Fast Jacobian arithmetic for hyperelliptic curves of genus 3

Andrew V. Sutherland¹

Massachusetts Institute of Technology

ANTS XIII — July 18, 2018

¹Supported by NSF grant DMS-1522526 and Simons Foundation grant 550033.

Background

Let *X* be a nice (smooth, projective, geom. irred.) curve of genus *g* over a field *k*. Its Jacobian Jac(*X*) is an abelian variety of dimension *g*.

Suppose $X(k) \neq \emptyset$. Then there is a natural isomorphism

 $Jac(X) \simeq Pic^0(X),$

where ${\rm Pic}^0(X):={\rm Div}^0(X)/\, {\rm Princ}(X),$ and for any $O\in X(k)$ the map $X \to \text{Pic}^0(X)$ $P \mapsto [P - Q]$

is an injective morphism (an isomorphism when $g = 1$).

- When *k* is a number field Jac(*X*) is finitely generated.
- When *k* is a finite field Jac(*X*) is a finite abelian group.

- ⁹ Cryptographic applications.
- ¹⁰ Groups are more interesting than sets.

- 8 Torsion subgroups.
- **9** Cryptographic applications.
- ¹⁰ Groups are more interesting than sets.

- **2** Lang-Trotter type questions.
- 8 Torsion subgroups.
- **9** Cryptographic applications.
- ¹⁰ Groups are more interesting than sets.

- **6** Cohen-Lenstra for function fields.
- **2** Lang-Trotter type questions.
- 8 Torsion subgroups.
- **9** Cryptographic applications.
- ¹⁰ Groups are more interesting than sets.

- **6** Finding rational points with the Mordell-Weil sieve.
- **6** Cohen-Lenstra for function fields.
- **2** Lang-Trotter type questions.
- 8 Torsion subgroups.
- **9** Cryptographic applications.
- ¹⁰ Groups are more interesting than sets.

- Galois representations.
- Finding rational points with the Mordell-Weil sieve.
- Cohen-Lenstra for function fields.
- Lang-Trotter type questions.
- 8 Torsion subgroups.
- Cryptographic applications.
- Groups are more interesting than sets.

- ³ BSD conjecture for abelian varieties.
- Galois representations.
- Finding rational points with the Mordell-Weil sieve.
- Cohen-Lenstra for function fields.
- Lang-Trotter type questions.
- 8 Torsion subgroups.
- Cryptographic applications.
- Groups are more interesting than sets.

- 2 Computing zeta functions.
- ³ BSD conjecture for abelian varieties.
- ⁴ Galois representations.
- **5** Finding rational points with the Mordell-Weil sieve.
- **6** Cohen-Lenstra for function fields.
- **2** Lang-Trotter type questions.
- 8 Torsion subgroups.
- **9** Cryptographic applications.
- ¹⁰ Groups are more interesting than sets.

- Computing *L*-functions!
- 2 Computing zeta functions.
- ³ BSD conjecture for abelian varieties.
- Galois representations.
- Finding rational points with the Mordell-Weil sieve.
- Cohen-Lenstra for function fields.
- Lang-Trotter type questions.
- 8 Torsion subgroups.
- Cryptographic applications.
- Groups are more interesting than sets.

Computing *L*-functions.

Let *X*/Q be a nice curve of genus *g*.

$$
L(X,s) := \prod_p L_p(p^{-s})^{-1},
$$

For primes *p* of good reduction, $L_p \in \mathbb{Z}[T]$ is defined by

$$
Z(X,T) := \exp\left(\sum_{n\geq 1} \#X(\mathbb{F}_{p^n})\frac{T^n}{n}\right) = \frac{L_p(T)}{(1-T)(1-pT)}.
$$

For hyperelliptic *X* one can compute $L_p(T)$ mod *p* for all $p \leq B$ in $O(g^3B(\log B)^{3+o(1)})$ time [Harvey 14, Harvey-S 14, Harvey-S 16].

For $g = 3$, one can lift $L_p(T)$ mod p to $L_p(T)$ in $O(p^{1/4+o(1)})$ time using computations in $Jac(X)(\mathbb{F}_p)$ and $Jac(\tilde{X})(\mathbb{F}_p)$ (assume $p \gg 1$).

For feasible *B* this is negligible, **provided Jacobian arithmetic is fast**.

Hyperelliptic curves

A hyperelliptic curve is a nice curve X/k of genus $g \geq 2$ that admits a degree-2 map $\phi\colon X\to {\bf P}^1$ (which we shall assume is defined over $k).$ The hyperelliptic involution $P \mapsto \overline{P}$ interchanges points in each fiber.

Assume *k* is a perfect field of characteristic not 2. Then *X* has an affine model $y^2 = f(x)$, where $f \in k[x]$ is squarefree of degree $2g + 2$ with roots corresponding to the Weierstrass points of *X*.

If *X* has a rational Weierstrass point *P* then by moving *P* to infinity we can obtain a model $y^2 = f(x)$ with f monic of degree $2g + 1$.

Hyperelliptic curves

A hyperelliptic curve is a nice curve X/k of genus $g \ge 2$ that admits a degree-2 map $\phi\colon X\to {\bf P}^1$ (which we shall assume is defined over $k).$ The hyperelliptic involution $P \mapsto \overline{P}$ interchanges points in each fiber.

Assume *k* is a perfect field of characteristic not 2. Then *X* has an affine model $y^2 = f(x)$, where $f \in k[x]$ is squarefree of degree $2g + 2$ with roots corresponding to the Weierstrass points of *X*.

If *X* has a rational Weierstrass point *P* then by moving *P* to infinity we can obtain a model $y^2 = f(x)$ with f monic of degree $2g + 1$.

This is typically not possible, in which case we are stuck with an even degree model $y^2 = f(x)$ which has either 0 or 2 points at infinity.

If *X* has a rational non-Weierstrass point, moving it to infinity will ensure that we are in the latter case (2 points at infinity).

Uniquely representing elements of $Pic⁰(X)$

A divisor is a finite formal sum $D:=\sum n_{P}P$ of points $P\in X(\bar{k}).$ It is rational if it is fixed by $\operatorname{Gal}(\bar{k}/k)$ and effective if $n_P\geq 0$ for all P. We may write effective divisors as $P_1 + \cdots + P_n$ (multiplicity allowed).

 $P_1 + \cdots + P_n$ is semi-reduced if $P_i \neq P_j$ for $i \neq j,$ and reduced if $n \leq g.$

Theorem (Paulus-Ruck 99)

Let X be a hyperelliptic curve of genus g with an effective divisor D_{∞} of *degree g supported on rational points at infinity. Each element of* ${\rm Pic}^0(X)$ *can be written as* $[D_0 - D_\infty]$ *, for a unique rational reduced divisor D*⁰ *supported on affine points.*

The Mumford representation $div[u, v]$ of a rational semi-reduced affine divisor $D := P_1 + \cdots + P_n$ is the unique pair $u, v \in k[x]$ satisfying

$$
u(x) := \prod (x - x(P_i)), \quad u | (f - v^2), \quad \deg v < \deg u.
$$

The balanced divisor approach

We now recall the method of [GHM, ANTS VIII].

Let $X\colon y^2=f(x)$ be a hyperelliptic curve of genus g with rational points $P_{\infty} := (1 : 1 : 0), \overline{P}_{\infty} := (1 : -1 : 0)$ at infinity; *f* monic, degree $2g + 2$. Let $D_{\infty} \vcentcolon= \lceil \frac{g}{2} \rceil$ $\frac{g}{2}$] P_{∞} + $\lfloor \frac{g}{2}$ $rac{g}{2}$] $P_{∞}$.

For $0 \leq n \leq g - \deg(u)$ define

$$
\operatorname{div}[u, v, n] := \operatorname{div}[u, v] + nP_{\infty} + (g - \deg(u) - n)\overline{P}_{\infty} - D_{\infty}.
$$

Each divisor class in Pic $O(X)$ is uniquely represented by $\text{div}[u, v, n]$ for some monic $u|(f - v^2)$ with $\deg(v) < \deg(u) \leq G$ and $0 \leq n \leq g - \deg(u)$. The trivial element of Pic⁰(X) is represented by $div[1, 0, \lceil \frac{g}{2} \rceil]$ $\frac{g}{2}$] = 0.

As shown by Mireles Morales, this representation yields efficient addition formulas when g is even, and in particular, when $g = 2$.

Composing balanced divisors

Define $\text{div}[u, v, n]^* := \text{div}[u, v] + nP_\infty + (2g - \text{deg}(u) - n)\overline{P}_\infty - 2D_\infty$.

Compose. Given $D_1 := \text{div}[u_1, v_1, n_1]$ and $D_2 := \text{div}[u_2, v_2, n_2]$:

1 Use the Euclidean algorithm to compute $w, c_1, c_2, c_3 \in k[x]$ so that

$$
w = c_1u_1 + c_2u_2 + c_3(v_1 + v_2) = \gcd(u_1, u_2, v_1 + v_2).
$$

2 Compute $u_3 := u_1 u_2/w^2$, $n_3 := n_1 + n_2 + \deg(w)$, and

$$
v_3 := (c_1u_1v_2 + c_2u_2v_1 + c_3(v_1v_2 + f))/w \bmod u_3.
$$

3 Output $D_3 := \text{div}[u_3, v_3, n_3]^* \sim D_1 + D_2$.

Note that D_3 is not the canonical representative for $[D_1 + D_2]$.

Reducing and adjusting divisors

Reduce. Given $\text{div}[u_1, v_1, n_1]^*$ with $\text{deg}(u_1) > g + 1$:

- **1** Let $u_2 := (f v_1^2)/u_1$ made monic and $v_2 := -v_1$ mod u_2 .
- 2 If $deg(v_1) = g + 1$ and $lc(v_1) = \pm 1$ then let $\delta := \pm (g + 1 deg(u_2)),$ otherwise let $\delta := (\deg(u_1) - \deg(u_2))/2$.
- **3** Output div $[u_2, v_2, n_1 + \delta]^* \sim \text{div}[u_1, v_1, n_1]^*.$

Adjust. Given $div[u_1, v_1, n_1]^*$ with $deg(u_1) \leq g + 1$:

- **1** If $\lceil \frac{g}{2} \rceil$ $\lfloor \frac{g}{2} \rfloor \leq n_1 \leq \lceil \frac{3g}{2} \rceil - \deg(u_1)$ output $\mathrm{div}[u_1, v_1, n_1 - \lceil \frac{g}{2} \rceil]$ and stop.
- **2** If $n_1 < \lceil \frac{g}{2} \rceil$ $\frac{g}{2}$] let $\delta = -1$, otherwise, let $\delta = +1$.
- **3** Let $\hat{v}_1 := v_1 + \delta(V (V \text{ mod } u_1))$ and $u_2 := (f \hat{v}_1^2)/u_1$ made monic, and $v_2 := -\hat{v}_1$ mod u_s (using precomputed *V* with $\deg(f - V^2) \leq g$).

• Let
$$
n_2 := n_1 + \delta(\deg(u_i) - (g+1))
$$
, where $i = (3 - \delta)/2$.

⁵ Output **Adjust**(div[*u*2, *v*2, *n*2] ∗)

Addition and negation

Addition. Given $D_1 := \text{div}[u_1, v_1, n_1]$ and $D_2 := \text{div}[u_2, v_2, n_2]$:

- **1** Set div[*u*, *v*, *n*][∗] ← **Compose**(div[*u*₁, *v*₁, *n*₁], div[*u*₂, *v*₂, *n*₂]).
- 2 While $deg(u) > g + 1$ set $[u, v, n]^* \leftarrow \textbf{Reduce}(div[u, v, n]^*)$.
- **3** Output *D*₃ := **Adjust**(div[*u*, *v*, *n*]^{*}) ∼ *D*₁ + *D*₂.

The output divisor D_3 is the canonical representative for $[D_1 + D_2]$.

Negation. Given $D_1 := \text{div}[u_1, v_1, n_1]$:

- **1** If *g* is even output div[$u_1, -v_1, g \deg(u_1) n_1$] and stop.
- 2 If $n_1 > 0$ output div[$u_1, -v_1, g \deg(u_1) n_1 + 1$] and stop.
- 3 Output $D_2 :=$ Adjust $(\text{div}[u_1, -v_1, \lceil \frac{3g_2}{2} \rceil))$ $\frac{\partial g}{2}$] – deg(*u*₁) + 1]^{*}) ~ -*D*₁.

The output divisor D_2 is the canonical representative for $[-D_1]$.

For even *g* this is essentially Cantor's algorithm, except $deg(f) = 2g + 2$.

Addition in the typical case.

Generically, we expect the following to hold when adding divisors:

- \bullet deg(*u*₁) = deg(*u*₂) = *g*, deg(*v*₁) = deg(*v*₂) = *g* − 1, and *n*₁ = *n*₂ = 0;
- After **Compose**, $deg(u) = 2g$, $deg(v) = 2g 1$, and $n = 0$.
- Each call to **Reduce** decreases deg(*u*) by 2 and increases *n* by 1. When *g* is even we will have $deg(u) = g$ after $g/2$ calls to **Reduce**. When *g* is odd we will have $deg(u) = g + 1$ after $(g - 1)/2$ calls.
- When g is even **Adjust** simply sets $n = 0$ and returns. When *g* is odd, **Adjust** first makes $deg(u) = g$ and $n = (g + 1)/2$, then simply sets $n = 0$ and returns.

When *g* = 3, one call to **Reduce** and one nontrivial call to **Adjust**.

Straight-line program for the typical case

Standard optimizations (following [Gaudry-Harley, Harley 00]):

- Use the CRT to avoid computing GCDs (for $u_1 \perp u_2$ or $u_1 \perp v_1$).
- Combine composition and one reduction into a single step.

Optimization specific to balanced divisor approach:

Combine composition, reduction, adjustment into a single step.

TypicalAddition. Given div $[u_i, v_i, 0]$, with $\deg(u_i) = 3$ and $u_1 \perp u_2$: **1** $w := (f - v_1^2)/u$ and $\tilde{s} := (v_2 - v_1)/u_1$ mod u_2 . 2 $c := 1/lc(\tilde{s})$ and $s = c\tilde{s}$ and $z := su_1$ (require $deg(s) = 2$). 3 $u_4 := (s(z + 2cv_1) - c^2w)/u_2$ and $\tilde{v}_4 := v_1 + u_4 + (z \mod u_4)/c$. $u_5 := (\tilde{v}_4^2 - f)/(2\tilde{v}_{43}u_4)$ and $v_5 := \tilde{v}_4 \text{ mod } u_5$ and $n_5 := 3 - \text{deg}(u_5)$.

We then have $div[u_1, v_1, 0] + div[u_2, v_2, 0] \sim div[u_5, v_5, n_5]$. $div[u_5, v_5, n_5]$ is the canonical representative of its divisor class.

Optimizations and results

Standard tricks that can be used to optimize the algorithm:

- ¹ Karatsuba and Toom style polynomial multiplication;
- ² Fast algorithms for exact division of polynomials;
- Bezout's matrix for computing resultants;
- ⁴ Montgomery's trick for combining field inversions;
- ⁵ Maximize parallelism and minimize modular reductions.

After applying these optimizations (and other minor tweaks):

- Typical addition: $I + 79M + 127A$ (vs $5I + 275M + 246A$).
- Typical doubling: $I + 82M + 127A$ (vs $5I + 285M + 258A$).
- Typical negation: $I + 14M + 24A$.

Note that (5) has no impact on the field operation counts.

Caveat: field operation counts can be misleading

For an odd prime p , consider the following computations in \mathbb{F}_p :

- \bullet $z \leftarrow x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4$ (4M+3A)
- **2** $z \leftarrow (((x^2)^2)^2)^2$ (4**M**, in fact 4**S**)

Which is faster?

Caveat: field operation counts can be misleading

For an odd prime p , consider the following computations in \mathbb{F}_p :

- \bullet $z \leftarrow x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4$ (4M+3A)
- **2** $z \leftarrow (((x^2)^2)^2)^2$ (4**M**, in fact 4**S**)

Which is faster?

In almost any implementation (1) will take much less time than (2). For word-sized operands on a Haswell core, (2) is $4\times$ slower than (1).

How about

$$
2 z \leftarrow x_1 y_1 + x_1 y_2 + x_2 y_1 + x_2 y_2 \qquad (4M + 3A)
$$

$$
\bullet z \leftarrow (x_1 + x_2)(y_1 + y_2) \qquad (1M + 2A)
$$

Which is faster?

Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves over fields of odd characteristic using affine coordinates:

Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves over fields of odd characteristic using affine coordinates:

