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Connections with algebraic geometry

The K3 (and −163) connection



Fundamental problem(s) of number theory:

• Solve Diophantine equations
• Understand structure of solutions

For us, “Diophantine equation” = simult. polynomial eqns. in
(usually too many) rational variables

Equiv.: simult. homogeneous equations in integer variables
(e.g. Fermat: xn + yn = zn ⇐⇒ (x/z)n + (y/z)n = 1)

[Almost the same as Diophantus (3rd cent.) himself, though he
used only positive values, so at most one of (x, y) and (x,−y)
in y2 = P (x).]

More generally: F with [F : Q] <∞. (Also: Z; more generally:
F ; OF and OF,S. But not in this talk. Nor exponential Dioph.
equations, etc.))
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Broadly,

Geometric invariants of V ⇐⇒ difficulty

of the Diophantine equation.

First invariant: dimension of (components of) V .

Zero, one, (two,) many. . .

Simplest case: Dimension zero, e.g. x2 = 2.

Only finitely many points; are any of them rational?

Easy and well-understood (sort of): elimination, polynomial
factorization, Galois theory, etc. (Can still be computationally
nontrivial with k equations in k variables once k gets well into
“many” territory. . . e.g. computing Belyi functions.)
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Dimension 1: an algebraic curve C. Complexity measured by
“genus” g = 0,1,2,3, . . .

Again “zero, one, (two,) many”; here conic, elliptic curve, curve
of general type.

g = 0: Always a conic (sections of −K). Fully understood, at
least in theory: C ←→ Br[2] obstruction, say β(C), which is
trivial ⇐⇒ ∃ rational point ⇐⇒ C ∼=F P1. [Minkowski; Hasse
principle]

In practice, identifying C with conic can still be hard [e.g.
P71(j, j′)/(j ↔ j′)]; testing if β(C) = 0 ←→ factoring ∆, but
then identifying with P1 is “easy” (in RP).
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g = 1: The set C(F ) of “F -rational points” (points with coords.
in F ) can be empty, nonempty but finite, or infinite but sparse.
It has “affine commutative group structure”: a commutative
group once any P0 ∈ C(F ) is chosen as the origin. Also, always
finitely generated [Mordell (F = Q), Weil ([F : Q] <∞)].

Still a rich source of results and open questions for both theory
and computation:

• Is C(F ) = ∅? (Beyond Hasse, C ←→ obstruction in the still
mysterious Tate-Šafarevič group X.)

• Torsion subgroup of JC(F )? (Not hard)

• Rank and generators of JC(F )? (Can be hard, even in theory
[X again, also BSD, modularity, . . . ])
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How do rank and torsion vary with C and F?

Easy to make either or both arbitrarily large, even for fixed C,
if we may vary F (though there are still big questions about
just how large either can get as a function of F ).

For fixed F and varying C, the torsion is bounded [Mazur for
F = Q, with a known list: Z/NZ for N ≤ 10 or N = 12, or
(Z/2Z) ⊕ (Z/2NZ) or N ≤ 4); Merel in general, even if only
d = [F : Q] is given, though the exact list is known only for d
up to about 5.]

It remains a mystery whether the rank is bounded for varying C
over any fixed F . If yes then lim supC(rank(C/F )) is unbounded

as F varies, e.g. lim sup ≥ 2s−1 for F = Q(d
1/2
1 , . . . , d

1/2
s ).
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g > 1: Faltings (1983) proved #C(F ) < ∞, all C and F .
(Mordell conjecture c.1920)

Every known proof is ineffective: given C,F , can get upper
bound on #C(F ), but typically no way to prove that a given
list of solutions is complete, not even in principle. (Worse than
Mordell–Weil theorem, which becomes effective once we know
that X, or even one X[p∞], is finite.) That’s still a major
open question for both theory and computation.

As with Mordell–Weil for rank and torsion of g = 1 curves: the
upper bound on #C(F ) can depend on C,F , and the actual
#C(F ) is easily unbounded if we let F vary, even with C fixed.
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Fix F , then — say F = Q. Remaining questions:

• How many points can C have? In particular, is the number
unbounded as C varies over curves with g > 1?

Yes, easily. . . “Texas sharpshooter”:
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For example: given (xi, yi), solve for the coefficients of P to
make each y2

i = P (xi) — simultaneous linear equations, so
rational (and usually no repeated factors).

So the number of points can get arbitrarily large if g may vary.
The right question is:

• Fix g > 1. How many points can a genus-g curve C have?
In particular, is the number unbounded as C varies over all
such C?

In other words: let B(g, F ) be supC(#C(F )) over all genus-g
curves C/F . Is B(g, F ) = ∞ for some/any g > 1 and F with
[F : Q] <∞?
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This may feel like the g = 1 question of whether an elliptic
curve can have arbitrarily large rank; indeed similar techniques
are used (often by the same people) to search for records on
both questions. But there’s a difference:

Theorem (Caporaso-Harris-Mazur 1997): Assume Bombieri-
Lang conjecture. Then B(g) <∞ for all g > 1.

“Bombieri-Lang conjecture” = analogue of Mordell-Faltings for
algebraic varieties of arbitrary dimension:

Conjecture (Bombieri-Lang 1986): Suppose V is an algebraic
variety of general type, and [F : Q] <∞. Then all of V (F ) is in
a finite union of subvarieties V ′i each of dimension < dim(V ).

[NB A curve is of “general type” iff its genus is > 1.]
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There is even a corresponding result that is uniform in F ,
once we allow a finite number of exceptions (that may depend
on F ). That is, instead of

B(g, F ) := sup
C

(#C(F ))

consider

N(g, F ) := lim sup
C

(#C(F )) ≤ B(g, F )

again with C varying over all genus-g curves C/F . Now it is
not so easy to refute an upper bound uniform in F , i.e. the
possibility that

N(g) := sup
[F :Q]<∞

N(g, F )

might be finite. Indeed, Caporaso-Harris-Mazur also proved:
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[repeat]

B(g, F ) := sup
C

(#C(F ));

N(g, F ) := lim sup
C

(#C(F )) ≤ B(g, F );

N(g) := sup
[F :Q]<∞

N(g, F ).

Theorem: Assume uniform Bombieri-Lang conjecture. Then
N(g) <∞ for all g > 1.

Uniform Bombieri-Lang conjecture:

Suppose V is an algebraic variety of general type. Then ∃
finitely many subvarieties V ′i with each dimV ′i < dimV , s.t.
[F : Q] <∞ ⇒ V (F )−

⋃
i V
′
i (F ) is finite.

So what are B(g, F ), N(g, F ) and B(g)? Again ineffective . . .
would need effective Bombieri-Lang.
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Idea of Caporaso-Harris-Mazur: given g, put any C in one of
finitely many parametrized families of curves. E.g.

g = 2 : y2 =
6∑
i=0

tix
i = P6(x);

g = 3: either y2 = P8(x) or P4(x, y) = 0. Then if each of
P1, . . . , Pn is on C then (C,P1, P2, . . . , Pn) is a point on some
variety V , which is of general type for n large enough. So
Bombieri-Lang ⇒ they satisfy some relation. Now carefully
repeat until (C,P1, P2, . . . , PN+1) must have some Pi = Pj with
finitely many exceptions.

As noted, the resulting upper bounds on N(g, F ) and N(g), and
thus on B(g, F ), are ineffective; they seem likely to remain so
for some time. So for now we play the record-hunting game of
seeking genus-g curves, or families of such curves, with many
F -rational points.
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While ineffective, this suggests a geometric interpretation for
N(g): the largest N such that ∃ parametrized family C π→ B

of genus-g curves C = π−1(pt) with N sections (one-sided
inverses si : B → C and B(F ) =∞. Because dim C = dimB+1,
we usually want dimB = 1 (recall “zero, one, (two,) many”);
then, for #B(F ) =∞ for some F , need B of genus 0 or 1.

More explicitly: seek algebraic identities for parametrized fam-
ily of genus-g curves, e.g. C(t1, . . . , td) if B is rational of dim. d,
together with points P1, . . . , PN (images of (t1, . . . , td) under
s1, . . . , sN).

We can then try to push lower bound on B(g, F ) (max. known
number of points on genus-g curve over F ) by searching B(F )

(e.g. (t1, . . . , td) ∈ F d) for which C has numerous points other
than the si images (minus collisions among those images . . . ).
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Indeed “arrows, then bullseyes” is an example: the parameters
are xi, yi; for genus g, we need y2 = P (x) with degP = 2g +

2, so we can force 2g + 3 points. Thanks to the symmetry
(x, y)←→ (x,−y) we double the count of points for free.

This illustrates two further themes:

• N(g,Q) � g as g → ∞. Thus a fortiori B(g,Q) � g and
N(g) � g. Open question: can we do better? That is: are
lim supgB(g,Q)/g and lim supgN(g)/g finite?

• Aut(C) can help. Already for g = 3 all the records are for
hyperelliptic curves y2 = P8(x), even though that’s a special
case (5 parameters, not 6). Maybe more natural to aim for
many Aut(C) orbits in C(F ).
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The 4g + O(1) construction can still be improved to hyperel-
liptic curves attaining N(g,Q) ≥ 8g + C and N(g) ≥ 16g + C′

(Brumer and Mestre independently).

For N(g,Q) > 8g + C: for rational xi write

2n∏
i=1

(X − xi) = Q(X)2 −R(X)

with degQ = n and degR < n (usually n − 1). Then each
Q(xi)

2 = R(xi) so we have 2n pairs (xi,±Q(xi)) of rational
points on the curve Y 2 = R(X) of g < n/2.

Likewise
4∏
i=1

(Xn − xni ) = Q(Xn)2 − (R1X
n +R0),

so if n = 2g+2 and F ⊃ µn then Y 2 = R1X
n+R0 has 16(g+1)

points (ζxi,±Q(xni )) with 1 ≤ i ≤ 4 and ζn = 1 (though in only
four Aut(C) orbits).
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For all but finitely many g, these constructions and variations
[to be detailed in the paper] are still the best lower bounds
known on B(g,Q) and N(g).

For example, here is a table of current lower bounds on N(g).
“Method” line: “BM” for the Brumer-Mestre 16(g+ 1) bound;
“T”, other Twists of a fixed curve with many symmetries;
“F”, other (non-isotrivial) Families of highly symmetric curves;
“L”, curves obtained by slicing surfaces with many Lines.

g 2 3 4 5 6 7 8 9 10 45 other
N(g) ≥ 150 100 126 132 146 128 144 180 192 781 16(g + 1)
Method L T F T L BM BM L T L BM

For the sake of time, and to give context for new g = 2,3

results, the rest of this talk concerns the Line method, rel-
egating the others (which often attain large #C(F ) but few
Aut(C) orbits) to the eventual conference paper.
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Idea: use geometry of the surface C.

Harris suggested many years ago: construct infinitely many
curves with many points by using geometry of surfaces directly.

Paradigmatic example: if smooth degree-d surface S ∈ P3 has
n lines over F , generic plane section is a smooth curve of
degree d (so g = (d − 1)(d − 2)/2) with n rational points.
Hence N(g) ≥ n.

The idea has many variations, e.g. use rational points off the
n lines to increment N(g), or to decrement g (intersection of
S with a tangent plane has a node).

This connects our questions on N(g) etc. with a classical prob-
lem in algebraic geometry: given d > 3, how big can n be? Also
arithmetic geometry: find big n for F fixed, notably F = Q.
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Natural guess: Fermat surface Xd + Y d + Zd + T d = 0. It has
3d2 lines over C, and thus over some finite extension Fd of Q:
d2 factorizations of each of

Xd + Y d = Zd + T d = 0,

Xd + Zd = T d + Y d = 0,

Xd + T d = Y d + Zd = 0.

This gives “only” 6g + O(g1/2) points, and not for all g (only
3,6,10, . . .); but Aut(C) is usually trivial.

This 3d2 is the best known for all but a few d; but the true
maximum is not yet known except for d = 4, when it is not
48(= 3 · 42) but 64, for X4 + XY 3 = Z4 + ZT3 (Schur 1882:
each side has the same tetrahedral rather than dihedral sym-
metry). This is maximal (Segre 1943 Rams–Schütt 2012).
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Likewise P6(X,Y ) +P6(Z, T ) = 0 and P8(X,Y ) + P8(Z, T ) = 0

with octahedral symmetry, P12(X,Y ) + P12(Z, T ) = 0 and
P20(X,Y ) + P20(Z, T ) = 0 with icosahedral symmetry. (The
record is 3d2 for all d > 2 other than 4,6,8,12,20.) For d = 12,
each line meets 781 others so N(45) ≥ 781.

But each of these records is over some Fd that is never just Q.
How well can we do over Q?

Here even the case d = 4 is open; current record: a tie at 46.

19



The K3 (and −163) connection

A smooth quartic is a K3 surface — an analogue for surfaces
of g = 1 for curves (“between” rational and general type), and
just tractable enough for this kind of application (and also for
elliptic curves of high rank, “etc.”).

Recall that the points of a g = 1 curve have a kind of group
structure. The curves on a surface X have one too, the
Néron-Severi group NS(X ). Intersection theory gives NS(X )

the structure of a lattice in some hyperbolic space with signa-
ture (1, ρ−1). For a K3 surface, the lattice is even with ρ ≤ 20.
If ρ = 20 and NS(X ) = NSQ(X ) then the lattice discriminant
is one of the 13 discriminants of quadratic orders with h = 1:

−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163.
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For each of those 13 choices

∆ = −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163

there is a unique X with (ρ,disc) = (20,∆) over Q.

Quartic model ←→ choice of H ∈ NS with (H,H) = 4, up to
equivalence ←→ even lattice L of rank 19, disc. 4|∆| (with one
further condition on L∗/L if ∆ not squarefree). Smooth: no
vector of norm 2. Then lines ←→ ± pairs of dual vectors of
norm 9/4. There are literally thousands of choices; the first
picture shows the unique one with n = 46.
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The g = 2 setup: Let P (X,Y, Z) be a homogeneous sextic
such that the curve S : P = 0 is not too singular, and consider

X : T2 = P (X,Y, Z),

the double cover of the plane branched on S.

Pairs of “lines” ⇐⇒ lines li in the plane on which P restricts
to a perfect square; geometrically, li is tritangent to S (with
allowances made for double points, etc.). Each yields a pair
of points on the genus-2 curve obtained by restricting to a
random line l in the plane. In NS: line ⇐⇒ L∗ vector of norm
5/2 modulo R(L), with disc(L) = 2|∆| and R(L) = span of
norm-2 vectors ←→ singularities of S.

So, how many tritangents can such a curve have?

Again an open question. For C, probably 72 (for S invariant
under Jordan’s “Hessian” group = Weil rep’n on C3). But for
ANTS let me concentrate on Q . . .
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The “Rorschach test” shows one of five examples with minimal
R(L) (just one node) and n ∈ [52,54] such tritangents (allow-
ing intersection with the double point as “tangency”), and the
only one with bilateral symmetry. The restriction to a generic
line l yields a curve of genus 2 with at least n pairs of rational
points and no symmetry beyond the automatic (x, y)↔ (x,−y).
That was a new record for N(2,Q) by a large margin.

You might have noticed that our construction doesn’t quite fit
in the C π→ P1 picture: we started with a K3 surface (dimen-
sion 2), but somehow got a 2-parameter family of curves, one
for each line l.

But it works exactly if we require l to go through a point P0

on the plane, and then every other point is on a unique l.

Some choices of P0 raise our N(2) bound well beyond 2 · 54,
thanks to the purple conics. . .
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The K3 theory promises 1000+ conics c on which the sextic
P (X,Y, Z) is a perfect square (geometrically, the 12 intersec-
tions of c with S pair up into six tangency points). It happens
that 18 of those go through a point that lies on only two of
the li. Using that point as our P0, we sacrifice one point-pair
but gain at least 18 others.

With some further fiddling we find two more, and can force
another four using two other conics. At the end we find N(2) ≥
2 · 75 = 150, the current record.

Some of these curves have many more points; I found one
with at least 2 ·268 = 536. This already beat Stahlke’s record
for a genus-2 curve with minimal automorphism group. Later
Stoll searched more extensively, finding a number of examples
with even more points, some even beyond the 12 · 49 = 588
of Keller and Kulesz; his current record curve (2008–9) has at
least 642 = 2 ·321 points. (Can the list be proved complete!?)
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In case you haven’t seen this curve yet . . .

y2 = P (x) := 82342800x6 − 470135160x5 + 52485681x4

+ 2396040466x3 + 567207969x2 − 985905640x+ 157402,

with P having no repeated roots, has (at least) 2 · 321 = 642

rational solutions, in pairs (x,±y) with x equal

0, −1, −4, 4, 5, 6, 1/3, −5/3, −3/5, 7/4, . . . , 12027943/13799424,
−71658936/86391295, 148596731/35675865,
58018579/158830656, 208346440/37486601,

−1455780835/761431834, −3898675687/2462651894

. . . now you have.



Similar tricks starting with the 46-line quartic yield infinitely
many g = 3 curves C with #(C/Q) ≥ 64.

Again can search for special planes that intersect X in a smooth
quartic with even more points. Current strategy: find all X (Q)

points of height at most H (i.e. (x : y : z : t) with x, y, z, t ∈ Z

all in [−H,H]) that are not on any of the n lines on X ; find all
coplanar quadruples of height at most H0; for each one that
has a few more point in the list up to height H, search further
(using p-adic version of technique introduced at ANTS-IV).

Repeat with X replaced by runners-up such as this quartic with
42 lines (30 “in the frame”):
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Current records for g = 3:

Quartic curve with Aut(C) = 1: at least 108 points on

(−8140y + 5970z)x3 + (−8022y2 − 4983zy + 16372z2)x2

+ (−930y3 − 19287zy2 + 40107z2y + 1922z3)x

+ 572y4 − 8712zy3 + 17885z2y2 + 10838z3y − 23712z4 = 0.

Quartic with involution from X : at least 144 = 2 · 72 pts. on

4x2 − (37y2 + 67zy + 13586z2)x+ 9y4

+ 4383zy3 + 75814z2y2 − 1819700z3y − 12562100z4 = 0.

Hyperelliptic curve with # Aut = 2, from double P1 × P1: at
least 176 = 2 · 88 points, tying Keller-Kulesz record of 11 · 16

for B(3,Q), on

Y 2 = 76X8 + 671X7 − 8539X6 − 89512X5 + 147851X4

+ 3076727X3 + 6159667X2 − 3720486X − 3527271.
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P.S. How to find equations such as

−76c4 + 52c3d− 68c2d2 − 52cd3 + (167c2 + 2cd+ 75d2)a2

+ (77c2 + 98cd− 3d2)b2 − 100a4 + 29a2b2 − b4 = 0

for the 46-line quartic surface?

Well, it’s determined uniquely by more equations than variables
(−163 and all that), and rational points on a zero-dimensional
variety are easy.

In theory. . .

[But that’s another talk.]
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Further questions etc.:

Better search strategy? Having found a family of genus-g curves
C with N rational points, still a nontrivial computational prob-
lem to efficiently find good candidates for curves in the family
with #C(Q) much above N .

Jacobian ranks? These families with Aut(C) = {1} or {1, ι}
are also good candidates for record ranks of simple Jacobians
JC(Q); e.g. r ≥ 29 for

Y 2 = 3115323179136X6 + 13377846720672X5

+ 2083591459177X4 − 31185870903704X3

+ 3365838909904X2 + 11170486506240X + 13377602,

and r ≥ 31 for

Y 2 = 36902X8 + 136193480460X7 + 855554427369X6

− 973414777968X5 + 8046400145942X4 + 7241370511844X3

+ 2187498173777X2 + 273643583472X + 1101522,

in each case generated by points of height < 103.
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(Why “simple”? Reducible Jacobians may be unfair competi-
tion, e.g. r = 38 for g = 2 from E(Q) ∼= (Z/2Z)⊕ Z19.)

Genus 4 and beyond? As g grows, so do the lower bounds on
B(g,Q) and N(g), with either the elementary Brumer-Mestre
approach or via K3’s; but B-M et al. are faster. Already for
g = 4, I don’t know better than 126 (for any of N(4), N(4,Q),
B(4,Q)!). But that’s with big Aut(C), so probably still some
small-Aut(C) records to be found.

If you have any constructions, curves, references, suggestions,
etc. to add, please tell me!

THANK YOU
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