Computing A Database of Belyi Maps

Sam Schiavone, Dartmouth College Joint work with Michael Musty, Jeroen Sijsling, and John Voight.

July 16, 2018

(I) Definitions and motivation

Definitions and motivation
 Overview of method

- (I) Definitions and motivation
- (II) Overview of method
- (III) Progress on computations

- (I) Definitions and motivation
- (II) Overview of method
- (III) Progress on computations
- (IV) Live demo

- Definitions and motivation
 Overview of method
- (III) Progress on computations
- (IV) Live demo (!)

- (I) Definitions and motivation
- (II) Overview of method
- (III) Progress on computations
- (IV) Live demo (!)
- $\left(\mathsf{V}\right)$ Analysis of the data

A Belyĭ map over \mathbb{C} is a nonconstant morphism of algebraic curves $\phi: X \to \mathbb{P}^1_{\mathbb{C}}$ that is unramified outside $\{0, 1, \infty\}$.

A *Belyĭ map* over \mathbb{C} is a nonconstant morphism of algebraic curves $\phi: X \to \mathbb{P}^1_{\mathbb{C}}$ that is unramified outside $\{0, 1, \infty\}$.

Example

Consider the map $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ given by $\phi(x) = 2x^3 + 3x^2$.

A *Belyĭ map* over \mathbb{C} is a nonconstant morphism of algebraic curves $\phi: X \to \mathbb{P}^1_{\mathbb{C}}$ that is unramified outside $\{0, 1, \infty\}$.

Example

Consider the map $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ given by $\phi(x) = 2x^3 + 3x^2$. Since $\phi'(x) = 6x^2 + 6x = 6x(x+1)$, ϕ is only ramified above $0, 1, \infty$.

A *Belyĭ map* over \mathbb{C} is a nonconstant morphism of algebraic curves $\phi: X \to \mathbb{P}^1_{\mathbb{C}}$ that is unramified outside $\{0, 1, \infty\}$.

Example

Consider the map $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ given by $\phi(x) = 2x^3 + 3x^2$. Since $\phi'(x) = 6x^2 + 6x = 6x(x+1)$, ϕ is only ramified above $0, 1, \infty$.

$$\phi(x) = 2x^3 + 3x^2 = x^2(2x+3)$$

$$\phi(x) - 1 = 2x^3 + 3x^2 - 1 = (2x-1)(x+1)^2.$$

What is a Belyĭ map?

Belyı Maps and $\mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$

Grothendieck described an action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the set of isomorphism classes of Belyĭ maps.

- Grothendieck described an action of the absolute Galois group ${\rm Gal}(\overline{\mathbb Q}/\mathbb Q)$ on the set of isomorphism classes of Belyı̆ maps.
- **Goal:** Understand $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ by studying this action.

Grothendieck described an action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the set of isomorphism classes of Belyĭ maps.

Goal: Understand $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ by studying this action.

We compute explicit equations for Belyĭ maps in order to get a concrete view of this action.

'A. Grothendieck and his students developed a combinatorial description ("maps") of finite coverings [of $\mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty\}]...$ It has not aided in understanding the Galois action. We have only a few examples of non-solvable coverings whose Galois conjugates have been computed.'

-Pierre Deligne

permutation triples

- permutation triples
- finite index subgroups of *triangle groups*

- permutation triples
- finite index subgroups of *triangle groups*
- dessins d'enfants

A transitive permutation triple of degree d is a triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S^3_d$ such that

- $\sigma_{\infty}\sigma_{1}\sigma_{0}=1$, and
- $\langle \sigma_0, \sigma_1, \sigma_\infty \rangle \leq S_d$ is a transitive subgroup.

A transitive permutation triple of degree d is a triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S^3_d$ such that

- $\sigma_{\infty}\sigma_{1}\sigma_{0}=1$, and
- $\langle \sigma_0, \sigma_1, \sigma_\infty \rangle \leq S_d$ is a transitive subgroup.

Two permutation triples σ, σ' are simultaneously conjugate if there exists $\rho \in S_d$ such that

$$(\sigma'_0, \sigma'_1, \sigma'_\infty) = (\rho \sigma_0 \rho^{-1}, \rho \sigma_1 \rho^{-1}, \rho \sigma_\infty \rho^{-1}).$$

A *passport* consists of the data (g, G, λ) where

• $g \ge 0$ is an integer,

A *passport* consists of the data (g, G, λ) where

- $g \ge 0$ is an integer,
- $G \leq S_d$ is a transitive subgroup; and

A *passport* consists of the data (g, G, λ) where

- $g \ge 0$ is an integer,
- $G \leq S_d$ is a transitive subgroup; and
- $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

A *passport* consists of the data (g, G, λ) where

- $g \ge 0$ is an integer,
- $G \leq S_d$ is a transitive subgroup; and
- $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

A *passport* consists of the data (g, G, λ) where

- $g \ge 0$ is an integer,
- $G \leq S_d$ is a transitive subgroup; and
- $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

A permutation triple $\sigma \in S^3_d$ belongs to a passport (g, G, λ) if

►
$$2g - 2 = -2d + \sum_{s \in \{0,1,\infty\}} \sum_{\tau \text{ a cycle in } \sigma_s} (\operatorname{len}(\tau) - 1)$$

A *passport* consists of the data (g, G, λ) where

- $g \ge 0$ is an integer,
- $G \leq S_d$ is a transitive subgroup; and
- $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

A permutation triple $\sigma \in S^3_d$ belongs to a passport (g, G, λ) if

►
$$2g - 2 = -2d + \sum_{s \in \{0,1,\infty\}} \sum_{\tau \text{ a cycle in } \sigma_s} (\operatorname{len}(\tau) - 1)$$

• $\langle \sigma_0, \sigma_1, \sigma_\infty \rangle = G$; and

A *passport* consists of the data (g, G, λ) where

- $g \ge 0$ is an integer,
- $G \leq S_d$ is a transitive subgroup; and
- $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

A permutation triple $\sigma \in S^3_d$ belongs to a passport (g, G, λ) if

►
$$2g - 2 = -2d + \sum_{s \in \{0,1,\infty\}} \sum_{\tau \text{ a cycle in } \sigma_s} (\operatorname{len}(\tau) - 1)$$

•
$$\langle \sigma_0, \sigma_1, \sigma_\infty \rangle = G$$
; and

• $\sigma_0, \sigma_1, \sigma_\infty$ have the cycle types specified by $\lambda_0, \lambda_1, \lambda_\infty$.

A *passport* consists of the data (g, G, λ) where

- $g \ge 0$ is an integer,
- $G \leq S_d$ is a transitive subgroup; and
- $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

A permutation triple $\sigma \in S^3_d$ belongs to a passport (g, G, λ) if

►
$$2g - 2 = -2d + \sum_{s \in \{0,1,\infty\}} \sum_{\tau \text{ a cycle in } \sigma_s} (\operatorname{len}(\tau) - 1)$$

•
$$\langle \sigma_0, \sigma_1, \sigma_\infty \rangle = G$$
; and

• $\sigma_0, \sigma_1, \sigma_\infty$ have the cycle types specified by $\lambda_0, \lambda_1, \lambda_\infty$.

A *passport* consists of the data (g, G, λ) where

- $g \ge 0$ is an integer,
- $G \leq S_d$ is a transitive subgroup; and
- $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

A permutation triple $\sigma \in S^3_d$ belongs to a passport (g, G, λ) if

►
$$2g - 2 = -2d + \sum_{s \in \{0,1,\infty\}} \sum_{\tau \text{ a cycle in } \sigma_s} (\operatorname{len}(\tau) - 1)$$

•
$$\langle \sigma_0, \sigma_1, \sigma_\infty \rangle = G$$
; and

• $\sigma_0, \sigma_1, \sigma_\infty$ have the cycle types specified by $\lambda_0, \lambda_1, \lambda_\infty$.

The *size* of a passport is the number of permutation triples belonging to it, up to simultaneous conjugacy.

Consider the permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$ where

 $\sigma_0 = (1\,3\,7)(2)(4\,5\,6)\,, \ \ \sigma_1 = (1\,4\,5\,3)(2\,7)(6)\,, \ \ \sigma_\infty = (1\,2\,7\,5)(3)(4\,6)\,.$

Consider the permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$ where

 $\sigma_0 = (1\,3\,7)(2)(4\,5\,6)\,, \ \ \sigma_1 = (1\,4\,5\,3)(2\,7)(6)\,, \ \ \sigma_\infty = (1\,2\,7\,5)(3)(4\,6)\,.$

Then σ belongs to the passport

 $(0, GL_3(\mathbb{F}_2), ((3, 3, 1), (4, 2, 1), (4, 2, 1))).$

Consider the permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$ where

 $\sigma_0 = (1\,3\,7)(2)(4\,5\,6)\,, \ \ \sigma_1 = (1\,4\,5\,3)(2\,7)(6)\,, \ \ \sigma_\infty = (1\,2\,7\,5)(3)(4\,6)\,.$

Then σ belongs to the passport

 $(0, GL_3(\mathbb{F}_2), ((3, 3, 1), (4, 2, 1), (4, 2, 1))).$

We give this passport the following name:
Passports

Consider the permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$ where

 $\sigma_0 = (1\,3\,7)(2)(4\,5\,6)\,, \ \ \sigma_1 = (1\,4\,5\,3)(2\,7)(6)\,, \ \ \sigma_\infty = (1\,2\,7\,5)(3)(4\,6)\,.$

Then σ belongs to the passport

 $(0, GL_3(\mathbb{F}_2), ((3, 3, 1), (4, 2, 1), (4, 2, 1))).$

We give this passport the following name:

One can show that this passport has size 2; the other triple is $\sigma'=(\sigma_0',\sigma_1',\sigma_\infty')$ with

 $\sigma_0' = (1\,3\,7)(2)(4\,5\,6)\,, \ \ \sigma_1' = (1\,6\,3\,2)(4\,5)(7)\,, \ \ \sigma_\infty' = (1\,7\,6\,4)(2\,3)(5)\,.$

Triangle Groups

For a triple of integers $a, b, c \in \mathbb{Z}_{\geq 2}$, we define the *triangle group* $\Delta(a, b, c) = \langle \delta_a, \delta_b, \delta_c \mid \delta_a^a = \delta_b^b = \delta_c^c = \delta_c \delta_b \delta_a = 1 \rangle.$

Triangle Groups

For a triple of integers $a, b, c \in \mathbb{Z}_{\geq 2}$, we define the *triangle group* $\Delta(a, b, c) = \langle \delta_a, \delta_b, \delta_c \mid \delta_a^a = \delta_b^b = \delta_c^c = \delta_c \delta_b \delta_a = 1 \rangle.$

Triangle Groups

For a triple of integers $a, b, c \in \mathbb{Z}_{\geq 2}$, we define the *triangle group* $\Delta(a, b, c) = \langle \delta_a, \delta_b, \delta_c \mid \delta_a^a = \delta_b^b = \delta_c^c = \delta_c \delta_b \delta_a = 1 \rangle.$

There are many other collections of mathematical objects in bijection with the set of isomorphism classes of Belyĭ maps.

- permutation triples
- finite index subgroups of *triangle groups*
- dessins d'enfants

Let $au\in {\sf Gal}(\mathbb{Q}(\sqrt{7})/\mathbb{Q})$ be the element interchanging $\pm\sqrt{7}$ and let

$$\lambda = \frac{1}{3087} \left(173\sqrt{7} + 343 \right).$$

Let $au\in {\sf Gal}(\mathbb{Q}(\sqrt{7})/\mathbb{Q})$ be the element interchanging $\pm\sqrt{7}$ and let

$$\lambda = \frac{1}{3087} \left(173\sqrt{7} + 343 \right).$$

$$\phi = \lambda \cdot \frac{x^3 \left(x - \frac{1}{729} \left(68\sqrt{7} + 236\right)\right)^1 \left(x - \frac{1}{9} \left(20 - 4\sqrt{7}\right)\right)^3}{\left(x - \frac{4}{21} \left(\sqrt{7} + 3\right)\right)^2 \left(x - \frac{4}{21} \left(\sqrt{7} + 1\right)\right)^4}$$

Let $au\in {\sf Gal}(\mathbb{Q}(\sqrt{7})/\mathbb{Q})$ be the element interchanging $\pm\sqrt{7}$ and let

$$\lambda = \frac{1}{3087} \left(173\sqrt{7} + 343 \right).$$

$$\begin{split} \phi &= \lambda \cdot \frac{x^3 \left(x - \frac{1}{729} \left(68\sqrt{7} + 236\right)\right)^1 \left(x - \frac{1}{9} \left(20 - 4\sqrt{7}\right)\right)^3}{\left(x - \frac{4}{21} \left(\sqrt{7} + 3\right)\right)^2 \left(x - \frac{4}{21} \left(\sqrt{7} + 1\right)\right)^4}\\ \phi &- 1 = \lambda \cdot \frac{\left(x - \frac{1}{189} \left(44\sqrt{7} + 140\right)\right)^4 \left(x - \frac{1}{7} \left(12\sqrt{7} - 28\right)\right)^2 \left(x - \frac{1}{14} \left(3\sqrt{7} + 7\right)\right)^1}{\left(x - \frac{4}{21} \left(\sqrt{7} + 3\right)\right)^2 \left(x - \frac{4}{21} \left(\sqrt{7} + 1\right)\right)^4} \end{split}$$

$$\begin{array}{ll}
\sigma_0 = (1\,3\,7)(2)(4\,5\,6) & \sigma'_0 = (1\,3\,7)(2)(4\,5\,6) \\
\sigma_1 = (1\,4\,5\,3)(2\,7)(6) & \overleftarrow{\tau} & \sigma'_1 = (1\,6\,3\,2)(4\,5)(7) \\
\sigma_\infty = (1\,2\,7\,5)(3)(4\,6) & \sigma'_\infty = (1\,7\,6\,4)(2\,3)(5)
\end{array}$$

Galois action for example 7T5-[3,4,4]-331-421-421-g0

Galois action for example 7T5-[3,4,4]-331-421-421-g0

• Input: A permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$

- Input: A permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$
- ▶ **Output:** Equations for the corresponding curve X and Belyĭ map $\phi : X \to \mathbb{P}^1$ with monodromy group $\langle \sigma \rangle$

- Input: A permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$
- **Output:** Equations for the corresponding curve X and Belyĭ map $\phi : X \to \mathbb{P}^1$ with monodromy group $\langle \sigma \rangle$
- 1. Form the triangle subgroup $\Gamma \leq \Delta(a, b, c)$ associated to σ and compute its coset graph.

- Input: A permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$
- Output: Equations for the corresponding curve X and Belyĭ map φ : X → P¹ with monodromy group ⟨σ⟩
- 1. Form the triangle subgroup $\Gamma \leq \Delta(a, b, c)$ associated to σ and compute its coset graph.
- 2. Use a reduction algorithm for Γ and numerical linear algebra to compute numerical power series expansions of modular forms $f_i \in S_k(\Gamma)$ for an appropriate weight k.

- Input: A permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$
- Output: Equations for the corresponding curve X and Belyĭ map φ : X → P¹ with monodromy group ⟨σ⟩
- 1. Form the triangle subgroup $\Gamma \leq \Delta(a, b, c)$ associated to σ and compute its coset graph.
- 2. Use a reduction algorithm for Γ and numerical linear algebra to compute numerical power series expansions of modular forms $f_i \in S_k(\Gamma)$ for an appropriate weight k.
- 3. Use numerical linear algebra (and Riemann–Roch) to find polynomial relations among the series f_i , yielding equations for the curve X and ϕ .

- Input: A permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$
- ▶ **Output:** Equations for the corresponding curve X and Belyĭ map $\phi : X \to \mathbb{P}^1$ with monodromy group $\langle \sigma \rangle$
- 1. Form the triangle subgroup $\Gamma \leq \Delta(a, b, c)$ associated to σ and compute its coset graph.
- 2. Use a reduction algorithm for Γ and numerical linear algebra to compute numerical power series expansions of modular forms $f_i \in S_k(\Gamma)$ for an appropriate weight k.
- 3. Use numerical linear algebra (and Riemann–Roch) to find polynomial relations among the series f_i , yielding equations for the curve X and ϕ .
- Normalize the equations of X and φ so that the coefficients are algebraic and recognize these coefficients as elements of a number field K ⊆ C.

- Input: A permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty)$
- ▶ **Output:** Equations for the corresponding curve X and Belyĭ map $\phi : X \to \mathbb{P}^1$ with monodromy group $\langle \sigma \rangle$
- 1. Form the triangle subgroup $\Gamma \leq \Delta(a, b, c)$ associated to σ and compute its coset graph.
- 2. Use a reduction algorithm for Γ and numerical linear algebra to compute numerical power series expansions of modular forms $f_i \in S_k(\Gamma)$ for an appropriate weight k.
- 3. Use numerical linear algebra (and Riemann–Roch) to find polynomial relations among the series f_i , yielding equations for the curve X and ϕ .
- Normalize the equations of X and φ so that the coefficients are algebraic and recognize these coefficients as elements of a number field K ⊆ C.
- 5. Verify that ϕ has the correct ramification and monodromy.

Completeness of computation

d g	0	1	2	3	≥ 4	total
1	1/1	0	0	0	0	1/1
2	1/1	0	0	0	0	1/1
3	2/2	1/1	0	0	0	3/3
4	6/6	2/2	0	0	0	8/8
5	12/12	<mark>6</mark> /6	2/2	0	0	20/20
6	38/38	<mark>29</mark> /29	7/7	0	0	74/74
7	89/89	<mark>50</mark> /50	7/13	2/3	0	148/155
8	81/261	83/217	<mark>0</mark> /84	<mark>0</mark> /11	0	164/573
9	97/583	33/427	<mark>0</mark> /163	<mark>0</mark> /28	<mark>0</mark> /6	130/1207

In our first paper we described how Newton's method can be used to compute genus 0 Belyĭ maps.

In our first paper we described how Newton's method can be used to compute genus 0 Belyĭ maps.

In this paper we describe how to use Newton's method to compute genus 1 Belyĭ maps. This has allowed us to extend our computations to higher degrees.

Example

Consider the permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_6^3$ with

 $\sigma_0 = (1 \ 2 \ 3 \ 4 \ 5)(6), \quad \sigma_1 = (1 \ 3 \ 4 \ 6 \ 2)(5), \quad \sigma_\infty = (1 \ 5 \ 3 \ 6 \ 4)(2) \,.$

Example

Consider the permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_6^3$ with

$$\sigma_0 = (1 \ 2 \ 3 \ 4 \ 5)(6), \quad \sigma_1 = (1 \ 3 \ 4 \ 6 \ 2)(5), \quad \sigma_\infty = (1 \ 5 \ 3 \ 6 \ 4)(2) \,.$$

Then σ belongs to the passport 6T15-[5,5,5]-51-51-g1.

Consider the permutation triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_6^3$ with

 $\sigma_0 = (1 \ 2 \ 3 \ 4 \ 5)(6), \quad \sigma_1 = (1 \ 3 \ 4 \ 6 \ 2)(5), \quad \sigma_\infty = (1 \ 5 \ 3 \ 6 \ 4)(2) \,.$

Then σ belongs to the passport 6T15-[5,5,5]-51-51-g1.

From the Riemann-Hurwitz formula, we see that this corresponds to a Belyĭ map ϕ defined on a genus 1 curve X. Let K be the pointed field of definition of ϕ , so X has a K-rational point. Then X can be written in Weierstrass form:

$$X: y^2 = x^3 - 27c_4x - 54c_6$$

for some $c_4, c_6 \in K$.

By Riemann-Roch ϕ can be written as $\phi = \phi_0/\phi_\infty$ with $\phi_0 \in \mathcal{L}(2\infty)$ and $\phi_\infty \in \mathcal{L}(7\infty)$.

By Riemann-Roch ϕ can be written as $\phi = \phi_0/\phi_\infty$ with $\phi_0 \in \mathcal{L}(2\infty)$ and $\phi_\infty \in \mathcal{L}(7\infty)$. Since $\{1, x\}$ and $\{1, x, y, x^2, xy, x^3, x^2y\}$ are bases for $\mathcal{L}(2\infty)$.

Since $\{1, x\}$ and $\{1, x, y, x^2, xy, x^3, x^2y\}$ are bases for $\mathcal{L}(2\infty)$ and $\mathcal{L}(7\infty)$, respectively, then

$$\phi = \frac{\phi_0}{\phi_\infty} = u \frac{a_0 + x}{b_0 + b_2 x + b_3 y + \dots + b_6 x^3 + x^2 y}$$

for some $u, a_0, b_0, \ldots, b_6 \in K$.

To determine the coefficients c_4 , c_6 of the curve and u, a_0, b_0, \ldots, b_6 of the map, we first use our numerical method to obtain a rough approximation. We then apply Newton's method to the system of equations obtained as follows.

To determine the coefficients c_4 , c_6 of the curve and u, a_0 , b_0 , ..., b_6 of the map, we first use our numerical method to obtain a rough approximation. We then apply Newton's method to the system of equations obtained as follows.

Since σ_1 has cycle type 5, 1, then there are two points $P_{1,b}$, $P_{2,b}$ above 1. Since X is smooth, then the complete local ring $\widehat{\mathbb{C}[X]}_{P_{i,b}}$ is a discrete valuation ring.

To determine the coefficients c_4 , c_6 of the curve and u, a_0 , b_0 , ..., b_6 of the map, we first use our numerical method to obtain a rough approximation. We then apply Newton's method to the system of equations obtained as follows.

Since σ_1 has cycle type 5, 1, then there are two points $P_{1,b}$, $P_{2,b}$ above 1. Since X is smooth, then the complete local ring $\widehat{\mathbb{C}[X]}_{P_{i,b}}$ is a discrete valuation ring.

Expressing x, y in terms of the uniformizer for this local ring, the condition that $\phi - 1$ has zeroes of order 5 (resp., 1) at $P_{1,b}$ (resp., $P_{2,b}$) imposes equations on the coefficients.

Live demo

The passport containing σ has size 8. We find that it splits into 4 Galois orbits, each of size 2:

The passport containing σ has size 8. We find that it splits into 4 Galois orbits, each of size 2:

 $\{ ((1,2,3,4,5),(1,3,4,6,2),(1,5,3,6,4)), ((1,2,3,4,5),(1,4,3,5,6),(1,3,2,6,5)) \}$ $\{ ((1,2,3,4,5),(1,3,5,6,2),(1,3,6,5,4)), ((1,2,3,4,5),(1,3,5,4,6),(1,3,2,6,4)) \}$ $\{ ((1,2,3,4,5),(1,2,5,4,6),(1,2,6,4,3)), ((1,2,3,4,5),(1,4,5,6,2),(1,4,3,6,5)) \}$ $\{ ((1,2,3,4,5),(1,4,6,5,2),(1,6,4,3,5)), ((1,2,3,4,5),(2,3,5,4,6),(1,3,6,4,2)) \}$

Analysis of the data
One expects a "generic" passport to be irreducible. So what is the reason behind this splitting?

One expects a "generic" passport to be irreducible. So what is the reason behind this splitting?

There are 262 passports with degree $d \le 7$. We have computed equations for all Belyĭ maps in 255 of these passports and found that 37 are reducible.

One expects a "generic" passport to be irreducible. So what is the reason behind this splitting?

There are 262 passports with degree $d \le 7$. We have computed equations for all Belyĭ maps in 255 of these passports and found that 37 are reducible.

We leave to future work explanations for each instance of a reducible passport in the database.

Suppose \mathcal{P} is a passport of size ℓ that decomposes into Galois orbits of sizes ℓ_1, \ldots, ℓ_r .

Suppose \mathcal{P} is a passport of size ℓ that decomposes into Galois orbits of sizes ℓ_1, \ldots, ℓ_r .

To measure the irreducibility of \mathcal{P} , define the weight

w(
$$\mathcal{P}$$
) :=

$$\begin{cases} 1, & \text{if } r = 1; \\ \frac{1}{(\ell-1)^2} \sum_{i=1}^r (\ell_i - 1)^2, & \text{if } r \ge 2. \end{cases}$$

Suppose \mathcal{P} is a passport of size ℓ that decomposes into Galois orbits of sizes ℓ_1, \ldots, ℓ_r .

To measure the irreducibility of \mathcal{P} , define the weight

w(
$$\mathcal{P}$$
) :=

$$\begin{cases}
1, & \text{if } r = 1; \\
\frac{1}{(\ell-1)^2} \sum_{i=1}^r (\ell_i - 1)^2, & \text{if } r \ge 2.
\end{cases}$$

For example, the passport 6T15-[5,5,5]-51-51-51-g1 above (of size 8 = 2 + 2 + 2 + 2) has weight

$$\frac{1}{(8-1)^2}((2-1)+(2-1)+(2-1))=\frac{4}{49}\,.$$

Let \mathcal{P}_d be the set of passports of degree at most d and define the reducibility constant

$$\beta(d) := (\#\mathcal{P}_d)^{-1} \sum_{\mathcal{P} \in \mathcal{P}_d} w(\mathcal{P}).$$

Let \mathcal{P}_d be the set of passports of degree at most d and define the reducibility constant

$$\beta(d) := (\#\mathcal{P}_d)^{-1} \sum_{\mathcal{P} \in \mathcal{P}_d} w(\mathcal{P}).$$

From the database we find that $\beta(d) = 1$ for $d \le 4$, $\beta(5) \approx 0.9393$, $\beta(6) \approx 0.9444$, and $0.8779 < \beta(7) < 0.9046$.

beta.lmfdb.org/Belyi/

Thank you!