Computing Hecke eigenvalues analytically

Nathan C. Ryan (joint with Alex Ghitza, Darío Terán, David Armendáriz and Owen Colman)

> Thirteenth Algorithmic Number Theory Symposium July 16, 2018

Conjectures related to Hecke eigenvalues:

Classical modular forms:

- 1. Lehmer's conjecture
- 2. Sato-Tate conjecture
- Siegel modular forms:
 - 1. Paramodular conjecture
 - 2. Harder's conjecture
 - 3. Existence of lifts
 - 4. Some pathological forms (rational nonlift eigenforms in 2-dimensional spaces)

(4 同) (4 回) (4 回)

Crash course on Siegel MFs

- The group is $\Gamma^{(2)} = \operatorname{Sp}(4)$ (instead of $\Gamma^{(1)} = \operatorname{SL}(2)$)
- The upper half space \mathcal{H}_2 is

$$\{Z = X + iY :\in M_{2\times 2}(\mathbb{C}) : Y > 0\}$$

(instead of $\mathcal{H}_1 = \{z \in \mathbb{C} : \Im(z) > 0\}$).

- The Hecke algebra is generated by T_p and T_{p²} (instead of just T_p).
- The slash operator is, for $\alpha = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathrm{GSp}(4)$

$$(F \mid_k \alpha)(Z) = \det(CZ + D)^{-k}F((AZ + B)(CZ + D)^{-1}).$$

The Fourier expansion of F is of the form

$$\sum_{T\geq 0, {}^tT=T} a(T)e^{2\pi i \operatorname{tr}(TZ)}.$$

How do we find Hecke eigenvalues?

- Classical modular forms:
 - Modular symbols method: in principle works for all N and k; in practice (in Sage) it slows down around

(N, k) = 2000, 2; (N, k) = (1, 200); (N, k) = (50, 50).

- Siegel modular forms:
 - Only real way (up until very recently) has been to compute the expansion of the eigenform *F*, compute the action of *T_p* and *T_{p²}* on *F* (quite ad hoc!).
 - Has only been done systematically for levels \leq 4.
 - ► To compute T_{p^2} for $p \approx 10^2$ we need coefficients indexed by quadratic forms of discriminant up to $\approx 3 \cdot 10^6$.

Yikes!

<□> <@> < E> < E> < E</p>

Our proposal (similar to what Hejhal and Venkatesh et al do for Maass forms):

- ▶ For classical modular form *f*, an eigenform:
 - ▶ Fix $z \in \mathcal{H}_1$, evaluate f(z), $(f \mid_k T_p)(z)$ and the ratio

$$\lambda_{p} = \frac{(f \mid_{k} T_{p})(z)}{f(z)}$$

- ► For Siegel modular form *F*, an eigenform:
 - Fix $Z \in \mathcal{H}_2$, evaluate F(Z), $(F \mid_k T_p)(Z)$, $(F \mid_k T_{p^2})(Z)$ and the ratios

$$\lambda_{p} = \frac{(F \mid_{k} T_{p})(Z)}{F(Z)} \text{ and } \lambda_{p^{2}} = \frac{(F \mid_{k} T_{p^{2}})(Z)}{F(Z)}$$

Conceptual shift:

Instead of representing a modular form as a list of Fourier coefficients, we can represent it as a set of points in \mathcal{H} and the values it takes on at those points.

イロト イポト イヨト

What do we gain?

level	weight	p	modular symbols	analytic	
1	12	1 000	0.109	0.166	
		10 000	1.270	1.350	
		100 000	14.500	13.000	
		1 000 000	177.000	136.000	
1	24	1 000	0.300	0.329	
		10 000	2.510	1.690	
		100 000	30.900	16.800	
		1 000 000	351.000	178.000	
1	100	1 000	1.350	1.180	
		10 000	15.600	4.670	
		100 000	207.000	53.400	
1	200	1 000	2.698	3.052	
		10 000	36.120	26.634	
2	8	1 000	0.053	0.138	
		10 000	0.718	1.391	
		100 000	9.233	15.596	
		1 000 000	105.630	148.558	
2	48	1 000	0.397	0.280	
		10 000	5.398	2.954	
		100 000	71.526	34.375	
3	6	1 000	0.047	0.141	
		10 000	0.567	1.426	
		100 000	7.253	15.772	
		1 000 000	82.216	161.781	

Ryan, et al.

omputing Hecke eigenvalues analytica

æ

What do we gain?

f	numerical (s)	standard (s)
Υ_{20}	57	240
Υ_{22}	59	410
$\Upsilon_{24\mathrm{a}}$	59	559
$\Upsilon_{ m 24b}$	59	563
$\Upsilon_{26\mathrm{a}}$	59	658
$\Upsilon_{\rm 26b}$	60	659

< □ > < @ > < 注 > < 注 > ... 注

And we think we can get even faster!

< □ > < @ > < 注 > < 注 > ... 注

What do we lose?

- Numerical values for the eigenvalues instead of exact values
 - Not that big a deal: since we know the field we can use LLL to find an exact expression for the numbers we've computed numerically and because often our next step is to compute associated L-functions and those want numerical values for the eigenvalues any way
- Already for classical forms of small level > 4, the code slows down considerably
 - might be able to address this by computing expansions at other cusps

How is it done?

Classical Modular Forms:

 $1. \ \mbox{Prove a theorem that lets you control the size of the tail:}$

Proposition

Let $\varepsilon > 0$ and $y = \Im(z)$. If T is such that

$$T \geq rac{d}{2\pi y} \qquad ext{and} \qquad rac{d+1}{2\pi y} e^{-2\pi y T} T^d < arepsilon,$$

then $|f(z) - f_T(z)| < \varepsilon$.

2. When you evaluate $(f \mid_k T_{10007})(z)$ you have to calculate something like

$$f\left(\frac{z+17}{10007}\right).$$

For such an element of $\mathcal{H}_1,$ the Fourier expansion converges slowly. So apply Fricke.

3. Use symmetry when the real part of z is 0 to cut the number of evalutions in half:

Corollary

Given f as in the Proposition: (a) $f(iy) \in \mathbb{R}$ for all $y \in \mathbb{R}_{>0}$; (b) if $y \in \mathbb{R}_{>0}$, p is prime and $b \in \{1, \dots, p-1\}$ then

$$f\left(\frac{iy-b}{p}\right) = f\left(\frac{iy+b}{p}\right).$$

(c) Let $f \in M_k(SL_2(\mathbb{Z}))$. The summands in $T_pf(iy)$ (for p > 2) come in pairs of conjugate complex numbers, which allows us to reduce the necessary computation in half. In particular,

$$(T_p f)(iy) = p^{k-1} f(iyp) + \frac{1}{p} f\left(i\frac{y}{p}\right) + \frac{2}{p} \left(\operatorname{Re} f\left(\frac{iy+1}{p}\right) + \dots + \operatorname{Re} f\left(\frac{iy+\frac{p-1}{2}}{p}\right) \right).$$

Siegel vs. Classical

- Siegel modular form coefficients are indexed by positive semi-definite quadratic forms.
- Need to calculate λ_p and λ_{p²}.
- No Deligne bound on the coefficients and so we cannot control the error that well.
- The fundamental domain is bounded by 28 algebraic surfaces and so we stick with level 1 for now.
- ► The ring of level 1 Siegel modular forms is generated by E₄, E₆, χ₁₀ and χ₁₂.
- To calculate λ_p in the standard way, we need coefficients of F up to discrimint p³. To calculate it analytically using the best known bound on coefficients we need roughly the same number of coefficients. So we work differently....

Instead. . .

- 1. we express a Siegel modular form F as a polynomial in the generators E_4 , E_6 , χ_{10} and χ_{12} .
- 2. using work of Lauter and Bröker, we evaluate the generators at our choice of Z. This is easy to do because the coefficients of the generators are easy to compute.
- 3. we evaluate *F* by substituting the values we found in Step 2 into the polynomial we found in Step 1.

In particular, we compute the eigenvalues of F by computing almost no coefficients of F.

(ロ) (同) (E) (E) (E)

Next steps

- 1. Optimize the calculation of coefficients of the generators
- 2. Find some kind of symmetry in the Siegel setting
- 3. Try to understand the nonlift eigenforms in weight 24 and 26 that are rational but live in a two dimensional space.

イロト イポト イヨト イヨト