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What is a Bely̆ı map?

Definition

A Bely̆ı map over C is a nonconstant morphism of algebraic curves
φ : X → P1

C that is unramified outside {0, 1,∞}.

Example

Consider the map φ : P1 → P1 given by φ(x) = 2x3 + 3x2.

Since φ′(x) = 6x2 + 6x = 6x(x + 1), φ is only ramified above
0, 1,∞.

φ(x) = 2x3 + 3x2 = x2(2x + 3)

φ(x)− 1 = 2x3 + 3x2 − 1 = (2x − 1)(x + 1)2.
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What is a Bely̆ı map?
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Bely̆ı Maps and Gal(Q/Q)

Grothendieck described an action of the absolute Galois group
Gal(Q/Q) on the set of isomorphism classes of Bely̆ı maps.

Goal: Understand Gal(Q/Q) by studying this action.

We compute explicit equations for Bely̆ı maps in order to get a
concrete view of this action.
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Bely̆ı Maps and Gal(Q/Q)

‘A. Grothendieck and his students developed a combinatorial
description (“maps”) of finite coverings [of P1(C) \ {0, 1,∞}]... It
has not aided in understanding the Galois action. We have only a
few examples of non-solvable coverings whose Galois conjugates
have been computed.’

—Pierre Deligne
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Big Bijective Picture

There are many other collections of mathematical objects in
bijection with the set of isomorphism classes of Bely̆ı maps.

I permutation triples

I finite index subgroups of triangle groups

I dessins d’enfants

8 / 34



Big Bijective Picture

There are many other collections of mathematical objects in
bijection with the set of isomorphism classes of Bely̆ı maps.

I permutation triples

I finite index subgroups of triangle groups

I dessins d’enfants

8 / 34



Big Bijective Picture

There are many other collections of mathematical objects in
bijection with the set of isomorphism classes of Bely̆ı maps.

I permutation triples

I finite index subgroups of triangle groups

I dessins d’enfants

8 / 34



Big Bijective Picture

There are many other collections of mathematical objects in
bijection with the set of isomorphism classes of Bely̆ı maps.

I permutation triples

I finite index subgroups of triangle groups

I dessins d’enfants

8 / 34



Permutation Triples

A transitive permutation triple of degree d is a triple
σ = (σ0, σ1, σ∞) ∈ S3

d such that

I σ∞σ1σ0 = 1, and

I 〈σ0, σ1, σ∞〉 ≤ Sd is a transitive subgroup.

Two permutation triples σ, σ′ are simultaneously conjugate if there
exists ρ ∈ Sd such that

(σ′0, σ
′
1, σ
′
∞) = (ρσ0ρ

−1, ρσ1ρ
−1, ρσ∞ρ

−1) .
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Passports

A passport consists of the data (g ,G , λ) where

I g ≥ 0 is an integer,

I G ≤ Sd is a transitive subgroup; and

I λ = (λ0, λ1, λ∞) is a triple of partitions of d .

A permutation triple σ ∈ S3
d belongs to a passport (g ,G , λ) if

I 2g − 2 = −2d +
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

I 〈σ0, σ1, σ∞〉 = G ; and

I σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞.

The size of a passport is the number of permutation triples
belonging to it, up to simultaneous conjugacy.

10 / 34



Passports

A passport consists of the data (g ,G , λ) where

I g ≥ 0 is an integer,

I G ≤ Sd is a transitive subgroup; and

I λ = (λ0, λ1, λ∞) is a triple of partitions of d .

A permutation triple σ ∈ S3
d belongs to a passport (g ,G , λ) if

I 2g − 2 = −2d +
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

I 〈σ0, σ1, σ∞〉 = G ; and

I σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞.

The size of a passport is the number of permutation triples
belonging to it, up to simultaneous conjugacy.

10 / 34



Passports

A passport consists of the data (g ,G , λ) where

I g ≥ 0 is an integer,

I G ≤ Sd is a transitive subgroup; and

I λ = (λ0, λ1, λ∞) is a triple of partitions of d .

A permutation triple σ ∈ S3
d belongs to a passport (g ,G , λ) if

I 2g − 2 = −2d +
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

I 〈σ0, σ1, σ∞〉 = G ; and

I σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞.

The size of a passport is the number of permutation triples
belonging to it, up to simultaneous conjugacy.

10 / 34



Passports

A passport consists of the data (g ,G , λ) where

I g ≥ 0 is an integer,

I G ≤ Sd is a transitive subgroup; and

I λ = (λ0, λ1, λ∞) is a triple of partitions of d .

A permutation triple σ ∈ S3
d belongs to a passport (g ,G , λ) if

I 2g − 2 = −2d +
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

I 〈σ0, σ1, σ∞〉 = G ; and

I σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞.

The size of a passport is the number of permutation triples
belonging to it, up to simultaneous conjugacy.

10 / 34



Passports

A passport consists of the data (g ,G , λ) where

I g ≥ 0 is an integer,

I G ≤ Sd is a transitive subgroup; and

I λ = (λ0, λ1, λ∞) is a triple of partitions of d .

A permutation triple σ ∈ S3
d belongs to a passport (g ,G , λ) if

I 2g − 2 = −2d +
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

I 〈σ0, σ1, σ∞〉 = G ; and

I σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞.

The size of a passport is the number of permutation triples
belonging to it, up to simultaneous conjugacy.

10 / 34



Passports

A passport consists of the data (g ,G , λ) where

I g ≥ 0 is an integer,

I G ≤ Sd is a transitive subgroup; and

I λ = (λ0, λ1, λ∞) is a triple of partitions of d .

A permutation triple σ ∈ S3
d belongs to a passport (g ,G , λ) if

I 2g − 2 = −2d +
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

I 〈σ0, σ1, σ∞〉 = G ; and

I σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞.

The size of a passport is the number of permutation triples
belonging to it, up to simultaneous conjugacy.

10 / 34



Passports

A passport consists of the data (g ,G , λ) where

I g ≥ 0 is an integer,

I G ≤ Sd is a transitive subgroup; and

I λ = (λ0, λ1, λ∞) is a triple of partitions of d .

A permutation triple σ ∈ S3
d belongs to a passport (g ,G , λ) if

I 2g − 2 = −2d +
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

I 〈σ0, σ1, σ∞〉 = G ; and

I σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞.

The size of a passport is the number of permutation triples
belonging to it, up to simultaneous conjugacy.

10 / 34



Passports

A passport consists of the data (g ,G , λ) where

I g ≥ 0 is an integer,

I G ≤ Sd is a transitive subgroup; and

I λ = (λ0, λ1, λ∞) is a triple of partitions of d .

A permutation triple σ ∈ S3
d belongs to a passport (g ,G , λ) if

I 2g − 2 = −2d +
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

I 〈σ0, σ1, σ∞〉 = G ; and

I σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞.

The size of a passport is the number of permutation triples
belonging to it, up to simultaneous conjugacy.

10 / 34



Passports

A passport consists of the data (g ,G , λ) where

I g ≥ 0 is an integer,

I G ≤ Sd is a transitive subgroup; and

I λ = (λ0, λ1, λ∞) is a triple of partitions of d .

A permutation triple σ ∈ S3
d belongs to a passport (g ,G , λ) if

I 2g − 2 = −2d +
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

I 〈σ0, σ1, σ∞〉 = G ; and

I σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞.

The size of a passport is the number of permutation triples
belonging to it, up to simultaneous conjugacy.

10 / 34



Passports

Consider the permutation triple σ = (σ0, σ1, σ∞) where

σ0 = (1 3 7)(2)(4 5 6) , σ1 = (1 4 5 3)(2 7)(6) , σ∞ = (1 2 7 5)(3)(4 6) .

Then σ belongs to the passport

(0,GL3(F2), ((3, 3, 1), (4, 2, 1), (4, 2, 1))) .

We give this passport the following name:

7T5-[3,4,4]-331-421-421-g0 .

One can show that this passport has size 2; the other triple is
σ′ = (σ′0, σ

′
1, σ
′
∞) with

σ′0 = (1 3 7)(2)(4 5 6) , σ′1 = (1 6 3 2)(4 5)(7) , σ′∞ = (1 7 6 4)(2 3)(5) .
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Triangle Groups

For a triple of integers a, b, c ∈ Z≥2, we define the triangle group

∆(a, b, c) = 〈δa, δb, δc | δaa = δbb = δcc = δcδbδa = 1〉 .

za
zc

zb

−zc

b

b

bb
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Big Bijective Picture

There are many other collections of mathematical objects in
bijection with the set of isomorphism classes of Bely̆ı maps.

I permutation triples
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Galois action for example 7T5-[3,4,4]-331-421-421-g0

Let τ ∈ Gal(Q(
√

7)/Q) be the element interchanging ±
√

7 and let

λ =
1

3087

(
173
√

7 + 343
)
.

φ = λ ·
x3
(
x − 1
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(
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))1 (
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20− 4

√
7
))3(

x − 4
21
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21
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12
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Galois action for example 7T5-[3,4,4]-331-421-421-g0

σ0 = (1 3 7)(2)(4 5 6)

σ1 = (1 4 5 3)(2 7)(6)

σ∞ = (1 2 7 5)(3)(4 6)

σ′0 = (1 3 7)(2)(4 5 6)

σ′1 = (1 6 3 2)(4 5)(7)

σ′∞ = (1 7 6 4)(2 3)(5)

τ



Galois action for example 7T5-[3,4,4]-331-421-421-g0
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Galois action for example 7T5-[3,4,4]-331-421-421-g0
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Overview of the method

I Input: A permutation triple σ = (σ0, σ1, σ∞)
I Output: Equations for the corresponding curve X and Bely̆ı

map φ : X → P1 with monodromy group 〈σ〉

1. Form the triangle subgroup Γ ≤ ∆(a, b, c) associated to σ
and compute its coset graph.

2. Use a reduction algorithm for Γ and numerical linear algebra
to compute numerical power series expansions of modular
forms fi ∈ Sk(Γ) for an appropriate weight k .

3. Use numerical linear algebra (and Riemann–Roch) to find
polynomial relations among the series fi , yielding equations for
the curve X and φ.

4. Normalize the equations of X and φ so that the coefficients
are algebraic and recognize these coefficients as elements of a
number field K ⊆ C.

5. Verify that φ has the correct ramification and monodromy.
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Progress on computations
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Completeness of computation

d
g

0 1 2 3 ≥ 4 total

1 1/1 0 0 0 0 1/1
2 1/1 0 0 0 0 1/1
3 2/2 1/1 0 0 0 3/3
4 6/6 2/2 0 0 0 8/8
5 12/12 6/6 2/2 0 0 20/20
6 38/38 29/29 7/7 0 0 74/74
7 89/89 50/50 7/13 2/3 0 148/155
8 81/261 83/217 0/84 0/11 0 164/573
9 97/583 33/427 0/163 0/28 0/6 130/1207
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Newton’s Method

In our first paper we described how Newton’s method can be used
to compute genus 0 Bely̆ı maps.

In this paper we describe how to use Newton’s method to compute
genus 1 Bely̆ı maps. This has allowed us to extend our
computations to higher degrees.
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Example

Consider the permutation triple σ = (σ0, σ1, σ∞) ∈ S6
3 with

σ0 = (1 2 3 4 5)(6), σ1 = (1 3 4 6 2)(5), σ∞ = (1 5 3 6 4)(2) .

Then σ belongs to the passport 6T15-[5,5,5]-51-51-51-g1.

From the Riemann-Hurwitz formula, we see that this corresponds
to a Bely̆ı map φ defined on a genus 1 curve X . Let K be the
pointed field of definition of φ, so X has a K -rational point. Then
X can be written in Weierstrass form:

X : y2 = x3 − 27c4x − 54c6

for some c4, c6 ∈ K .

23 / 34



Example

Consider the permutation triple σ = (σ0, σ1, σ∞) ∈ S6
3 with

σ0 = (1 2 3 4 5)(6), σ1 = (1 3 4 6 2)(5), σ∞ = (1 5 3 6 4)(2) .

Then σ belongs to the passport 6T15-[5,5,5]-51-51-51-g1.

From the Riemann-Hurwitz formula, we see that this corresponds
to a Bely̆ı map φ defined on a genus 1 curve X . Let K be the
pointed field of definition of φ, so X has a K -rational point. Then
X can be written in Weierstrass form:

X : y2 = x3 − 27c4x − 54c6

for some c4, c6 ∈ K .

23 / 34



Example

Consider the permutation triple σ = (σ0, σ1, σ∞) ∈ S6
3 with

σ0 = (1 2 3 4 5)(6), σ1 = (1 3 4 6 2)(5), σ∞ = (1 5 3 6 4)(2) .

Then σ belongs to the passport 6T15-[5,5,5]-51-51-51-g1.

From the Riemann-Hurwitz formula, we see that this corresponds
to a Bely̆ı map φ defined on a genus 1 curve X . Let K be the
pointed field of definition of φ, so X has a K -rational point. Then
X can be written in Weierstrass form:

X : y2 = x3 − 27c4x − 54c6

for some c4, c6 ∈ K .

23 / 34



Example

s1

s1

s2

s2

s3

s3

s4

s4

s5

s5

s6

s6

bc b

×

bc

b

×

bc

b

×

bc

b

× bc

b×

bc

b

×

1

2

3

4

5

6

24 / 34



Example

By Riemann-Roch φ can be written as φ = φ0/φ∞ with
φ0 ∈ L(2∞) and φ∞ ∈ L(7∞).

Since {1, x} and {1, x , y , x2, xy , x3, x2y} are bases for L(2∞) and
L(7∞), respectively, then

φ =
φ0
φ∞

= u
a0 + x

b0 + b2x + b3y + · · ·+ b6x3 + x2y

for some u, a0, b0, . . . , b6 ∈ K .
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Example

To determine the coefficients c4, c6 of the curve and
u, a0, b0, . . . , b6 of the map, we first use our numerical method to
obtain a rough approximation. We then apply Newton’s method to
the system of equations obtained as follows.

Since σ1 has cycle type 5, 1, then there are two points P1,b,P2,b

above 1. Since X is smooth, then the complete local ring Ĉ[X ]Pi,b

is a discrete valuation ring.

Expressing x , y in terms of the uniformizer for this local ring, the
condition that φ− 1 has zeroes of order 5 (resp., 1) at P1,b (resp.,
P2,b) imposes equations on the coefficients.
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Live demo
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Example

The passport containing σ has size 8. We find that it splits into 4
Galois orbits, each of size 2:

{((1,2,3,4,5),(1,3,4,6,2),(1,5,3,6,4)), ((1,2,3,4,5),(1,4,3,5,6),(1,3,2,6,5))}

{((1,2,3,4,5),(1,3,5,6,2),(1,3,6,5,4)), ((1,2,3,4,5),(1,3,5,4,6),(1,3,2,6,4))}

{((1,2,3,4,5),(1,2,5,4,6),(1,2,6,4,3)), ((1,2,3,4,5),(1,4,5,6,2),(1,4,3,6,5))}

{((1,2,3,4,5),(1,4,6,5,2),(1,6,4,3,5)), ((1,2,3,4,5),(2,3,5,4,6),(1,3,6,4,2))}
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Analysis of the data
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Reducibility of passports

One expects a “generic” passport to be irreducible. So what is the
reason behind this splitting?

There are 262 passports with degree d ≤ 7. We have computed
equations for all Bely̆ı maps in 255 of these passports and found
that 37 are reducible.

We leave to future work explanations for each instance of a
reducible passport in the database.
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Reducibility of passports

Suppose P is a passport of size ` that decomposes into Galois
orbits of sizes `1, . . . , `r .

To measure the irreducibility of P, define the weight

w(P) :=

{
1, if r = 1;

1
(`−1)2

∑r
i=1(`i − 1)2, if r ≥ 2.

For example, the passport 6T15-[5,5,5]-51-51-51-g1 above (of
size 8 = 2 + 2 + 2 + 2) has weight

1

(8− 1)2
((2− 1) + (2− 1) + (2− 1) + (2− 1)) =

4

49
.
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Reducibility of passports

Let Pd be the set of passports of degree at most d and define the
reducibility constant

β(d) := (#Pd)−1
∑
P∈Pd

w(P).

From the database we find that β(d) = 1 for d ≤ 4,
β(5) ≈ 0.9393, β(6) ≈ 0.9444, and 0.8779 < β(7) < 0.9046.
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Access to data

beta.lmfdb.org/Belyi/
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Thank you!
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