Fast Jacobian arithmetic for
hyperelliptic curves of genus 3

Andrew V. Sutherland’

Massachusetts Institute of Technology

ANTS XIIl — July 18, 2018

'Supported by NSF grant DMS-1522526 and Simons Foundation grant 550033.

Background

Let X be a nice (smooth, projective, geom. irred.) curve of genus g
over a field k. Its Jacobian Jac(X) is an abelian variety of dimension g.

Suppose X (k) # (). Then there is a natural isomorphism
Jac(X) ~ Pic’(X),
where Pic’(X) := Div’(X)/ Princ(X), and for any O € X(k) the map
X — Pic’(X)
P— [P— O]
is an injective morphism (an isomorphism when g = 1).

@ When k is a number field Jac(X) is finitely generated.
@ When £ is a finite field Jac(X) is a finite abelian group.

Top ten reasons to care about Jac(X)

Top ten reasons to care about Jac(X)

@ Groups are more interesting than sets.

Top ten reasons to care about Jac(X)

© Cryptographic applications.

@ Groups are more interesting than sets.

Top ten reasons to care about Jac(X)

© Torsion subgroups.
© Cryptographic applications.

@ Groups are more interesting than sets.

Top ten reasons to care about Jac(X)

@ Lang-Trotter type questions.
© Torsion subgroups.
© Cryptographic applications.

@ Groups are more interesting than sets.

Top ten reasons to care about Jac(X)

© Cohen-Lenstra for function fields.
@ Lang-Trotter type questions.

© Torsion subgroups.

© Cryptographic applications.

@ Groups are more interesting than sets.

Top ten reasons to care about Jac(X)

© Finding rational points with the Mordell-Weil sieve.
© Cohen-Lenstra for function fields.

@ Lang-Trotter type questions.

© Torsion subgroups.

© Cryptographic applications.

@ Groups are more interesting than sets.

Top ten reasons to care about Jac(X)

© Galois representations.

© Finding rational points with the Mordell-Weil sieve.
© Cohen-Lenstra for function fields.

@ Lang-Trotter type questions.

© Torsion subgroups.

© Cryptographic applications.

@ Groups are more interesting than sets.

Top ten reasons to care about Jac(X)

© BSD conjecture for abelian varieties.

© Galois representations.

© Finding rational points with the Mordell-Weil sieve.
© Cohen-Lenstra for function fields.

@ Lang-Trotter type questions.

© Torsion subgroups.

© Cryptographic applications.

@ Groups are more interesting than sets.

Top ten reasons to care about Jac(X)

© Computing zeta functions.

© BSD conjecture for abelian varieties.

© Galois representations.

© Finding rational points with the Mordell-Weil sieve.
© Cohen-Lenstra for function fields.

@ Lang-Trotter type questions.

© Torsion subgroups.

© Cryptographic applications.

@ Groups are more interesting than sets.

Top ten reasons to care about Jac(X)

@ Computing L-functions!

© Computing zeta functions.

© BSD conjecture for abelian varieties.

© Galois representations.

© Finding rational points with the Mordell-Weil sieve.
© Cohen-Lenstra for function fields.

@ Lang-Trotter type questions.

© Torsion subgroups.

© Cryptographic applications.

@ Groups are more interesting than sets.

Computing L-functions.

Let X/Q be a nice curve of genus g.

LX,s) =[] L™,

For primes p of good reduction, L, € Z[T] is defined by

Z(X,T) :=exp (Z #X(Fpn)]’;”) _ Lp(T)

— (- 1)1 —pT)’

For hyperelliptic X one can compute L,(7) mod p for all p < B in
0(g*B(log B)**°(1)) time [Harvey 14, Harvey-S 14, Harvey-S 16].

For g = 3, one can lift L,(T) mod p to L,(T) in O(p'/* (1)) time using
computations in Jac(X)(IF,) and Jac(X)(F,) (assume p > 1).

For feasible B this is negligible, provided Jacobian arithmetic is fast.

Hyperelliptic curves

A hyperelliptic curve is a nice curve X/k of genus g > 2 that admits a
degree-2 map ¢: X — P! (which we shall assume is defined over k).
The hyperelliptic involution P — P interchanges points in each fiber.

Assume k is a perfect field of characteristic not 2. Then X has an affine
model y?> = f(x), where f € k[x] is squarefree of degree 2g + 2 with
roots corresponding to the Weierstrass points of X.

If X has a rational Weierstrass point P then by moving P to infinity we
can obtain a model y? = f(x) with f monic of degree 2g + 1.

Hyperelliptic curves

A hyperelliptic curve is a nice curve X/k of genus g > 2 that admits a
degree-2 map ¢: X — P! (which we shall assume is defined over k).
The hyperelliptic involution P — P interchanges points in each fiber.

Assume k is a perfect field of characteristic not 2. Then X has an affine
model y?> = f(x), where f € k[x] is squarefree of degree 2g + 2 with
roots corresponding to the Weierstrass points of X.

If X has a rational Weierstrass point P then by moving P to infinity we
can obtain a model y? = f(x) with f monic of degree 2g + 1.

This is typically not possible, in which case we are stuck with an even
degree model y> = f(x) which has either 0 or 2 points at infinity.

If X has a rational non-Weierstrass point, moving it to infinity will
ensure that we are in the latter case (2 points at infinity).

Uniquely representing elements of Pic’(X)

A divisor is a finite formal sum D :=) npP of points P € X(k).
It is rational if it is fixed by Gal(k/k) and effective if np > 0 for all P.
We may write effective divisors as P; + - - - + P, (multiplicity allowed).

Py + -+ P, is semi-reduced if P; # P; for i # j, and reduced if n < g.

Theorem (Paulus-Ruck 99)

Let X be a hyperelliptic curve of genus g with an effective divisor D, of
degree g supported on rational points at infinity. Each element of
Pic’(X) can be written as [Dy — Do), for a unique rational reduced
divisor Dy supported on affine points.

The Mumford representation div|u, v] of a rational semi-reduced affine
divisor D := P; + - -- 4+ P, is the unique pair u, v € k[x] satisfying

u(x) = [J(x—x(P)), ul(f —v*), degv < degu.

The balanced divisor approach

We now recall the method of [GHM, ANTS VIIl].
Let X: y> = f(x) be a hyperelliptic curve of genus g with rational points
Poo :=(1:1:0), Py := (1: —1:0) atinfinity; f monic, degree 2g + 2.
Let Doo := [£]Poc + |] Poo.
For 0 < n < g — deg(u) define

div[u,v,n] := div[u,v] + nPs + (g — deg(u) — n)Poy — Doo.
Each divisor class in Pic’(X) is uniquely represented by div[u, v, n] for
some monic u|(f —v?) with deg(v) < deg(u) < Gand 0 < n < g — deg(u).

The trivial element of Pic(X) is represented by div[1,0, [£]] = 0.

As shown by Mireles Morales, this representation yields efficient
addition formulas when g is even, and in particular, when g = 2.

Composing balanced divisors

Define div[u, v, n]* := div[u,v] + nPe + (2g — deg(u) — n)Ps, — 2D .
Compose. Given D; := div[u;,vi,n;] and D; := div[uz, va, ny):
@ Use the Euclidean algorithm to compute w, ¢y, ¢z, ¢3 € k[x] so that
w = ciuy + coup + c3(vi +v2) = ged(uy, up, vi + v2).
© Compute u3 := ujuy/w?, n3 == ny + ny + deg(w), and
v3 = (cru1va + coupvy + c3(viva + f))/w mod u3.

Q Output D3 = diV[l/t3, 1)3,,l’l3]>)< ~ Dy + Ds.

Note that Ds is not the canonical representative for [D; + Ds].

Reducing and adjusting divisors

Reduce. Given div[u;, vy, n;|* with deg(u;) > g + 1:

@ Letuy := (f — v?)/u; made monic and v, := —v; mod us.

Q Ifdeg(vi) =g+ 1andlc(vy) = +1thenletd := F(g+ 1 — deg(uz)),
otherwise let ¢ := (deg(u;) — deg(u2))/2.

© Output div(uz, vo, ny + 0)* ~ div(uy, vy, n]*.

Adjust. Given div[u;, vy, n;|* with deg(u;) < g+ 1:
@ If [8] <ny < [32] — deg(u) output div]us, vy, n; — [£]] and stop.
Q Ifny < [4] letd = —1, otherwise, let § = +1.

@ Letd; :=v; +(V—(Vmodu)) and u := (f — ¥3) /u; made monic,
and v, := —; mod u, (using precomputed V with deg(f — V?) < g).

Q Letn, :=ny + 5(deg(u;) — (g + 1)), where i = (3 — §) /2.
Q Output Adjust(div[ug, V2, I’lz]*)

Addition and negation

Addition. Given D, := div]u;,vi,ni| and D, := div(uy, v, na]:

@ Set div(u,v,n]* + Compose(div|u;, vi,n;],diviuz, vz, na]).
@ While deg(u) > g+ 1 set [u,v,n]* + Reduce(div[u, v, n]*).
© Output D; := Adjust(div[u, v,n]*) ~ D; + D;.

The output divisor Ds is the canonical representative for [D; + Ds].

Negation. Given D, := div]u;, vy, ni]:

@ If gis even output div[u;, —vi, g — deg(u;) — n;] and stop.
Q@ If n; > 0 output div[u;, —vi, g — deg(u;) — ny + 1] and stop.
© Output D, :=Adjust(div|u;, —v1, (%g} —deg(u1) + 1]*) ~ —D;.

The output divisor D, is the canonical representative for [—Dy].

For even g this is essentially Cantor’s algorithm, except deg(f) = 2g + 2.

Addition in the typical case.

Generically, we expect the following to hold when adding divisors:
@ deg(u;) = deg(up) = g, deg(vy) = deg(v,) =g —1,and n; = np, =0;
@ After Compose, deg(u) = 2g, deg(v) =2¢g —1,and n = 0.

@ Each call to Reduce decreases deg(u) by 2 and increases n by 1.
When g is even we will have deg(u) = g after g/2 calls to Reduce.
When g is odd we will have deg(u) = g + 1 after (g — 1)/2 calls.

@ When g is even Adjust simply sets n = 0 and returns.
When g is odd, Adjust first makes deg(u) = gandn=(g+1)/2,
then simply sets n» = 0 and returns.

When g = 3, one call to Reduce and one nontrivial call to Adjust.

Straight-line program for the typical case

Standard optimizations (following [Gaudry-Harley, Harley 00]):
@ Use the CRT to avoid computing GCDs (for u; L u, or u; L vy).
@ Combine composition and one reduction into a single step.

Optimization specific to balanced divisor approach:
@ Combine composition, reduction, adjustment into a single step.

TypicalAddition. Given div|u;, v;, 0], with deg(u;) = 3 and u; L uy:
Q@ w:=(f—v})/uand5s:= (v, —vi)/u; mod us.
Q c:=1/lc(5) and s = ¢5 and z := suy (require deg(s) = 2).
Q uy = (s(z+2¢cvi) — ?w)/up and vy := vy + ug + (z mod uy)/c.
Q us:= (V] — f)/(2043us) and vs := ¥4 mod us and ns := 3 — deg(us).

We then have div[u;, v, 0] + div]uz, va, 0] ~ div(us, vs, ns].
div[us, vs, ns] is the canonical representative of its divisor class.

Optimizations and results

Standard tricks that can be used to optimize the algorithm:

@ Karatsuba and Toom style polynomial multiplication;

@ Fast algorithms for exact division of polynomials;

© Bezout’s matrix for computing resultants;

© Montgomery’s trick for combining field inversions;

© Maximize parallelism and minimize modular reductions.

After applying these optimizations (and other minor tweaks):

@ Typical addition: 1+ 79M + 127A (vs 51 + 275M + 246A).
@ Typical doubling: 1+ 82M + 127A (vs 51 + 285M + 258A).
@ Typical negation: 1 + 14M + 24A.

Note that (5) has no impact on the field operation counts.

Caveat: field operation counts can be misleading

For an odd prime p, consider the following computations in IF,:
Q z < xiy1 + X202 + X3y3 + Xay4 (4M+3A)
Q (™)) (4M, in fact 48)

Which is faster?

Caveat: field operation counts can be misleading

For an odd prime p, consider the following computations in IF,:
Q z < xiy1 + X202 + X3y3 + Xay4 (4M+3A)
Q (™)) (4M, in fact 48)

Which is faster?

In almost any implementation (1) will take much less time than (2).
For word-sized operands on a Haswell core, (2) is 4x slower than (1).

How about
Q z < xiy1 +x1y2 +x0y1 + X0y (4M+3A)
Q z+ (xi +x2)0n1 +) (TM+2A)

Which is faster?

Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves
over fields of odd characteristic using affine coordinates:

Addition Doubling Source
Genus 2 odd degree 1+24M 1+28M [Lange 05]
Genus 2 evendegree |1+28M 1+32M [GHM 08]
Genus 3odd degree 1+67M 1+ 68M [NMCT 06]
Genus 3 evendegree 1+79M 1+ 82M [this work]

Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves
over fields of odd characteristic using affine coordinates:

Addition Doubling Source

Genus 2 odd degree 1+24M 1+28M [Lange 05]
Genus 2 evendegree |1+28M 1+32M [GHM 08]

Genus 3odd degree 1+67M 1+ 68M [NMCT 06]
Genus 3 evendegree 1+79M 1+ 82M [this work]

Genus 3evendegree 1+75M 1+ 86M [Rezai Rad 16]

