The inverse Galois problem for p-adic fields

David Roe

Department of Mathematics Massachusetts Institute of Technology

Algorithmic Number Theory Symposium XIII Madison, WI

July 17, 2018

Inverse Galois Problem

- Classic Problem: determine if a finite *G* is a Galois group.
- \bullet Depends on base field: every *G* is a Galois group over $\mathbb{C}(t)$.
- Most work focused on L/\mathbb{Q} : S_n and A_n , every solvable group, every sporadic group except possibly M_{23}, \ldots
- Generic polynomials $f_G(t_1,\ldots,t_r,X)$ are known for some (G,K) : every *L*/*K* with group *G* is a specialization.

Computational Problems

Given a finite group *G*, find algorithms for

- **1** Existence problem: exist L/\mathbb{Q}_p with $Gal(L/\mathbb{Q}_p) \cong G$?
- ² Counting problem: how many such *L* exist (always finite)?
- **3** Enumeration problem: list the L.

p-realizable groups

Definition

A group *G* is *potentially p-realizable* if it has a filtration $G \supseteq G_0 \supseteq G_1$ so that

- \bigodot *G*₀ and *G*₁ are normal in *G*,
- 2 G/G_0 is cyclic, generated by some $\sigma \in G$,
- $\bigodot G_0/G_1$ is cyclic, generated by some $\tau \in G_0$,
- 4 $\tau^{\sigma} = \tau^{p}$,
- G_1 is a *p*-group.

It is *p*-realizable if there exists L/\mathbb{Q}_p with $Gal(L/\mathbb{Q}_p) \cong G$. It is *minimally unrealizable* if it is not *p*-realizable, but every proper quotient is.

Presentation of the absolute Galois group

For $p > 2$, Gal $(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$ is the profinite group generated by σ, τ, x_0, x_1 with x_0, x_1 pro- p and the following relations (see [1])

$$
\tau^{\sigma} = \tau^{p}
$$

$$
\langle x_{0}, \tau \rangle^{-1} x_{0}^{\sigma} = x_{1}^{p} \Bigg[x_{1}, x_{1}^{r_{2}^{p+1}} \Big\{ x_{1}, \tau_{2}^{p+1} \Big\}^{\sigma_{2} \tau_{2}^{(p-1)/2}}
$$

$$
\Bigg\{ \Big\{ x_{1}, \tau_{2}^{p+1} \Big\}, \sigma_{2} \tau_{2}^{(p-1)/2} \Big\}^{\sigma_{2} \tau_{2}^{(p+1)/2} + \tau_{2}^{(p+1)/2}}
$$

$$
h \in \mathbb{Z}_{p} \text{ with mult. order } p-1, \text{ proj}_{p} : \hat{\mathbb{Z}} \to \mathbb{Z}_{p}
$$

$$
\langle x_{0}, \tau \rangle := (x_{0} \tau x_{0}^{h^{p-2}} \tau ... x_{0}^{h} \tau)^{\text{proj}_{p}/(p-1)}
$$

$$
\beta : \text{Gal}(\mathbb{Q}_{p}^{t}/\mathbb{Q}_{p}) \to \mathbb{Z}_{p}^{\times} \qquad \beta(\tau) = h \qquad \beta(\sigma) = 1
$$

$$
\{x, \rho\} := (x^{\beta(1)} \rho^{2} x^{\beta(\rho)} \rho^{2} ... x^{\beta(\rho^{p-2})} \rho^{2})^{\text{proj}_{p}/(p-1)}
$$

$$
\sigma_{2} := \text{proj}_{2}(\sigma) \qquad \tau_{2} := \text{proj}_{2}(\tau)
$$

Counting algorithm

The number of extensions L/\mathbb{Q}_p with $Gal(L/\mathbb{Q}_p) \cong G$ is

$$
\frac{1}{\# \text{Aut}(G)} \# \left\{ \varphi : \text{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p) \twoheadrightarrow G \right\}
$$

So it suffices to count the tuples σ , τ , x_0 , $x_1 \in G$ (up to automorphism) that

- **D** satisfy the relations from Gal $(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$,
- ² generate *G*.

Basic Strategy

Loop over σ generating the unramified quotient and τ generating the tame inertia (with $\tau^{\sigma} = \tau^{p}$). For each such (σ, τ) up to automorphism, count the valid x_0, x_1 .

Iterative approach

Counting for many *G*, so we can build up from quotients.

Iterative Strategy

- Pick a minimal normal subgroup $N \triangleleft G$, then try to lift (σ, τ, x_0, x_1) from *G*/*N* to *G*.
- Tame *G* form a base case.

Two subtleties.

- **If** *N* is not characteristic, it will not be preserved by Aut(*G*) so not all automorphisms descend;
- The map $\operatorname{\sf Stab}_{\operatorname{\sf Aut}(G)}(N) \to \operatorname{\sf Aut}(G/N)$ may not be surjective, so equivalent quadruples may become inequivalent.

Counts

The largest counts occurred for cyclic groups or products of large cyclic groups with small nonabelian groups:

- C_{1458} $(p = 3)$ with 2916,
- $C_{1210} (p = 11)$ with 2376,
- $C_{243} \times S_3$ ($p = 3$) with 1944.

But also 1458G553, $(C_{27} \rtimes C_{27}) \rtimes C_2$ ($p = 3$) with 1323.

Realizability Criteria

Given potentially *p*-realizable *G*, let *V* be it's *p*-core and $W = V^p V'$. Then V/W is an \mathbb{F}_p vector space with action of G/V . Let T_G be the set of pairs $(\sigma,\tau)\in G^{\bar{2}}$ generating G/V and satisfying $\tau^\sigma=\tau^p.$

Definition

G is *strongly-split* if $\text{ord}_G(\sigma) = \text{ord}_{G/V}(\sigma)$ for all $(\sigma, \tau) \in T_G$. *G* is *tame-decoupled* if τ acts trivially on V/W for all $(\sigma, \tau) \in T_G$. *G* is *x*₀-constrained if $x_0^{\sigma} \langle x_0, \tau \rangle^{-1} \in W \Rightarrow x_0 \in W$ for all $(\sigma, \tau) \in T_G$.

Set $n_{G,ss} = 0$ if strongly-split, 1 o/w; $n_{G,xc} = 0$ if x_0 -constrained, 1 o/w.

Theorem

Let n be the largest multiplicity of an indecomposable factor of V/*W.*

- \bullet *If G* is tame-decoupled then it is x_0 -constrained.
- If $n > 1 + n_{G,ss} + n_{G,xc}$ *then G is not p*-realizable.
- *If W* = 1 *and V is a sum of distinct irreducibles, G is p-realizable.*

Minimally unrealizable *G* with abelian *V*, $p = 3$

Minimally unrealizable *G* with nonabelian *V*, $p = 3$

References

[1] J. Neukirch, A. Schmidt, K. Wingberg. *Cohomology of Number Fields*. Springer, Berlin, 2015, pg 419.