Fast Jacobian arithmetic for hyperelliptic curves of genus 3

Andrew V. Sutherland¹

Massachusetts Institute of Technology

ANTS XIII — July 18, 2018

¹Supported by NSF grant DMS-1522526 and Simons Foundation grant 550033.

Background

Let *X* be a nice (smooth, projective, geom. irred.) curve of genus *g* over a field *k*. Its Jacobian Jac(X) is an abelian variety of dimension *g*.

Suppose $X(k) \neq \emptyset$. Then there is a natural isomorphism

 $\operatorname{Jac}(X) \simeq \operatorname{Pic}^0(X),$

where $\operatorname{Pic}^{0}(X) := \operatorname{Div}^{0}(X) / \operatorname{Princ}(X)$, and for any $O \in X(k)$ the map

 $X \to \operatorname{Pic}^0(X)$ $P \mapsto [P - O]$

is an injective morphism (an isomorphism when g = 1).

- When k is a number field Jac(X) is finitely generated.
- When *k* is a finite field Jac(X) is a finite abelian group.

- Oryptographic applications.
- O Groups are more interesting than sets.

- Torsion subgroups.
- Oryptographic applications.
- Groups are more interesting than sets.

- Lang-Trotter type questions.
- Torsion subgroups.
- Oryptographic applications.
- Groups are more interesting than sets.

- Ohen-Lenstra for function fields.
- Lang-Trotter type questions.
- Torsion subgroups.
- Oryptographic applications.
- Groups are more interesting than sets.

- Finding rational points with the Mordell-Weil sieve.
- Ohen-Lenstra for function fields.
- Lang-Trotter type questions.
- Torsion subgroups.
- Oryptographic applications.
- Groups are more interesting than sets.

- Galois representations.
- Finding rational points with the Mordell-Weil sieve.
- Ohen-Lenstra for function fields.
- Lang-Trotter type questions.
- Torsion subgroups.
- Cryptographic applications.
- Groups are more interesting than sets.

- ISD conjecture for abelian varieties.
- Galois representations.
- Finding rational points with the Mordell-Weil sieve.
- Ohen-Lenstra for function fields.
- Lang-Trotter type questions.
- Torsion subgroups.
- Cryptographic applications.
- Groups are more interesting than sets.

- Omputing zeta functions.
- BSD conjecture for abelian varieties.
- Galois representations.
- Finding rational points with the Mordell-Weil sieve.
- Ohen-Lenstra for function fields.
- Lang-Trotter type questions.
- Torsion subgroups.
- Cryptographic applications.
- Groups are more interesting than sets.

- Computing L-functions!
- 2 Computing zeta functions.
- BSD conjecture for abelian varieties.
- Galois representations.
- Finding rational points with the Mordell-Weil sieve.
- Ohen-Lenstra for function fields.
- Lang-Trotter type questions.
- Torsion subgroups.
- Oryptographic applications.
- Groups are more interesting than sets.

Computing *L*-functions.

Let X/\mathbb{Q} be a nice curve of genus g.

$$L(X,s) := \prod_p L_p(p^{-s})^{-1},$$

For primes p of good reduction, $L_p \in \mathbb{Z}[T]$ is defined by

$$Z(X,T) := \exp\left(\sum_{n\geq 1} \# X(\mathbb{F}_{p^n})\frac{T^n}{n}\right) = \frac{L_p(T)}{(1-T)(1-pT)}.$$

For hyperelliptic *X* one can compute $L_p(T) \mod p$ for all $p \le B$ in $O(g^3B(\log B)^{3+o(1)})$ time [Harvey 14, Harvey-S 14, Harvey-S 16].

For g = 3, one can lift $L_p(T) \mod p$ to $L_p(T)$ in $O(p^{1/4+o(1)})$ time using computations in $\operatorname{Jac}(X)(\mathbb{F}_p)$ and $\operatorname{Jac}(\tilde{X})(\mathbb{F}_p)$ (assume $p \gg 1$).

For feasible *B* this is negligible, provided Jacobian arithmetic is fast.

Hyperelliptic curves

A hyperelliptic curve is a nice curve X/k of genus $g \ge 2$ that admits a degree-2 map $\phi: X \to \mathbf{P}^1$ (which we shall assume is defined over k). The hyperelliptic involution $P \mapsto \overline{P}$ interchanges points in each fiber.

Assume *k* is a perfect field of characteristic not 2. Then *X* has an affine model $y^2 = f(x)$, where $f \in k[x]$ is squarefree of degree 2g + 2 with roots corresponding to the Weierstrass points of *X*.

If *X* has a rational Weierstrass point *P* then by moving *P* to infinity we can obtain a model $y^2 = f(x)$ with *f* monic of degree 2g + 1.

Hyperelliptic curves

A hyperelliptic curve is a nice curve X/k of genus $g \ge 2$ that admits a degree-2 map $\phi: X \to \mathbf{P}^1$ (which we shall assume is defined over k). The hyperelliptic involution $P \mapsto \overline{P}$ interchanges points in each fiber.

Assume *k* is a perfect field of characteristic not 2. Then *X* has an affine model $y^2 = f(x)$, where $f \in k[x]$ is squarefree of degree 2g + 2 with roots corresponding to the Weierstrass points of *X*.

If *X* has a rational Weierstrass point *P* then by moving *P* to infinity we can obtain a model $y^2 = f(x)$ with *f* monic of degree 2g + 1.

This is typically not possible, in which case we are stuck with an even degree model $y^2 = f(x)$ which has either 0 or 2 points at infinity.

If X has a rational non-Weierstrass point, moving it to infinity will ensure that we are in the latter case (2 points at infinity).

Uniquely representing elements of $Pic^{0}(X)$

A divisor is a finite formal sum $D := \sum n_P P$ of points $P \in X(\overline{k})$. It is rational if it is fixed by $\operatorname{Gal}(\overline{k}/k)$ and effective if $n_P \ge 0$ for all P. We may write effective divisors as $P_1 + \cdots + P_n$ (multiplicity allowed).

 $P_1 + \cdots + P_n$ is semi-reduced if $P_i \neq \overline{P}_j$ for $i \neq j$, and reduced if $n \leq g$.

Theorem (Paulus-Ruck 99)

Let *X* be a hyperelliptic curve of genus g with an effective divisor D_{∞} of degree g supported on rational points at infinity. Each element of $\operatorname{Pic}^{0}(X)$ can be written as $[D_{0} - D_{\infty}]$, for a unique rational reduced divisor D_{0} supported on affine points.

The Mumford representation $\operatorname{div}[u, v]$ of a rational semi-reduced affine divisor $D := P_1 + \cdots + P_n$ is the unique pair $u, v \in k[x]$ satisfying

$$u(x) := \prod (x - x(P_i)), \quad u|(f - v^2), \quad \deg v < \deg u.$$

The balanced divisor approach

We now recall the method of [GHM, ANTS VIII].

Let $X: y^2 = f(x)$ be a hyperelliptic curve of genus g with rational points $P_{\infty} := (1:1:0), \overline{P}_{\infty} := (1:-1:0)$ at infinity; f monic, degree 2g + 2. Let $D_{\infty} := \lceil \frac{g}{2} \rceil P_{\infty} + \lfloor \frac{g}{2} \rfloor \overline{P}_{\infty}$.

For $0 \le n \le g - \deg(u)$ define

$$\operatorname{div}[u,v,n] := \operatorname{div}[u,v] + nP_{\infty} + (g - \operatorname{deg}(u) - n)\overline{P}_{\infty} - D_{\infty}.$$

Each divisor class in $\operatorname{Pic}^{0}(X)$ is uniquely represented by $\operatorname{div}[u, v, n]$ for some monic $u|(f - v^2)$ with $\operatorname{deg}(v) < \operatorname{deg}(u) \le G$ and $0 \le n \le g - \operatorname{deg}(u)$. The trivial element of $\operatorname{Pic}^{0}(X)$ is represented by $\operatorname{div}[1, 0, \lceil \frac{g}{2} \rceil] = 0$.

As shown by Mireles Morales, this representation yields efficient addition formulas when g is even, and in particular, when g = 2.

Composing balanced divisors

Define div $[u, v, n]^* := div[u, v] + nP_{\infty} + (2g - deg(u) - n)\overline{P}_{\infty} - 2D_{\infty}$.

Compose. Given $D_1 := div[u_1, v_1, n_1]$ and $D_2 := div[u_2, v_2, n_2]$:

① Use the Euclidean algorithm to compute $w, c_1, c_2, c_3 \in k[x]$ so that

$$w = c_1 u_1 + c_2 u_2 + c_3 (v_1 + v_2) = \gcd(u_1, u_2, v_1 + v_2).$$

2 Compute $u_3 := u_1 u_2 / w^2$, $n_3 := n_1 + n_2 + \deg(w)$, and

 $v_3 := (c_1u_1v_2 + c_2u_2v_1 + c_3(v_1v_2 + f))/w \mod u_3.$

3 Output $D_3 := \operatorname{div}[u_3, v_3, n_3]^* \sim D_1 + D_2$.

Note that D_3 is not the canonical representative for $[D_1 + D_2]$.

Reducing and adjusting divisors

Reduce. Given $div[u_1, v_1, n_1]^*$ with $deg(u_1) > g + 1$:

- Let $u_2 := (f v_1^2)/u_1$ made monic and $v_2 := -v_1 \mod u_2$.
- 2 If $\deg(v_1) = g + 1$ and $\operatorname{lc}(v_1) = \pm 1$ then let $\delta := \mp (g + 1 \deg(u_2))$, otherwise let $\delta := (\deg(u_1) \deg(u_2))/2$.
- **3** Output div $[u_2, v_2, n_1 + \delta]^* \sim \text{div}[u_1, v_1, n_1]^*$.

Adjust. Given $\operatorname{div}[u_1, v_1, n_1]^*$ with $\operatorname{deg}(u_1) \leq g + 1$:

- If $\lceil \frac{g}{2} \rceil \le n_1 \le \lceil \frac{3g}{2} \rceil \deg(u_1)$ output $\operatorname{div}[u_1, v_1, n_1 \lceil \frac{g}{2} \rceil]$ and stop.
- 2 If $n_1 < \lceil \frac{g}{2} \rceil$ let $\delta = -1$, otherwise, let $\delta = +1$.
- Solution Let $\hat{v}_1 := v_1 + \delta(V (V \mod u_1))$ and $u_2 := (f \hat{v}_1^2)/u_1$ made monic, and $v_2 := -\hat{v}_1 \mod u_s$ (using precomputed V with $\deg(f - V^2) \le g$).

3 Let
$$n_2 := n_1 + \delta(\deg(u_i) - (g+1))$$
, where $i = (3 - \delta)/2$.

Output Adjust(div $[u_2, v_2, n_2]^*$)

Addition and negation

Addition. Given $D_1 := div[u_1, v_1, n_1]$ and $D_2 := div[u_2, v_2, n_2]$:

- Set div $[u, v, n]^* \leftarrow$ **Compose** $(div[u_1, v_1, n_1], div[u_2, v_2, n_2])$.
- **2** While $\deg(u) > g + 1$ set $[u, v, n]^* \leftarrow \text{Reduce}(\operatorname{div}[u, v, n]^*)$.
- Output $D_3 := \operatorname{Adjust}(\operatorname{div}[u, v, n]^*) \sim D_1 + D_2$.

The output divisor D_3 is the canonical representative for $[D_1 + D_2]$.

Negation. Given $D_1 := \operatorname{div}[u_1, v_1, n_1]$:

- If g is even output $\operatorname{div}[u_1, -v_1, g \operatorname{deg}(u_1) n_1]$ and stop.
- 2 If $n_1 > 0$ output div $[u_1, -v_1, g \deg(u_1) n_1 + 1]$ and stop.
- Output $D_2 := \operatorname{Adjust}(\operatorname{div}[u_1, -v_1, \lceil \frac{3g}{2} \rceil \operatorname{deg}(u_1) + 1]^*) \sim -D_1.$

The output divisor D_2 is the canonical representative for $[-D_1]$.

For even g this is essentially Cantor's algorithm, except deg(f) = 2g + 2.

Addition in the typical case.

Generically, we expect the following to hold when adding divisors:

- $\deg(u_1) = \deg(u_2) = g$, $\deg(v_1) = \deg(v_2) = g 1$, and $n_1 = n_2 = 0$;
- After **Compose**, deg(u) = 2g, deg(v) = 2g 1, and n = 0.
- Each call to **Reduce** decreases deg(u) by 2 and increases *n* by 1. When *g* is even we will have deg(u) = g after g/2 calls to **Reduce**. When *g* is odd we will have deg(u) = g + 1 after (g - 1)/2 calls.
- When g is even Adjust simply sets n = 0 and returns.
 When g is odd, Adjust first makes deg(u) = g and n = (g + 1)/2, then simply sets n = 0 and returns.

When g = 3, one call to **Reduce** and one nontrivial call to **Adjust**.

Straight-line program for the typical case

Standard optimizations (following [Gaudry-Harley, Harley 00]):

- Use the CRT to avoid computing GCDs (for $u_1 \perp u_2$ or $u_1 \perp v_1$).
- Combine composition and one reduction into a single step.

Optimization specific to balanced divisor approach:

• Combine composition, reduction, adjustment into a single step.

TypicalAddition. Given div $[u_i, v_i, 0]$, with deg $(u_i) = 3$ and $u_1 \perp u_2$: • $w := (f - v_1^2)/u$ and $\tilde{s} := (v_2 - v_1)/u_1 \mod u_2$. • $c := 1/lc(\tilde{s})$ and $s = c\tilde{s}$ and $z := su_1$ (require deg(s) = 2). • $u_4 := (s(z + 2cv_1) - c^2w)/u_2$ and $\tilde{v}_4 := v_1 + u_4 + (z \mod u_4)/c$. • $u_5 := (\tilde{v}_4^2 - f)/(2\tilde{v}_{43}u_4)$ and $v_5 := \tilde{v}_4 \mod u_5$ and $n_5 := 3 - deg(u_5)$.

We then have $\operatorname{div}[u_1, v_1, 0] + \operatorname{div}[u_2, v_2, 0] \sim \operatorname{div}[u_5, v_5, n_5]$. $\operatorname{div}[u_5, v_5, n_5]$ is the canonical representative of its divisor class.

Optimizations and results

Standard tricks that can be used to optimize the algorithm:

- Karatsuba and Toom style polynomial multiplication;
- Past algorithms for exact division of polynomials;
- Bezout's matrix for computing resultants;
- Montgomery's trick for combining field inversions;
- Maximize parallelism and minimize modular reductions.

After applying these optimizations (and other minor tweaks):

- Typical addition: I + 79M + 127A (vs 5I + 275M + 246A).
- Typical doubling: I + 82M + 127A (vs 5I + 285M + 258A).
- Typical negation: $\mathbf{I} + 14\mathbf{M} + 24\mathbf{A}$.

Note that (5) has no impact on the field operation counts.

Caveat: field operation counts can be misleading

For an odd prime *p*, consider the following computations in \mathbb{F}_p :

- **1** $z \leftarrow x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4$ (4M+3A)
- **2** $z \leftarrow (((x^2)^2)^2)^2$ (4**M**, in fact 4**S**)

Which is faster?

Caveat: field operation counts can be misleading

For an odd prime *p*, consider the following computations in \mathbb{F}_p :

- **1** $z \leftarrow x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4$ (4M+3A)
- **2** $z \leftarrow (((x^2)^2)^2)^2$ (4**M**, in fact 4**S**)

Which is faster?

In almost any implementation (1) will take much less time than (2). For word-sized operands on a Haswell core, (2) is $4 \times$ slower than (1).

How about

②
$$z \leftarrow (x_1 + x_2)(y_1 + y_2)$$
 (1M+2A)

Which is faster?

Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves over fields of odd characteristic using affine coordinates:

	Addition	Doubling	Source
Genus 2 odd degree	I + 24M	I + 28M	[Lange 05]
Genus 2 even degree	I + 28M	I + 32M	[GHM 08]
Genus 3 odd degree	I + 67M	I + 68M	[NMCT 06]
Genus 3 even degree	I + 79M	I + 82M	[this work]

Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves over fields of odd characteristic using affine coordinates:

	Addition	Doubling	Source
Genus 2 odd degree	I + 24M	I + 28M	[Lange 05]
Genus 2 even degree	I + 28M	I + 32M	[GHM 08]
Genus 3 odd degree	I + 67M	I + 68M	[NMCT 06]
Genus 3 even degree	I + 79M	I + 82M	[this work]

Genus 3 even degree I + 75M I + 86M [Rezai Rad 16]