Curves with many points over number fields ANTS-XIII Madison WI, 16 July 2018 Noam D. Elkies, Harvard University Context: Diophantine eqns.; d = 0; d = 1: g = 0 and g = 1 Curves of general type: Faltings and Caporaso-Harris-Mazur Brumer, Mestre, et al. Connections with algebraic geometry The K3 (and -163) connection - Solve Diophantine equations - Understand structure of solutions For us, "Diophantine equation" = simult. polynomial eqns. in (usually too many) rational variables Equiv.: simult. homogeneous equations in integer variables (e.g. Fermat: $x^n + y^n = z^n \iff (x/z)^n + (y/z)^n = 1$) [Almost the same as Diophantus (3rd cent.) himself, though he used only positive values, so at most one of (x,y) and (x,-y) in $y^2 = P(x)$.] More generally: F with $[F:\mathbf{Q}]<\infty$. (Also: \mathbf{Z} ; more generally: F; O_F and $O_{F,S}$. But not in this talk. Nor exponential Dioph. equations, etc.)) - Solve Diophantine equations - Understand structure of solutions For us, "Diophantine equation" = simult. polynomial eqns. in (usually too many) rational variables Equiv.: simult. homogeneous equations in integer variables (e.g. Fermat: $x^n + y^n = z^n \iff (x/z)^n + (y/z)^n = 1$) [Almost the same as Diophantus (3rd cent.) himself, though he used only positive values, so at most one of (x,y) and (x,-y) in $y^2 = P(x)$.] More generally: F with $[F:\mathbf{Q}]<\infty$. (Also: \mathbf{Z} ; more generally: F; O_F and $O_{F,S}$. But not in this talk. Nor exponential Dioph. equations, etc.) - Solve Diophantine equations - Understand structure of solutions For us, "Diophantine equation" = simult. polynomial eqns. in (usually too many) rational variables Equiv.: simult. homogeneous equations in integer variables (e.g. Fermat: $x^n + y^n = z^n \iff (x/z)^n + (y/z)^n = 1$) [Almost the same as Diophantus (3rd cent.) himself, though he used only positive values, so at most one of (x,y) and (x,-y) in $y^2 = P(x)$.] More generally: F with $[F:\mathbf{Q}]<\infty$. (Also: \mathbf{Z} ; more generally: F; O_F and $O_{F,S}$. But not in this talk. Nor exponential Dioph. equations, etc.) - Solve Diophantine equations - Understand structure of solutions For us, "Diophantine equation" = simult. polynomial eqns. in (usually too many) rational variables Equiv.: simult. homogeneous equations in integer variables (e.g. Fermat: $x^n + y^n = z^n \iff (x/z)^n + (y/z)^n = 1$) [Almost the same as Diophantus (3rd cent.) himself, though he used only positive values, so at most one of (x,y) and (x,-y) in $y^2 = P(x)$.] More generally: F with $[F:\mathbf{Q}]<\infty$. (Also: \mathbf{Z} ; more generally: F; O_F and $O_{F,S}$. But not in this talk. Nor exponential Dioph. equations, etc.) ## Geometric invariants of $V \iff$ difficulty of the Diophantine equation. First invariant: dimension of (components of) V. Zero, one, (two,) many... Simplest case: Dimension zero, e.g. $x^2 = 2$ Only finitely many points; are any of them rational? #### Geometric invariants of $V \iff$ difficulty of the Diophantine equation. First invariant: dimension of (components of) V. Zero, one, (two,) many... Simplest case: Dimension zero, e.g. $x^2 = 2$ Only finitely many points; are any of them rational? #### Geometric invariants of $V \iff$ difficulty of the Diophantine equation. First invariant: dimension of (components of) V. Zero, one, (two,) many... Simplest case: Dimension zero, e.g. $x^2=2$. Only finitely many points; are any of them rational? # Geometric invariants of $V \iff$ difficulty of the Diophantine equation. First invariant: dimension of (components of) V. Zero, one, (two,) many... Simplest case: Dimension zero, e.g. $x^2 = 2$. Only finitely many points; are any of them rational? #### Geometric invariants of $V \iff$ difficulty of the Diophantine equation. First invariant: dimension of (components of) V. Zero, one, (two,) many... Simplest case: Dimension zero, e.g. $x^2 = 2$. Only finitely many points; are any of them rational? Dimension 1: an algebraic curve C. Complexity measured by "genus" $g=0,1,2,3,\ldots$ Again "zero, one, (two,) many"; here conic, elliptic curve, curve of general type. g=0: Always a conic (sections of -K). Fully understood, at least in theory: $C\longleftrightarrow \operatorname{Br}[2]$ obstruction, say $\beta(C)$, which is trivial \Longleftrightarrow \exists rational point \Longleftrightarrow $C\cong_F\mathbf{P}^1$. [Minkowski; Hasse principle] In practice, identifying C with conic can still be hard [e.g. $P_{71}(j,j')/(j\leftrightarrow j')$]; testing if $\beta(C)=0\longleftrightarrow$ factoring Δ , but then identifying with \mathbf{P}^1 is "easy" (in RP). Dimension 1: an algebraic curve C. Complexity measured by "genus" $g=0,1,2,3,\ldots$ Again "zero, one, (two,) many"; here conic, elliptic curve, curve of general type. $\underline{g}=\underline{0}$: Always a conic (sections of -K). Fully understood, at least in theory: $C\longleftrightarrow \operatorname{Br}[2]$ obstruction, say $\beta(C)$, which is trivial $\iff\exists$ rational point $\iff C\cong_F \mathbf{P}^1$. [Minkowski; Hasse principle] In practice, identifying C with conic can still be hard [e.g. $P_{71}(j,j')/(j\leftrightarrow j')$]; testing if $\beta(C)=0\longleftrightarrow$ factoring Δ , but then identifying with \mathbf{P}^1 is "easy" (in RP). - Is $C(F) = \emptyset$? (Beyond Hasse, $C \longleftrightarrow$ obstruction in the still mysterious Tate-Šafarevič group III.) - ullet Torsion subgroup of $J_C(F)$? (Not hard) - Rank and generators of $J_C(F)$? (Can be hard, even in theory [III again, also BSD, modularity, . . .]) - Is $C(F) = \emptyset$? (Beyond Hasse, $C \longleftrightarrow$ obstruction in the still mysterious Tate-Šafarevič group III.) - Torsion subgroup of $J_C(F)$? (Not hard) - ullet Rank and generators of $J_C(F)$? (Can be hard, even in theory [III again, also BSD, modularity, . . .]) - Is $C(F) = \emptyset$? (Beyond Hasse, $C \longleftrightarrow$ obstruction in the still mysterious Tate-Šafarevič group III.) - ullet Torsion subgroup of $J_C(F)$? (Not hard) - ullet Rank and generators of $J_C(F)$? (Can be hard, even in theory [III again, also BSD, modularity, . . .]) - Is $C(F) = \emptyset$? (Beyond Hasse, $C \longleftrightarrow$ obstruction in the still mysterious Tate-Šafarevič group III.) - ullet Torsion subgroup of $J_C(F)$? (Not hard) - Rank and generators of $J_C(F)$? (Can be hard, even in theory [III again, also BSD, modularity, . . .]) - Is $C(F) = \emptyset$? (Beyond Hasse, $C \longleftrightarrow$ obstruction in the still mysterious Tate-Šafarevič group \coprod .) - Torsion subgroup of $J_C(F)$? (Not hard) - ullet Rank and generators of $J_C(F)$? (Can be hard, even in theory [III again, also BSD, modularity, . . .]) Easy to make either or both arbitrarily large, even for fixed C, if we may vary F (though there are still big questions about just how large either can get as a function of F). For fixed F and varying C, the torsion is bounded [Mazur for $F = \mathbf{Q}$, with a known list: $\mathbf{Z}/N\mathbf{Z}$ for $N \leq 10$ or N = 12, or $(\mathbf{Z}/2\mathbf{Z}) \oplus (\mathbf{Z}/2N\mathbf{Z})$ or $N \leq 4$); Merel in general, even if only $d = [F : \mathbf{Q}]$ is given, though the exact list is known only for d up to about 5.] It remains a mystery whether the rank is bounded for varying C over any fixed F. If yes then $\limsup_C (\operatorname{rank}(C/F))$ is unbounded as F varies, e.g. $\limsup_C 2^{s-1}$ for $F = \mathbb{Q}(d_1^{1/2}, \dots, d_s^{1/2})$. Easy to make either or both arbitrarily large, even for fixed C, if we may vary F (though there are still big questions about just how large either can get as a function of F). For fixed F and varying C, the torsion is bounded [Mazur for $F = \mathbf{Q}$, with a known list: $\mathbf{Z}/N\mathbf{Z}$ for $N \leq 10$ or N = 12, or $(\mathbf{Z}/2\mathbf{Z}) \oplus (\mathbf{Z}/2N\mathbf{Z})$ or $N \leq 4$); Merel in general, even if only $d = [F : \mathbf{Q}]$ is given, though the exact list is known only for d up to about 5.] It remains a mystery whether the rank is bounded for varying C over any fixed F. If yes then $\limsup_C (\operatorname{rank}(C/F))$ is unbounded as F varies, e.g. $\limsup_C 2^{s-1}$ for $F = \mathbf{Q}(d_1^{1/2}, \dots, d_s^{1/2})$. Easy to make either or both arbitrarily large, even for fixed C, if we may vary F (though there are still big questions about just how large either can get as a function of F). For fixed F and varying C, the torsion is bounded [Mazur for $F = \mathbf{Q}$, with a known list: $\mathbf{Z}/N\mathbf{Z}$ for $N \leq 10$ or N = 12, or $(\mathbf{Z}/2\mathbf{Z}) \oplus (\mathbf{Z}/2N\mathbf{Z})$ or $N \leq 4$); Merel in general, even if only $d = [F : \mathbf{Q}]$ is given, though the exact list is known only for d up to about 5.] It remains a mystery whether the rank is bounded for varying C over any fixed F. If yes then $\limsup_C (\operatorname{rank}(C/F))$ is unbounded as F varies, e.g. $\limsup_C 2^{s-1}$ for $F = \mathbf{Q}(d_1^{1/2}, \dots, d_s^{1/2})$. Easy to make either or both arbitrarily large, even for fixed C, if we may vary F (though there are still big questions about just how large either can get as a function of F). For fixed F and varying C, the torsion is bounded [Mazur for $F = \mathbf{Q}$, with a known list: $\mathbf{Z}/N\mathbf{Z}$ for $N \leq 10$ or N = 12, or $(\mathbf{Z}/2\mathbf{Z}) \oplus (\mathbf{Z}/2N\mathbf{Z})$ or $N \leq 4$); Merel in general, even if only $d = [F : \mathbf{Q}]$ is given, though the exact list is known only for d up to about 5.] It remains a mystery whether the rank is bounded for varying C over any fixed F. If yes then $\limsup_C (\operatorname{rank}(C/F))$ is unbounded as F varies, e.g. $\limsup_{c \to \infty} 2^{s-1}$ for $F = \mathbf{Q}(d_1^{1/2}, \dots, d_s^{1/2})$. g>1: Faltings (1983) proved $\#C(F)<\infty$, all C and F. (Mordell conjecture c.1920) Every known proof is *ineffective*: given C, F, can get upper bound on #C(F), but typically no way to prove that a given list of solutions is complete, not even in principle. (Worse than Mordell–Weil theorem, which becomes effective once we know that III , or even one $\mathrm{III}[p^{\infty}]$, is finite.) That's still a major open question for both theory and computation. As with Mordell-Weil for rank and torsion of g = 1 curves: the upper bound on #C(F) can depend on C, F, and the actual #C(F) is easily unbounded if we let F vary, even with C fixed. g>1: Faltings (1983) proved $\#C(F)<\infty$, all C and F. (Mordell conjecture c.1920) Every known proof is *ineffective*: given C, F, can get upper bound on #C(F), but typically no way to prove that a given list of solutions is complete, not even in principle. (Worse than Mordell–Weil theorem, which becomes effective once we know that III , or even one $\mathrm{III}[p^{\infty}]$, is finite.) That's still a major open question for both theory and computation. As with Mordell-Weil for rank and torsion of g=1 curves: the upper bound on #C(F) can depend on C,F, and the actual #C(F) is easily unbounded if we let F vary, even with C fixed. • How many points can C have? In particular, is the number unbounded as C varies over curves with g>1? • How many points can C have? In particular, is the number unbounded as C varies over curves with g>1? ullet How many points can V have? In particular, is the number unbounded as V varies over curves with g>1? ullet How many points can V have? In particular, is the number unbounded as V varies over curves with g>1? For example: given (x_i, y_i) , solve for the coefficients of P to make each $y_i^2 = P(x_i)$ — simultaneous linear equations, so rational (and usually no repeated factors). So the number of points can get arbitrarily large if g may vary. The right question is: • Fix g>1. How many points can a genus-g curve C have? In particular, is the number unbounded as C varies over all such C? In other words: let B(g,F) be $\sup_C(\#C(F))$ over all genus-g curves C/F. Is $B(g,F)=\infty$ for some/any g>1 and F with $[F:\mathbf{Q}]<\infty$? For example: given (x_i, y_i) , solve for the coefficients of P to make each $y_i^2 = P(x_i)$ — simultaneous linear equations, so rational (and usually no repeated factors). So the number of points can get arbitrarily large if g may vary. The right question is: • Fix g > 1. How many points can a genus-g curve C have? In particular, is the number unbounded as C varies over all such C? In other words: let B(g,F) be $\sup_C (\#C(F))$ over all genus-g curves C/F. Is $B(g,F)=\infty$ for some/any g>1 and F with $[F:\mathbf{Q}]<\infty$? For example: given (x_i, y_i) , solve for the coefficients of P to make each $y_i^2 = P(x_i)$ — simultaneous linear equations, so rational (and usually no repeated factors). So the number of points can get arbitrarily large if g may vary. The right question is: • Fix g > 1. How many points can a genus-g curve C have? In particular, is the number unbounded as C varies over all such C? In other words: let B(g,F) be $\sup_C (\#C(F))$ over all genus-g curves C/F. Is $B(g,F) = \infty$ for some/any g > 1 and F with $[F:\mathbf{Q}] < \infty$? This may feel like the g=1 question of whether an elliptic curve can have arbitrarily large rank; indeed similar techniques are used (often by the same people) to search for records on both questions. But there's a difference: **Theorem** (Caporaso-Harris-Mazur 1997): Assume Bombieri-Lang conjecture. Then $B(g) < \infty$ for all g > 1. "Bombieri-Lang conjecture" = analogue of Mordell-Faltings for algebraic varieties of arbitrary dimension: **Conjecture** (Bombieri-Lang 1986): Suppose V is an algebraic variety of general type, and $[F:\mathbf{Q}]<\infty$. Then all of V(F) is in a finite union of subvarieties V_i' each of dimension < dim(V). [NB A curve is of "general type" iff its genus is > 1.] This may feel like the g=1 question of whether an elliptic curve can have arbitrarily large rank; indeed similar techniques are used (often by the same people) to search for records on both questions. But there's a difference: **Theorem** (Caporaso-Harris-Mazur 1997): Assume Bombieri-Lang conjecture. Then $B(g) < \infty$ for all g > 1. "Bombieri-Lang conjecture" is an analogue of Mordell-Faltings for algebraic varieties of arbitrary dimension: Conjecture (Bombieri-Lang 1986): Suppose V is an algebraic variety of general type, and $[F:\mathbf{Q}]<\infty$. Then all of V(F) is in a finite union of subvarieties V_i' each of dimension < dim(V). [NB A curve is of "general type" iff its genus is > 1.] This may feel like the g=1 question of whether an elliptic curve can have arbitrarily large rank; indeed similar techniques are used (often by the same people) to search for records on both questions. But there's a difference: **Theorem** (Caporaso-Harris-Mazur 1997): Assume Bombieri-Lang conjecture. Then $B(g) < \infty$ for all g > 1. "Bombieri-Lang conjecture" is an analogue of Mordell-Faltings for algebraic varieties of arbitrary dimension: **Conjecture** (Bombieri-Lang 1986): Suppose V is an algebraic variety of general type, and $[F:\mathbf{Q}]<\infty$. Then all of V(F) is in a finite union of subvarieties V_i' each of dimension < dim(V). [NB A curve is of "general type" iff its genus is > 1.] There is even a corresponding result that is uniform in F, once we allow a finite number of exceptions (that may depend on F). That is, instead of $$B(g,F) := \sup_{C} (\#C(F))$$ consider $$N(g,F) := \limsup_{C} (\#C(F)) \le B(g,F)$$ again with C varying over all genus-g curves C/F. Now it is not so easy to refute an upper bound uniform in F, i.e. the possibility that $$N(g) := \sup_{[F:\mathbf{Q}]<\infty} N(g,F)$$ might be finite. Indeed, Caporaso-Harris-Mazur also proved: $$B(g,F) := \sup_{C} \#C(F);$$ [repeat] $$N(g,F) := \limsup_{C} \#C(F) \le B(g,F);$$ $$N(g) := \sup_{C} N(g,F).$$ $$[F:\mathbb{Q}] < \infty$$ **Theorem**: Assume <u>uniform</u> Bombieri-Lang conjecture. Then $N(g) < \infty$ for all g > 1. Uniform Bombieri-Lang conjecture: Suppose V is an algebraic variety of general type. Then \exists finitely many subvarieties V_i' with each dim V_i' < dim V, s.t. $[F:\mathbf{Q}]<\infty \Rightarrow V(F)-\bigcup_i V_i'(F)$ is finite. So what are B(g,F), N(g,F) and B(g)? Again ineffective . . . would need effective Bombieri-Lang. $$B(g,F) := \sup_{C} \#C(F);$$ [repeat] $$N(g,F) := \limsup_{C} \#C(F) \le B(g,F);$$ $$N(g) := \sup_{C} N(g,F).$$ $$[F:\mathbb{Q}] < \infty$$ **Theorem**: Assume <u>uniform</u> Bombieri-Lang conjecture. Then $N(g) < \infty$ for all g > 1. Uniform Bombieri-Lang conjecture: Suppose V is an algebraic variety of general type. Then \exists finitely many subvarieties V_i' with each dim V_i' < dim V, s.t. $[F:\mathbf{Q}]<\infty \Rightarrow V(F)-\bigcup_i V_i'(F)$ is finite. So what are B(g,F), N(g,F) and B(g)? Again ineffective . . . would need effective Bombieri-Lang. Idea of Caporaso-Harris-Mazur: given g, put any C in one of finitely many parametrized families of curves. E.g. $$g = 2$$: $y^2 = \sum_{i=0}^{6} t_i x^i = P_6(x);$ g=3: either $y^2=P_8(x)$ or $P_4(x,y)=0$. Then if each of P_1,\ldots,P_n is on C then (C,P_1,P_2,\ldots,P_n) is a point on some variety V, which is of general type for n large enough. So Bombieri-Lang \Rightarrow they satisfy some relation. Now carefully repeat until $(C,P_1,P_2,\ldots,P_{N+1})$ must have some $P_i=P_j$ with finitely many exceptions. As noted, the resulting upper bounds on N(g,F) and N(g), and thus on B(g,F), are ineffective; they seem likely to remain so for some time. So for now we play the record-hunting game of seeking genus-g curves, or families of such curves, with many F-rational points. Idea of Caporaso-Harris-Mazur: given g, put any C in one of finitely many parametrized families of curves. E.g. $$g = 2$$: $y^2 = \sum_{i=0}^{6} t_i x^i = P_6(x)$; g=3: either $y^2=P_8(x)$ or $P_4(x,y)=0$. Then if each of P_1,\ldots,P_n is on C then (C,P_1,P_2,\ldots,P_n) is a point on some variety V, which is of general type for n large enough. So Bombieri-Lang \Rightarrow they satisfy some relation. Now carefully repeat until $(C,P_1,P_2,\ldots,P_{N+1})$ must have some $P_i=P_j$ with finitely many exceptions. As noted, the resulting upper bounds on N(g,F) and N(g), and thus on B(g,F), are ineffective; they seem likely to remain so for some time. So for now we play the record-hunting game of seeking genus-g curves, or families of such curves, with many F-rational points. While ineffective, this suggests a geometric interpretation for N(g): the largest N such that \exists parametrized family $\mathcal{C} \xrightarrow{\pi} B$ of genus-g curves $C = \pi^{-1}(\operatorname{pt})$ with N sections (one-sided inverses $s_i : B \to \mathcal{C}$ and $B(F) = \infty$. Because $\dim \mathcal{C} = \dim B + 1$, we usually want $\dim B = 1$ (recall "zero, one, (two,) many"); then, for $\#B(F) = \infty$ for some F, need B of genus 0 or 1. More explicitly: seek algebraic identities for parametrized family of genus-g curves, e.g. $C(t_1, \ldots, t_d)$ if B is rational of dim. d, together with points P_1, \ldots, P_N (images of (t_1, \ldots, t_d) under s_1, \ldots, s_N). We can then try to push lower bound on B(g,F) (max. known number of points on genus-g curve over F) by searching B(F) (e.g. $(t_1,\ldots,t_d)\in F^d$) for which C has numerous points other than the s_i images (minus collisions among those images \ldots). While ineffective, this suggests a geometric interpretation for N(g): the largest N such that \exists parametrized family $\mathcal{C} \xrightarrow{\pi} B$ of genus-g curves $C = \pi^{-1}(\operatorname{pt})$ with N sections (one-sided inverses $s_i : B \to \mathcal{C}$ and $B(F) = \infty$. Because $\dim \mathcal{C} = \dim B + 1$, we usually want $\dim B = 1$ (recall "zero, one, (two,) many"); then, for $\#B(F) = \infty$ for some F, need B of genus 0 or 1. More explicitly: seek algebraic identities for parametrized family of genus-g curves, e.g. $C(t_1, \ldots, t_d)$ if B is rational of dim. d, together with points P_1, \ldots, P_N (images of (t_1, \ldots, t_d) under s_1, \ldots, s_N). We can then try to push lower bound on B(g,F) (max. known number of points on genus-g curve over F) by searching B(F) (e.g. $(t_1,\ldots,t_d)\in F^d$) for which C has numerous points other than the s_i images (minus collisions among those images \ldots). While ineffective, this suggests a geometric interpretation for N(g): the largest N such that \exists parametrized family $\mathcal{C} \xrightarrow{\pi} B$ of genus-g curves $C = \pi^{-1}(\operatorname{pt})$ with N sections (one-sided inverses $s_i : B \to \mathcal{C}$ and $B(F) = \infty$. Because $\dim \mathcal{C} = \dim B + 1$, we usually want $\dim B = 1$ (recall "zero, one, (two,) many"); then, for $\#B(F) = \infty$ for some F, need B of genus 0 or 1. More explicitly: seek algebraic identities for parametrized family of genus-g curves, e.g. $C(t_1, \ldots, t_d)$ if B is rational of dim. d, together with points P_1, \ldots, P_N (images of (t_1, \ldots, t_d) under s_1, \ldots, s_N). We can then try to push lower bound on B(g,F) (max. known number of points on genus-g curve over F) by searching B(F) (e.g. $(t_1,\ldots,t_d)\in F^d$) for which C has numerous points other than the s_i images (minus collisions among those images . . .). Indeed "arrows, then bullseyes" is an example: the parameters are x_i, y_i ; for genus g, we need $y^2 = P(x)$ with deg P = 2g + 2, so we can force 2g + 3 points. Thanks to the symmetry $(x, y) \longleftrightarrow (x, -y)$ we double the count of points for free. This illustrates two further themes: - ullet $N(g,{f Q})\gg g$ as $g o\infty$. Thus a fortiori $B(g,{f Q})\gg g$ and $N(g)\gg g$. Open question: can we do better? That is: are $\limsup_g B(g,{f Q})/g$ and $\limsup_g N(g)/g$ finite? - Aut(C) can help. Already for g=3 all the records are for hyperelliptic curves $y^2=P_8(x)$, even though that's a special case (5 parameters, not 6). Maybe more natural to aim for many Aut(C) orbits in C(F). Indeed "arrows, then bullseyes" is an example: the parameters are x_i, y_i ; for genus g, we need $y^2 = P(x)$ with deg P = 2g + 2, so we can force 2g + 3 points. Thanks to the symmetry $(x, y) \longleftrightarrow (x, -y)$ we double the count of points for free. This illustrates two further themes: - $N(g, \mathbf{Q}) \gg g$ as $g \to \infty$. Thus a fortiori $B(g, \mathbf{Q}) \gg g$ and $N(g) \gg g$. Open question: can we do better? That is: are $\limsup_g B(g, \mathbf{Q})/g$ and $\limsup_g N(g)/g$ finite? - Aut(C) can help. Already for g=3 all the records are for hyperelliptic curves $y^2=P_8(x)$, even though that's a special case (5 parameters, not 6). Maybe more natural to aim for many Aut(C) orbits in C(F). The 4g + O(1) construction can still be improved to hyperelliptic curves attaining $N(g, \mathbf{Q}) \geq 8g + C$ and $N(g) \geq 16g + C'$ (Brumer and Mestre independently). For $N(g, \mathbf{Q}) > 8g + C$: for rational x_i write $$\prod_{i=1}^{2n} (X - x_i) = Q(X)^2 - R(X)$$ with $\deg Q = n$ and $\deg R < n$ (usually n-1). Then each $Q(x_i)^2 = R(x_i)$ so we have 2n pairs $(x_i, \pm Q(x_i))$ of rational points on the curve $Y^2 = R(X)$ of g < n/2. Likewise $$\prod_{i=1}^{4} (X^n - x_i^n) = Q(X^n)^2 - (R_1 X^n + R_0),$$ so if n=2g+2 and $F\supset \mu_n$ then $Y^2=R_1X^n+R_0$ has 16(g+1) points $(\zeta x_i,\pm Q(x_i^n))$ with $1\leq i\leq 4$ and $\zeta^n=1$ (though in only four $\operatorname{Aut}(C)$ orbits). The 4g + O(1) construction can still be improved to hyperelliptic curves attaining $N(g, \mathbf{Q}) \geq 8g + C$ and $N(g) \geq 16g + C'$ (Brumer and Mestre independently). For $N(g, \mathbf{Q}) > 8g + C$: for rational x_i write $$\prod_{i=1}^{2n} (X - x_i) = Q(X)^2 - R(X)$$ with $\deg Q = n$ and $\deg R < n$ (usually n-1). Then each $Q(x_i)^2 = R(x_i)$ so we have 2n pairs $(x_i, \pm Q(x_i))$ of rational points on the curve $Y^2 = R(X)$ of g < n/2. Likewise $$\prod_{i=1}^{4} (X^n - x_i^n) = Q(X^n)^2 - (R_1 X^n + R_0),$$ so if n=2g+2 and $F\supset \mu_n$ then $Y^2=R_1X^n+R_0$ has 16(g+1) points $(\zeta x_i,\pm Q(x_i^n))$ with $1\leq i\leq 4$ and $\zeta^n=1$ (though in only four $\operatorname{Aut}(C)$ orbits). For all but finitely many g, these constructions and variations [to be detailed in the paper] are still the best lower bounds known on $B(g, \mathbf{Q})$ and N(g). For example, here is a table of current lower bounds on N(g). "Method" line: "BM" for the Brumer-Mestre 16(g+1) bound; "T", other Twists of a fixed curve with many symmetries; "F", other (non-isotrivial) Families of highly symmetric curves; "L", curves obtained by slicing surfaces with many Lines. | g | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 45 | other | |------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------| | $N(g) \ge$ | 150 | 100 | 126 | 132 | 146 | 128 | 144 | 180 | 192 | 781 | 16(g+1) | | Method | L | T | F | T | L | BM | BM | L | T | L | BM | For the sake of time, and to give context for new g=2,3 results, the rest of this talk concerns the Line method, relegating the others (which often attain large #C(F) but few Aut(C) orbits) to the eventual conference paper. For all but finitely many g, these constructions and variations [to be detailed in the paper] are still the best lower bounds known on $B(g, \mathbf{Q})$ and N(g). For example, here is a table of current lower bounds on N(g). "Method" line: "BM" for the Brumer-Mestre 16(g+1) bound; "T", other Twists of a fixed curve with many symmetries; "F", other (non-isotrivial) Families of highly symmetric curves; "L", curves obtained by slicing surfaces with many Lines. | g | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 45 | other | |------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------| | $N(g) \ge$ | 150 | 100 | 126 | 132 | 146 | 128 | 144 | 180 | 192 | 781 | 16(g+1) | | Method | L | T | F | T | L | BM | BM | L | T | L | BM | For the sake of time, and to give context for new g=2,3 results, the rest of this talk concerns the Line method, relegating the others (which often attain large #C(F) but few Aut(C) orbits) to the eventual conference paper. Idea: use geometry of the surface C. Harris suggested many years ago: construct infinitely many curves with many points by using geometry of surfaces directly. Paradigmatic example: if smooth degree-d surface $S \in \mathbf{P}^3$ has n lines over F, generic plane section is a smooth curve of degree d (so g = (d-1)(d-2)/2) with n rational points. Hence $N(g) \geq n$. The idea has many variations, e.g. use rational points off the n lines to increment N(g), or to decrement g (intersection of S with a tangent plane has a node). This connects our questions on N(g) etc. with a classical problem in algebraic geometry: given d > 3, how big can n be? Also arithmetic geometry: find big n for F fixed, notably $F = \mathbf{Q}$. Natural guess: Fermat surface $X^d + Y^d + Z^d + T^d = 0$. It has $3d^2$ lines over \mathbf{C} , and thus over some finite extension F_d of \mathbf{Q} : d^2 factorizations of each of $$X^{d} + Y^{d} = Z^{d} + T^{d} = 0,$$ $X^{d} + Z^{d} = T^{d} + Y^{d} = 0,$ $X^{d} + T^{d} = Y^{d} + Z^{d} = 0.$ This gives "only" $6g + O(g^{1/2})$ points, and not for all g (only $3, 6, 10, \ldots$); but Aut(C) is usually trivial. This $3d^2$ is the best known for all but a few d; but the true maximum is not yet known except for d=4, when it is not $48(=3\cdot 4^2)$ but 64, for $X^4+XY^3=Z^4+ZT^3$ (Schur 1882: each side has the same tetrahedral rather than dihedral symmetry). This is maximal (Segre 1943 Rams—Schütt 2012). Natural guess: Fermat surface $X^d + Y^d + Z^d + T^d = 0$. It has $3d^2$ lines over \mathbf{C} , and thus over some finite extension F_d of \mathbf{Q} : d^2 factorizations of each of $$X^{d} + Y^{d} = Z^{d} + T^{d} = 0,$$ $X^{d} + Z^{d} = T^{d} + Y^{d} = 0,$ $X^{d} + T^{d} = Y^{d} + Z^{d} = 0.$ This gives "only" $6g + O(g^{1/2})$ points, and not for all g (only $3, 6, 10, \ldots$); but Aut(C) is usually trivial. This $3d^2$ is the best known for all but a few d; but the true maximum is not yet known except for d=4, when it is not $48(=3\cdot 4^2)$ but 64, for $X^4+XY^3=Z^4+ZT^3$ (Schur 1882: each side has the same tetrahedral rather than dihedral symmetry). This is maximal (Segre 1943 Rams–Schütt 2012). Likewise $P_6(X,Y)+P_6(Z,T)=0$ and $P_8(X,Y)+P_8(Z,T)=0$ with octahedral symmetry, $P_{12}(X,Y)+P_{12}(Z,T)=0$ and $P_{20}(X,Y)+P_{20}(Z,T)=0$ with icosahedral symmetry. (The record is $3d^2$ for all d>2 other than 4,6,8,12,20.) For d=12, each line meets 781 others so $N(45)\geq 781$. But each of these records is over some F_d that is never just \mathbf{Q} . How well can we do over \mathbf{Q} ? Here even the case d = 4 is open; current record: a tie at 46. ### The K3 (and -163) connection A smooth quartic is a K3 surface — an analogue for surfaces of g=1 for curves ("between" rational and general type), and just tractable enough for this kind of application (and also for elliptic curves of high rank, "etc."). Recall that the points of a g=1 curve have a kind of group structure. The *curves* on a surface $\mathcal X$ have one too, the Néron-Severi group $\operatorname{NS}(\mathcal X)$. Intersection theory gives $\operatorname{NS}(\mathcal X)$ the structure of a lattice in some hyperbolic space with signature $(1,\rho-1)$. For a K3 surface, the lattice is even with $\rho \leq 20$. If $\rho=20$ and $\operatorname{NS}(\mathcal X)=\operatorname{NS}_{\mathbb Q}(\mathcal X)$ then the lattice discriminant is one of the 13 discriminants of quadratic orders with h=1: $$-3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67, -163.$$ For each of those 13 choices $$\Delta = -3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67, -163$$ there is a unique $\mathcal X$ with $(\rho, \operatorname{disc}) = (20, \Delta)$ over $\mathbf Q$. Quartic model \longleftrightarrow choice of $H \in \mathbb{NS}$ with (H,H) = 4, up to equivalence \longleftrightarrow even lattice L of rank 19, disc. $4|\Delta|$ (with one further condition on L^*/L if Δ not squarefree). Smooth: no vector of norm 2. Then lines $\longleftrightarrow \pm$ pairs of dual vectors of norm 9/4. There are literally thousands of choices; the first picture shows the unique one with n = 46. The g=2 setup: Let P(X,Y,Z) be a homogeneous sextic such that the curve S:P=0 is not too singular, and consider $$\mathcal{X}: T^2 = P(X, Y, Z),$$ the double cover of the plane branched on S. So, how many tritangents can such a curve have? Again an open question. For C, probably 72 (for S invariant under Jordan's "Hessian" group = Weil rep'n on \mathbb{C}^3). But for ANTS let me concentrate on \mathbb{Q} . . . The g=2 setup: Let P(X,Y,Z) be a homogeneous sextic such that the curve S:P=0 is not too singular, and consider $$\mathcal{X}: T^2 = P(X, Y, Z),$$ the double cover of the plane branched on S. Pairs of "lines" \iff lines l_i in the plane on which P restricts to a perfect square; geometrically, l_i is tritangent to S (with allowances made for double points, etc.). Each yields a pair of points on the genus-2 curve obtained by restricting to a random line l in the plane. In NS: line \iff L^* vector of norm 5/2 modulo R(L), with $\mathrm{disc}(L) = 2|\Delta|$ and $R(L) = \mathrm{span}$ of norm-2 vectors \iff singularities of S. So, how many tritangents can such a curve have? Again an open question. For C, probably 72 (for S invariant under Jordan's "Hessian" group = Weil rep'n on \mathbb{C}^3). But for ANTS let me concentrate on \mathbb{Q} . . . The g=2 setup: Let P(X,Y,Z) be a homogeneous sextic such that the curve S:P=0 is not too singular, and consider $$\mathcal{X}: T^2 = P(X, Y, Z),$$ the double cover of the plane branched on S. Pairs of "lines" \iff lines l_i in the plane on which P restricts to a perfect square; geometrically, l_i is tritangent to S (with allowances made for double points, etc.). Each yields a pair of points on the genus-2 curve obtained by restricting to a random line l in the plane. In NS: line \iff L^* vector of norm 1000 5/2 modulo 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 So, how many tritangents can such a curve have? Again an open question. For ${\bf C}$, probably 72 (for S invariant under Jordan's "Hessian" group = Weil rep'n on ${\bf C}^3$). But for ANTS let me concentrate on ${\bf Q}$. . . The "Rorschach test" shows one of five examples with minimal R(L) (just one node) and $n \in [52, 54]$ such tritangents (allowing intersection with the double point as "tangency"), and the only one with bilateral symmetry. The restriction to a generic line l yields a curve of genus 2 with at least n pairs of rational points and no symmetry beyond the automatic $(x,y) \leftrightarrow (x,-y)$. That was a new record for $N(2,\mathbf{Q})$ by a large margin. You might have noticed that our construction doesn't quite fit in the $\mathcal{C} \stackrel{\pi}{\to} \mathbf{P}^1$ picture: we started with a K3 surface (dimension 2), but somehow got a 2-parameter family of curves, one for each line l. But it works exactly if we require l to go through a point P_0 on the plane, and then every other point is on a unique l. Some choices of P_0 raise our N(2) bound well beyond $2 \cdot 54$, thanks to the purple conics... The "Rorschach test" shows one of five examples with minimal R(L) (just one node) and $n \in [52,54]$ such tritangents (allowing intersection with the double point as "tangency"), and the only one with bilateral symmetry. The restriction to a generic line l yields a curve of genus 2 with at least n pairs of rational points and no symmetry beyond the automatic $(x,y) \leftrightarrow (x,-y)$. That was a new record for $N(2,\mathbf{Q})$ by a large margin. You might have noticed that our construction doesn't quite fit in the $\mathcal{C} \xrightarrow{\pi} \mathbf{P}^1$ picture: we started with a K3 surface (dimension 2), but somehow got a 2-parameter family of curves, one for each line l. But it works exactly if we require l to go through a point P_0 on the plane, and then every other point is on a unique l. Some choices of P_0 raise our N(2) bound well beyond $2 \cdot 54$, thanks to the purple conics... The K3 theory promises 1000+ conics c on which the sextic P(X,Y,Z) is a perfect square (geometrically, the 12 intersections of c with S pair up into six tangency points). It happens that 18 of those go through a point that lies on only two of the l_i . Using that point as our P_0 , we sacrifice one point-pair but gain at least 18 others. With some further fiddling we find two more, and can force another four using two other conics. At the end we find $N(2) \ge 2 \cdot 75 = 150$, the current record. Some of these curves have many more points; I found one with at least $2 \cdot 268 = 536$. This already beat Stahlke's record for a genus-2 curve with minimal automorphism group. Later Stoll searched more extensively, finding a number of examples with even more points, some even beyond the $12 \cdot 49 = 588$ of Keller and Kulesz; his current record curve (2008-9) has at least $642 = 2 \cdot 321$ points. (Can the list be proved complete!?) The K3 theory promises 1000+ conics c on which the sextic P(X,Y,Z) is a perfect square (geometrically, the 12 intersections of c with S pair up into six tangency points). It happens that 18 of those go through a point that lies on only two of the l_i . Using that point as our P_0 , we sacrifice one point-pair but gain at least 18 others. With some further fiddling we find two more, and can force another four using two other conics. At the end we find $N(2) \ge 2 \cdot 75 = 150$, the current record. Some of these curves have many more points; I found one with at least $2 \cdot 268 = 536$. This already beat Stahlke's record for a genus-2 curve with minimal automorphism group. Later Stoll searched more extensively, finding a number of examples with even more points, some even beyond the $12 \cdot 49 = 588$ of Keller and Kulesz; his current record curve (2008–9) has at least $642 = 2 \cdot 321$ points. (Can the list be proved complete!?) The K3 theory promises 1000+ conics c on which the sextic P(X,Y,Z) is a perfect square (geometrically, the 12 intersections of c with S pair up into six tangency points). It happens that 18 of those go through a point that lies on only two of the l_i . Using that point as our P_0 , we sacrifice one point-pair but gain at least 18 others. With some further fiddling we find two more, and can force another four using two other conics. At the end we find $N(2) \ge 2 \cdot 75 = 150$, the current record. Some of these curves have many more points; I found one with at least $2 \cdot 268 = 536$. This already beat Stahlke's record for a genus-2 curve with minimal automorphism group. Later Stoll searched more extensively, finding a number of examples with even more points, some even beyond the $12 \cdot 49 = 588$ of Keller and Kulesz; his current record curve (2008–9) has at least $642 = 2 \cdot 321$ points. (Can the list be proved complete!?) In case you haven't seen this curve yet . . . $$y^2 = P(x) := 82342800 x^6 - 470135160 x^5 + 52485681 x^4 + 2396040466 x^3 + 567207969 x^2 - 985905640 x + 15740^2,$$ with P having no repeated roots, has (at least) $2 \cdot 321 = 642$ rational solutions, in pairs $(x, \pm y)$ with x equal $$0, -1, -4, 4, 5, 6, 1/3, -5/3, -3/5, 7/4, \dots, 12027943/13799424, -71658936/86391295, 148596731/35675865, 58018579/158830656, 208346440/37486601, -1455780835/761431834, -3898675687/2462651894$$... now you have. Similar tricks starting with the 46-line quartic yield infinitely many g = 3 curves C with $\#(C/\mathbb{Q}) \ge 64$. Again can search for special planes that intersect \mathcal{X} in a smooth quartic with even more points. Current strategy: find all $\mathcal{X}(\mathbf{Q})$ points of height at most H (i.e. (x:y:z:t) with $x,y,z,t\in\mathbf{Z}$ all in [-H,H]) that are <u>not</u> on any of the n lines on \mathcal{X} ; find all coplanar quadruples of height at most H_0 ; for each one that has a few more point in the list up to height H, search further (using p-adic version of technique introduced at ANTS-IV). Repeat with \mathcal{X} replaced by runners-up such as this quartic with 42 lines (30 "in the frame"): Current records for g = 3: Quartic curve with Aut(C) = 1: at least 108 points on $$(-8140y + 5970z)x^{3} + (-8022y^{2} - 4983zy + 16372z^{2})x^{2} + (-930y^{3} - 19287zy^{2} + 40107z^{2}y + 1922z^{3})x + 572y^{4} - 8712zy^{3} + 17885z^{2}y^{2} + 10838z^{3}y - 23712z^{4} = 0.$$ Quartic with involution from \mathcal{X} : at least $144 = 2 \cdot 72$ pts. on $$4x^{2} - (37y^{2} + 67zy + 13586z^{2})x + 9y^{4}$$ $$+ 4383zy^{3} + 75814z^{2}y^{2} - 1819700z^{3}y - 12562100z^{4} = 0.$$ Hyperelliptic curve with # Aut = 2, from double ${\bf P}^1 \times {\bf P}^1$: at least 176 = 2 \cdot 88 points, tying Keller-Kulesz record of 11 \cdot 16 for $B(3,{\bf Q})$, on $$Y^{2} = 76X^{8} + 671X^{7} - 8539X^{6} - 89512X^{5} + 147851X^{4} + 3076727X^{3} + 6159667X^{2} - 3720486X - 3527271.$$ P.S. How to find equations such as $$-76c^{4} + 52c^{3}d - 68c^{2}d^{2} - 52cd^{3} + (167c^{2} + 2cd + 75d^{2})a^{2} + (77c^{2} + 98cd - 3d^{2})b^{2} - 100a^{4} + 29a^{2}b^{2} - b^{4} = 0$$ for the 46-line quartic surface? Well, it's determined uniquely by more equations than variables (-163 and all that), and rational points on a zero-dimensional variety are easy. In theory... [But that's another talk.] P.S. How to find equations such as $$-76c^{4} + 52c^{3}d - 68c^{2}d^{2} - 52cd^{3} + (167c^{2} + 2cd + 75d^{2})a^{2} + (77c^{2} + 98cd - 3d^{2})b^{2} - 100a^{4} + 29a^{2}b^{2} - b^{4} = 0$$ for the 46-line quartic surface? Well, it's determined uniquely by more equations than variables (-163 and all that), and rational points on a zero-dimensional variety are easy. In theory... [But that's another talk.] #### Further questions etc.: Better search strategy? Having found a family of genus-g curves C with N rational points, still a nontrivial computational problem to efficiently find good candidates for curves in the family with $\#C(\mathbf{Q})$ much above N. ``` are also good candidates for record ranks of simple Jacobians J_C(\mathbf{Q}); e.g. r \geq 29 for Y^2 = 3115323179136X^6 + 13377846720672X^5 \\ + 2083591459177X^4 - 31185870903704X^3 \\ + 3365838909904X^2 + 11170486506240X + 1337760^2, and r \geq 31 for Y^2 = 3690^2X^8 + 136193480460X^7 + 855554427369X^6 \\ - 973414777968X^5 + 8046400145942X^4 + 7241370511844X^3 ``` in each case generated by points of height $< 10^3$ #### Further questions etc.: Better search strategy? Having found a family of genus-g curves C with N rational points, still a nontrivial computational problem to efficiently find good candidates for curves in the family with $\#C(\mathbf{Q})$ much above N. <u>Jacobian ranks?</u> These families with $Aut(C) = \{1\}$ or $\{1, \iota\}$ are also good candidates for record ranks of <u>simple</u> Jacobians $J_C(\mathbf{Q})$; e.g. $r \geq 29$ for $$Y^2 = 3115323179136X^6 + 13377846720672X^5$$ + 2083591459177 $X^4 - 31185870903704X^3$ + 3365838909904 $X^2 + 11170486506240X + 1337760^2$, and $r \geq 31$ for $$Y^2 = 3690^2 X^8 + 136193480460 X^7 + 855554427369 X^6$$ - 973414777968 $X^5 + 8046400145942 X^4 + 7241370511844 X^3$ + 2187498173777 $X^2 + 273643583472 X + 110152^2$, in each case generated by points of height $< 10^3$. (Why "simple"? Reducible Jacobians may be unfair competition, e.g. r=38 for g=2 from $E(\mathbf{Q})\cong (\mathbf{Z}/2\mathbf{Z})\oplus \mathbf{Z}^{19}$.) Genus 4 and beyond? As g grows, so do the lower bounds on $B(g,\mathbf{Q})$ and N(g), with either the elementary Brumer-Mestre approach or via K3's; but B-M et al. are faster. Already for g=4, I don't know better than 126 (for any of N(4), $N(4,\mathbf{Q})$, $B(4,\mathbf{Q})$!). But that's with big Aut(C), so probably still some small-Aut(C) records to be found. If you have any constructions, curves, references, suggestions, etc. to add, please tell me! ## THANK YOU (Why "simple"? Reducible Jacobians may be unfair competition, e.g. r=38 for g=2 from $E(\mathbf{Q})\cong (\mathbf{Z}/2\mathbf{Z})\oplus \mathbf{Z}^{19}$.) Genus 4 and beyond? As g grows, so do the lower bounds on $B(g,\mathbf{Q})$ and N(g), with either the elementary Brumer-Mestre approach or via K3's; but B-M et al. are faster. Already for g=4, I don't know better than 126 (for any of N(4), $N(4,\mathbf{Q})$, $B(4,\mathbf{Q})$!). But that's with big Aut(C), so probably still some small-Aut(C) records to be found. If you have any constructions, curves, references, suggestions, etc. to add, please tell me! # THANK YOU