic for
hyperelliptic curves of genus 3

Andrew V. Sutherland1

Massachusetts Institute of Technology

ANTS XIII — July 18, 2018

1Supported by NSF grant DMS-1522526 and Simons Foundation grant 550033.



Background

Let X be a nice (smooth, projective, geom. irred.) curve of genus g
over a field k. Its Jacobian Jac(X) is an abelian variety of dimension g.

Suppose X(k) 6= ∅. Then there is a natural isomorphism

Jac(X) ' Pic0(X),

where Pic0(X) := Div0(X)/Princ(X), and for any O ∈ X(k) the map

X → Pic0(X)

P 7→ [P− O]

is an injective morphism (an isomorphism when g = 1).

When k is a number field Jac(X) is finitely generated.
When k is a finite field Jac(X) is a finite abelian group.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Top ten reasons to care about Jac(X)

1 Computing L-functions!

2 Computing zeta functions.

3 BSD conjecture for abelian varieties.

4 Galois representations.

5 Finding rational points with the Mordell-Weil sieve.

6 Cohen-Lenstra for function fields.

7 Lang-Trotter type questions.

8 Torsion subgroups.

9 Cryptographic applications.

10 Groups are more interesting than sets.



Computing L-functions.
Let X/Q be a nice curve of genus g.

L(X, s) :=
∏

p

Lp(p−s)−1,

For primes p of good reduction, Lp ∈ Z[T] is defined by

Z(X,T) := exp

∑
n≥1

#X(Fpn)
Tn

n

 =
Lp(T)

(1− T)(1− pT)
.

For hyperelliptic X one can compute Lp(T) mod p for all p ≤ B in
O(g3B(log B)3+o(1)) time [Harvey 14, Harvey-S 14, Harvey-S 16].

For g = 3, one can lift Lp(T) mod p to Lp(T) in O(p1/4+o(1)) time using
computations in Jac(X)(Fp) and Jac(X̃)(Fp) (assume p� 1).

For feasible B this is negligible, provided Jacobian arithmetic is fast.



Hyperelliptic curves

A hyperelliptic curve is a nice curve X/k of genus g ≥ 2 that admits a
degree-2 map φ : X → P1 (which we shall assume is defined over k).
The hyperelliptic involution P 7→ P̄ interchanges points in each fiber.

Assume k is a perfect field of characteristic not 2. Then X has an affine
model y2 = f (x), where f ∈ k[x] is squarefree of degree 2g + 2 with
roots corresponding to the Weierstrass points of X.

If X has a rational Weierstrass point P then by moving P to infinity we
can obtain a model y2 = f (x) with f monic of degree 2g + 1.

This is typically not possible, in which case we are stuck with an even
degree model y2 = f (x) which has either 0 or 2 points at infinity.

If X has a rational non-Weierstrass point, moving it to infinity will
ensure that we are in the latter case (2 points at infinity).



Hyperelliptic curves

A hyperelliptic curve is a nice curve X/k of genus g ≥ 2 that admits a
degree-2 map φ : X → P1 (which we shall assume is defined over k).
The hyperelliptic involution P 7→ P̄ interchanges points in each fiber.

Assume k is a perfect field of characteristic not 2. Then X has an affine
model y2 = f (x), where f ∈ k[x] is squarefree of degree 2g + 2 with
roots corresponding to the Weierstrass points of X.

If X has a rational Weierstrass point P then by moving P to infinity we
can obtain a model y2 = f (x) with f monic of degree 2g + 1.

This is typically not possible, in which case we are stuck with an even
degree model y2 = f (x) which has either 0 or 2 points at infinity.

If X has a rational non-Weierstrass point, moving it to infinity will
ensure that we are in the latter case (2 points at infinity).



Uniquely representing elements of Pic0(X)
A divisor is a finite formal sum D :=

∑
nPP of points P ∈ X(k̄).

It is rational if it is fixed by Gal(k̄/k) and effective if nP ≥ 0 for all P.
We may write effective divisors as P1 + · · ·+ Pn (multiplicity allowed).

P1 + · · ·+ Pn is semi-reduced if Pi 6= Pj for i 6= j, and reduced if n ≤ g.

Theorem (Paulus-Ruck 99)
Let X be a hyperelliptic curve of genus g with an effective divisor D∞ of
degree g supported on rational points at infinity. Each element of
Pic0(X) can be written as [D0 − D∞], for a unique rational reduced
divisor D0 supported on affine points.

The Mumford representation div[u, v] of a rational semi-reduced affine
divisor D := P1 + · · ·+ Pn is the unique pair u, v ∈ k[x] satisfying

u(x) :=
∏

(x− x(Pi)), u|(f − v2), deg v < deg u.



The balanced divisor approach

We now recall the method of [GHM, ANTS VIII].

Let X : y2 = f (x) be a hyperelliptic curve of genus g with rational points
P∞ := (1 : 1 : 0), P∞ := (1 : −1 : 0) at infinity; f monic, degree 2g + 2.
Let D∞ := d g

2eP∞ + b g
2cP∞.

For 0 ≤ n ≤ g− deg(u) define

div[u, v, n] := div[u, v] + nP∞ + (g− deg(u)− n)P∞ − D∞.

Each divisor class in Pic0(X) is uniquely represented by div[u, v, n] for
some monic u|(f − v2) with deg(v) < deg(u) ≤ G and 0 ≤ n ≤ g− deg(u).
The trivial element of Pic0(X) is represented by div[1, 0, d g

2e] = 0.

As shown by Mireles Morales, this representation yields efficient
addition formulas when g is even, and in particular, when g = 2.



Composing balanced divisors

Define div[u, v, n]∗ := div[u, v] + nP∞ + (2g− deg(u)− n)P∞ − 2D∞.

Compose. Given D1 := div[u1, v1, n1] and D2 := div[u2, v2, n2]:

1 Use the Euclidean algorithm to compute w, c1, c2, c3 ∈ k[x] so that

w = c1u1 + c2u2 + c3(v1 + v2) = gcd(u1, u2, v1 + v2).

2 Compute u3 := u1u2/w2, n3 := n1 + n2 + deg(w), and

v3 := (c1u1v2 + c2u2v1 + c3(v1v2 + f ))/w mod u3.

3 Output D3 := div[u3, v3, n3]∗ ∼ D1 + D2.

Note that D3 is not the canonical representative for [D1 + D2].



Reducing and adjusting divisors

Reduce. Given div[u1, v1, n1]∗ with deg(u1) > g + 1:

1 Let u2 := (f − v2
1)/u1 made monic and v2 := −v1 mod u2.

2 If deg(v1) = g + 1 and lc(v1) = ±1 then let δ := ∓(g + 1− deg(u2)),
otherwise let δ := (deg(u1)− deg(u2))/2.

3 Output div[u2, v2, n1 + δ]∗ ∼ div[u1, v1, n1]∗.

Adjust. Given div[u1, v1, n1]∗ with deg(u1) ≤ g + 1:

1 If d g
2e ≤ n1 ≤ d3g

2 e − deg(u1) output div[u1, v1, n1 − d g
2e] and stop.

2 If n1 < d g
2e let δ = −1, otherwise, let δ = +1.

3 Let v̂1 := v1 + δ(V − (V mod u1)) and u2 := (f − v̂2
1)/u1 made monic,

and v2 := −v̂1 mod us (using precomputed V with deg(f − V2) ≤ g).
4 Let n2 := n1 + δ(deg(ui)− (g + 1)), where i = (3− δ)/2.
5 Output Adjust(div[u2, v2, n2]∗)



Addition and negation

Addition. Given D1 := div[u1, v1, n1] and D2 := div[u2, v2, n2]:

1 Set div[u, v, n]∗ ← Compose(div[u1, v1, n1], div[u2, v2, n2]).
2 While deg(u) > g + 1 set [u, v, n]∗ ← Reduce(div[u, v, n]∗).
3 Output D3 := Adjust(div[u, v, n]∗) ∼ D1 + D2.

The output divisor D3 is the canonical representative for [D1 + D2].

Negation. Given D1 := div[u1, v1, n1]:

1 If g is even output div[u1,−v1, g− deg(u1)− n1] and stop.
2 If n1 > 0 output div[u1,−v1, g− deg(u1)− n1 + 1] and stop.
3 Output D2 :=Adjust(div[u1,−v1, d 3g

2 e − deg(u1) + 1]∗) ∼ −D1.

The output divisor D2 is the canonical representative for [−D1].

For even g this is essentially Cantor’s algorithm, except deg(f ) = 2g + 2.



Addition in the typical case.

Generically, we expect the following to hold when adding divisors:

deg(u1) = deg(u2) = g, deg(v1) = deg(v2) = g− 1, and n1 = n2 = 0;

After Compose, deg(u) = 2g, deg(v) = 2g− 1, and n = 0.

Each call to Reduce decreases deg(u) by 2 and increases n by 1.
When g is even we will have deg(u) = g after g/2 calls to Reduce.
When g is odd we will have deg(u) = g + 1 after (g− 1)/2 calls.

When g is even Adjust simply sets n = 0 and returns.
When g is odd, Adjust first makes deg(u) = g and n = (g + 1)/2,
then simply sets n = 0 and returns.

When g = 3, one call to Reduce and one nontrivial call to Adjust.



Straight-line program for the typical case

Standard optimizations (following [Gaudry-Harley, Harley 00]):
Use the CRT to avoid computing GCDs (for u1 ⊥ u2 or u1 ⊥ v1).
Combine composition and one reduction into a single step.

Optimization specific to balanced divisor approach:
Combine composition, reduction, adjustment into a single step.

TypicalAddition. Given div[ui, vi, 0], with deg(ui) = 3 and u1 ⊥ u2:
1 w := (f − v2

1)/u and s̃ := (v2 − v1)/u1 mod u2.
2 c := 1/lc(s̃) and s = cs̃ and z := su1 (require deg(s) = 2).
3 u4 := (s(z + 2cv1)− c2w)/u2 and ṽ4 := v1 + u4 + (z mod u4)/c.
4 u5 := (ṽ2

4 − f )/(2ṽ43u4) and v5 := ṽ4 mod u5 and n5 := 3− deg(u5).

We then have div[u1, v1, 0] + div[u2, v2, 0] ∼ div[u5, v5, n5].
div[u5, v5, n5] is the canonical representative of its divisor class.



Optimizations and results

Standard tricks that can be used to optimize the algorithm:

1 Karatsuba and Toom style polynomial multiplication;
2 Fast algorithms for exact division of polynomials;
3 Bezout’s matrix for computing resultants;
4 Montgomery’s trick for combining field inversions;
5 Maximize parallelism and minimize modular reductions.

After applying these optimizations (and other minor tweaks):

Typical addition: I + 79M + 127A (vs 5I + 275M + 246A).
Typical doubling: I + 82M + 127A (vs 5I + 285M + 258A).
Typical negation: I + 14M + 24A.

Note that (5) has no impact on the field operation counts.



Caveat: field operation counts can be misleading

For an odd prime p, consider the following computations in Fp:

1 z← x1y1 + x2y2 + x3y3 + x4y4 (4M+3A)

2 z← (((x2)2)2)2 (4M, in fact 4S)

Which is faster?

In almost any implementation (1) will take much less time than (2).
For word-sized operands on a Haswell core, (2) is 4× slower than (1).

How about
1 z← x1y1 + x1y2 + x2y1 + x2y2 (4M+3A)

2 z← (x1 + x2)(y1 + y2) (1M+2A)

Which is faster?



Caveat: field operation counts can be misleading

For an odd prime p, consider the following computations in Fp:

1 z← x1y1 + x2y2 + x3y3 + x4y4 (4M+3A)

2 z← (((x2)2)2)2 (4M, in fact 4S)

Which is faster?

In almost any implementation (1) will take much less time than (2).
For word-sized operands on a Haswell core, (2) is 4× slower than (1).

How about
1 z← x1y1 + x1y2 + x2y1 + x2y2 (4M+3A)

2 z← (x1 + x2)(y1 + y2) (1M+2A)

Which is faster?



Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves
over fields of odd characteristic using affine coordinates:

Addition Doubling Source
Genus 2 odd degree I + 24M I + 28M [Lange 05]
Genus 2 even degree I + 28M I + 32M [GHM 08]
Genus 3 odd degree I + 67M I + 68M [NMCT 06]
Genus 3 even degree I + 79M I + 82M [this work]

Genus 3 even degree I + 75M I + 86M [Rezai Rad 16]



Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves
over fields of odd characteristic using affine coordinates:

Addition Doubling Source
Genus 2 odd degree I + 24M I + 28M [Lange 05]
Genus 2 even degree I + 28M I + 32M [GHM 08]
Genus 3 odd degree I + 67M I + 68M [NMCT 06]
Genus 3 even degree I + 79M I + 82M [this work]

Genus 3 even degree I + 75M I + 86M [Rezai Rad 16]


