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Curves with many points over number fields
ANTS-XIII Madison WI, 16 July 2018

Noam D. Elkies, Harvard University
Context: Diophantine eqns.; d=0; d=1: g=0and g=1
Curves of general type: Faltings and Caporaso—Harris—Mazur
Brumer, Mestre, et al.

Connections with algebraic geometry

The K3 (and —163) connection
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Fundamental problem(s) of number theory:

e Solve Diophantine equations
e Understand structure of solutions

For us, “Diophantine equation” = simult. polynomial egns. in
(usually too many) rational variables

Equiv.: simult. homogeneous equations in integer variables
(e.g. Fermat: 2" 4+ y" = 2" <—= (x/2)"+ (y/z)" = 1)

[Almost the same as Diophantus (3rd cent.) himself, though he
used only positive values, so at most one of (z,y) and (x, —vy)
in y2 = P(x).]

More generally: F with [F': Q] < co. (Also: Z; more generally:
F'; Op and OF’S. But not in this talk. Nor exponential Dioph.
equations, etc.)
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Broadly,

Geometric invariants of V «<— difficulty

of the Diophantine equation.

First invariant: dimension of (components of) V.
Zero, one, (two,) many. ..

Simplest case: Dimension zero, e.g. 2 = 2.

Only finitely many points; are any of them rational?

Easy and well-understood (sort of): elimination, polynomial
factorization, Galois theory, etc. (Can still be computationally
nontrivial with > k equations in k variables once k gets well
into “many” territory... e.g. computing Belyi functions.)
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Dimension 1: an algebraic curve C. Complexity measured by
“genus’ ¢=0,1,2,3,...

Again ‘‘zero, one, (two,) many'’; here conic, elliptic curve, curve
of general type.



Dimension 1: an algebraic curve C. Complexity measured by
“genus’ ¢=0,1,2,3,...

Again ‘‘zero, one, (two,) many'’; here conic, elliptic curve, curve
of general type.

g = 0: Always a conic (sections of —K). Fully understood, at
least in theory: C <+— Br[2] obstruction, say 8(C), which is
trivial <= 3 rational point < C =, Pl. [Minkowski; Hasse
principle]

In practice, identifying C with conic can still be hard [e.g.
P,.(5,5")/( < 3], testing if B(C) = 0 +— factoring A, but
then identifying with Pl is “easy” (in RP).
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It has “affine commutative group structure’’: a commutative
group once any Py € C(F) is chosen as the origin. Also, always
finitely generated [Mordell (F' = Q), Weil ([F : Q] < c0)].
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in F') can be empty, nonempty but finite, or infinite but sparse.
It has “affine commutative group structure’’: a commutative
group once any Py € C(F) is chosen as the origin. Also, always
finitely generated [Mordell (F' = Q), Weil ([F : Q] < c0)].

Still a rich source of results and open questions for both theory
and computation:

o Is C(F) =07 (Beyond Hasse, C +— obstruction in the still
mysterious Tate-Safarevi¢ group III.)

e Torsion subgroup of Jo(F)7? (Not hard)

e Rank and generators of Jo(F')? (Can be hard, even in theory
[IIT again, also BSD, modularity, ...])
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For fixed F' and varying C, the torsion is bounded [Mazur for
F = Q, with a known list: Z/NZ for N < 10 or N = 12, or
(Z/27) ® (Z/2NZ) or N < 4); Merel in general, even if only
d = [F : Q] is given, though the exact list is known only for d
up to about 5.]

It remains a mystery whether the rank is bounded for varying C

over any fixed F'. If yes then limsups(rank(C/F)) is unbounded

as F varies, e.g. limsup > 25— 1 for F = Q(di/Q, ) .,di/Q).



g > 1: Faltings (1983) proved #C(F) < oo, all C and F.
(Mordell conjecture ¢.1920)

Every known proof is ineffective. given C,F, can get upper
bound on #C(F'), but typically no way to prove that a given
list of solutions is complete, not even in principle. (Worse than
Mordell-Weil theorem, which becomes effective once we know
that III, or even one II[p*°], is finite.) That's still a major
open question for both theory and computation.



g > 1: Faltings (1983) proved #C(F) < oo, all C and F.
(Mordell conjecture ¢.1920)

Every known proof is ineffective. given C,F, can get upper
bound on #C(F'), but typically no way to prove that a given
list of solutions is complete, not even in principle. (Worse than
Mordell-Weil theorem, which becomes effective once we know
that III, or even one II[p*°], is finite.) That's still a major
open question for both theory and computation.

As with Mordell-Weil for rank and torsion of g = 1 curves: the
upper bound on #C(F) can depend on C,F, and the actual
#C(F) is easily unbounded if we let F' vary, even with C fixed.
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For example: given (x;,y;), solve for the coefficients of P to
make each y,L2 = P(x;) — simultaneous linear equations, so
rational (and usually no repeated factors).

So the number of points can get arbitrarily large if g may vary.
The right question is:
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For example: given (x;,y;), solve for the coefficients of P to
make each yz2 = P(x;) — simultaneous linear equations, so
rational (and usually no repeated factors).

So the number of points can get arbitrarily large if g may vary.
The right question is:

e Fix g > 1. How many points can a genus-g curve C' have?
In particular, is the number unbounded as C varies over all
such C7

In other words: let B(g,F) be supo(#F#C(F)) over all genus-g
curves C/F. Is B(g,F) = oo for some/any g > 1 and F with

[F: Q] < o0?
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This may feel like the ¢ = 1 question of whether an elliptic
curve can have arbitrarily large rank; indeed similar techniques
are used (often by the same people) to search for records on
both questions. But there's a difference:

Theorem (Caporaso-Harris-Mazur 1997): Assume Bombieri-
LLang conjecture. Then B(g) < oo for all g > 1.

“Bombieri-Lang conjecture” is an analogue of Mordell-Faltings
for algebraic varieties of arbitrary dimension:

Conjecture (Bombieri-Lang 1986): Suppose V is an algebraic
variety of general type, and [F : Q] < oo. Then all of V(F') is in
a finite union of subvarieties Vi’ each of dimension < dim(V).

INB A curve is of “‘general type" iff its genus is > 1.]



There is even a corresponding result that is uniform in F,
once we allow a finite number of exceptions (that may depend
on F). That is, instead of

B(g,F) := sgp(#C(F))
consider
N(g,F) := Iimcsuo(#C(F)) < B(g,F)

again with C varying over all genus-g curves C/F. Now it is
not so easy to refute an upper bound uniform in F', i.e. the
possibility that

N(g) ;= sup N(g,F)
[F:Q] <00

might be finite. Indeed, Caporaso-Harris-Mazur also proved:
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B(g,F) = S(UJD(#C(F));
[repeat]  N(g,F) = limgup(#C(F))SB(g,F);
N(g) = sup N(g,F).
[F:Q] <00

Theorem: Assume uniform Bombieri-Lang conjecture. Then
N(g) < oo for all g > 1.

Uniform Bombieri-Lang conjecture:

Suppose V is an algebraic variety of general type. Then 3
finitely many subvarieties VZ-’ with each dim VZ-’ < dimV, s.t.
[F: Q] < oo = V(F)—U,; V/(F) is finite.
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B(g,F) = S(UJD(#C(F));
[repeat]  N(g,F) Iimgup(#C(F))SB(g,F);

N(9) sup  N(g,F).
[F:Q] <00

Theorem: Assume uniform Bombieri-Lang conjecture. Then
N(g) < oo for all g > 1.

Uniform Bombieri-Lang conjecture:

Suppose V is an algebraic variety of general type. Then 3
finitely many subvarieties VZ-’ with each dim VZ-’ < dimV, s.t.
[F: Q] < oo = V(F)—U,; V/(F) is finite.

So what are B(g, F'), N(g,F) and B(g)? Again ineffective . ..
would need effective Bombieri-Lang.
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Idea of Caporaso-Harris-Mazur: given g, put any C' in one of
finitely many parametrized families of curves. E.qg.

6
g=2: y*=)Y tiz' = Ps(x);
1=0

g = 3: either y2 = Pg(a) or Ps(x,y) = 0. Then if each of
Pi,...,P, is on C then (C,P1,P>,...,P,) is a point on some
variety V, which is of general type for n large enough. So
Bombieri-Lang = they satisfy some relation. Now carefully
repeat until (C, Py, P>, ..., Py41) must have some P; = P; with
finitely many exceptions.
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Idea of Caporaso-Harris-Mazur: given g, put any C' in one of
finitely many parametrized families of curves. E.qg.

6
g=2: y*=)Y tiz' = Ps(x);
1=0

g = 3: either y2 = Pg(a) or Ps(x,y) = 0. Then if each of
Pi,...,P, is on C then (C,P1,P>,...,P,) is a point on some
variety V, which is of general type for n large enough. So
Bombieri-Lang = they satisfy some relation. Now carefully
repeat until (C, Py, P>, ..., Py41) must have some P; = P; with
finitely many exceptions.

As noted, the resulting upper bounds on N(g, F') and N(g), and
thus on B(g, F'), are ineffective; they seem likely to remain so
for some time. So for now we play the record-hunting game of
seeking genus-g curves, or families of such curves, with many
F-rational points.

12



While ineffective, this suggests a geometric interpretation for
N(g): the largest N such that 3 parametrized family ¢ = B
of genus-g curves C = 7w 1(pt) with N sections (one-sided
inverses s; : B — C and B(F') = co. Because dimC =dimB+1,
we usually want dim B = 1 (recall “zero, one, (two,) many");
then, for #B(F) = oo for some F', need B of genus O or 1.

13



While ineffective, this suggests a geometric interpretation for
N(g): the largest N such that 3 parametrized family ¢ = B
of genus-g curves C = 7w 1(pt) with N sections (one-sided
inverses s; : B — C and B(F') = co. Because dimC =dimB+1,
we usually want dim B = 1 (recall “zero, one, (two,) many");
then, for #B(F) = oo for some F', need B of genus O or 1.

More explicitly: seek algebraic identities for parametrized fam-
ily of genus-g curves, e.g. C(tq,...,tg) if B is rational of dim. d,
together with points Pq,..., Py (images of (t1,...,tz) under
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While ineffective, this suggests a geometric interpretation for
N(g): the largest N such that 3 parametrized family ¢ = B
of genus-g curves C = 7w 1(pt) with N sections (one-sided
inverses s; : B — C and B(F') = co. Because dimC =dimB+1,
we usually want dim B = 1 (recall “zero, one, (two,) many");
then, for #B(F) = oo for some F', need B of genus O or 1.

More explicitly: seek algebraic identities for parametrized fam-
ily of genus-g curves, e.g. C(tq,...,tg) if B is rational of dim. d,
together with points Pq,..., Py (images of (t1,...,tz) under

81,...,SN).

We can then try to push lower bound on B(g, F') (max. known
number of points on genus-g curve over F') by searching B(F)
(e.g. (t1,...,t7) € F%) for which C has numerous points other
than the s; images (minus collisions among those images ... ).
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Indeed *“arrows, then bullseyes’ is an example: the parameters
are xz;,y;; for genus g, we need y2 = P(z) with degP = 2¢ +
2, so we can force 2g 4+ 3 points. Thanks to the symmetry
(z,y) +— (x,—y) we double the count of points for free.

This illustrates two further themes:
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Indeed *“arrows, then bullseyes’ is an example: the parameters
are xz;,y;; for genus g, we need y2 = P(z) with degP = 2¢ +
2, so we can force 2g 4+ 3 points. Thanks to the symmetry
(z,y) +— (x,—y) we double the count of points for free.

This illustrates two further themes:

e N(g,Q) > g as g — oo. Thus a fortiori B(g,Q) > ¢ and
N(g) > g. Open question: can we do better? That is: are
limsup, B(g,Q)/g and limsup, N(g)/g finite?

e Aut(C) can help. Already for ¢ = 3 all the records are for
hyperelliptic curves y2 = Pg(z), even though that's a special
case (5 parameters, not 6). Maybe more natural to aim for
many Aut(C) orbits in C(F).
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The 49 + O(1) construction can still be improved to hyperel-

liptic curves attaining N(g,Q) > 89+ C and N(g) > 169 + '’
(Brumer and Mestre independently).

For N(g,Q) > 8g + C: for rational x; write
2n 5
[ (X =) = Q(X)* — R(X)
i=1
with deg@Q = n and degR < n (usually n — 1). Then each

Q(z;)? = R(z;) so we have 2n pairs (z;, +Q(x;)) of rational
points on the curve Y2 = R(X) of g < n/2.
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The 49 + O(1) construction can still be improved to hyperel-

liptic curves attaining N(g,Q) > 89+ C and N(g) > 169 + '’
(Brumer and Mestre independently).

For N(g,Q) > 8g + C: for rational x; write

2n
[ (X =) =Q(X)* - R(X)

1=1
with deg@Q = n and degR < n (usually n — 1). Then each
Q(z;)? = R(z;) so we have 2n pairs (z;, +Q(x;)) of rational
points on the curve Y2 = R(X) of g < n/2.

L ikewise
4
[T (X" —2?) = Q(X™)? — (R1 X" + Ry),
1=1

so ifn=2g+2and F D u, then Y2 = R{ X"+ Ry has 16(¢g+1)
points ((x;, £Q(x})) with 1 <7 <4 and ¢" =1 (though in only
four Aut(C) orbits).
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For all but finitely many g, these constructions and variations
[to be detailed in the paper]| are still the best lower bounds
known on B(g,Q) and N(g).

For example, here is a table of current lower bounds on N(g).
“Method"” line: “BM" for the Brumer-Mestre 16(g+ 1) bound;
“T", other Twists of a fixed curve with many symmetries;
“F", other (non-isotrivial) Families of highly symmetric curves;
“L", curves obtained by slicing surfaces with many Lines.

g 2 3 4 5 6 4 8 9 10 45 other

N(g) > | 150 100 126 132 146 128 144 180 192 781 16(g+ 1)

Method | L T F T L BM BM L T L BM
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For all but finitely many g, these constructions and variations
[to be detailed in the paper]| are still the best lower bounds
known on B(g,Q) and N(g).

For example, here is a table of current lower bounds on N(g).
“Method"” line: “BM" for the Brumer-Mestre 16(g+ 1) bound;
“T", other Twists of a fixed curve with many symmetries;
“F", other (non-isotrivial) Families of highly symmetric curves;
“L", curves obtained by slicing surfaces with many Lines.

g 2 3 4 5 6 7 8 9 10 45  other
N(g) > | 150 100 126 132 146 128 144 180 192 781 16(g+ 1)
Method| L T F T L BM BM L T L BM

For the sake of time, and to give context for new g = 2,3
results, the rest of this talk concerns the Line method, rel-
egating the others (which often attain large #C(F') but few
Aut(C) orbits) to the eventual conference paper.
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Idea: use geometry of the surface C.

Harris suggested many vears ago:. construct infinitely many
curves with many points by using geometry of surfaces directly.

Paradigmatic example: if smooth degree-d surface S € P3 has
n lines over F, generic plane section is a smooth curve of
degree d (so g = (d — 1)(d — 2)/2) with n rational points.
Hence N(g) > n.

The idea has many variations, e.g. use rational points off the
n lines to increment N(g), or to decrement ¢ (intersection of
S with a tangent plane has a node).

This connects our questions on N(g) etc. with a classical prob-
lem in algebraic geometry: given d > 3, how big can n be? Also
arithmetic geometry: find big n for F' fixed, notably F = Q.

17



Natural guess: Fermat surface X4+ Y2+ z4 4 74 = Q. It has
3d? lines over C, and thus over some finite extension F; of Q:
d? factorizations of each of

Xt4vi=24+71%=0,
xt+zi=1l4+yv%=0,
xi4+T1t=v44 74=0.

This gives “only” 6g 4+ O(g1/2) points, and not for all g (only
3,6,10,...); but Aut(C) is usually trivial.
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Natural guess: Fermat surface X4+ Y2+ z4 4 74 = Q. It has
3d? lines over C, and thus over some finite extension F; of Q:
d? factorizations of each of

Xt4vi=24+71%=0,
xt+zi=1l4+yv%=0,
xi4+T1t=v44 74=0.

This gives “only” 6g 4+ O(g1/2) points, and not for all g (only
3,6,10,...); but Aut(C) is usually trivial.

This 3d? is the best known for all but a few d; but the true
maximum is not yet known except for d = 4, when it is not
48(= 3 -42) but 64, for X4+ XY3 = Z4 4+ ZT3 (Schur 1882:
each side has the same tetrahedral rather than dihedral sym-
metry). This is maximal (Segre-1943 Rams—Schiitt 2012).
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Likewise Ps(X,Y) 4+ Ps(Z,T) =0 and Pg(X,Y) + Ps(Z,T) =0
with octahedral symmetry, P1>(X,Y) + P1>(Z,T) = 0 and
P>o(X,Y) 4+ P>o(Z,T) = 0 with icosahedral symmetry. (The
record is 3d? for all d > 2 other than 4,6,8,12,20.) Ford = 12,
each line meets 781 others so N(45) > 781.

But each of these records is over some F,; that is never just Q.
How well can we do over Q7

Here even the case d = 4 is open; current record: a tie at 46.
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The K3 (and —163) connection

A smooth quartic is a K3 surface — an analogue for surfaces
of ¢ = 1 for curves (“‘between” rational and general type), and
just tractable enough for this kind of application (and also for
elliptic curves of high rank, “etc.”).

Recall that the points of a ¢ = 1 curve have a kind of group
structure. The curves on a surface X have one too, the
Néron-Severi group NS(X). Intersection theory gives NS(X)
the structure of a lattice in some hyperbolic space with signa-
ture (1,p—1). For a K3 surface, the lattice is even with p < 20.
If p =20 and NS(X) = NSq(X) then the lattice discriminant
is one of the 13 discriminants of quadratic orders with h = 1:

~3,-4,-7,-8,-11,-12,-16,-19, 27,28, -43, 67, —163.
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For each of those 13 choices
A=-3-4-7,-8,—-11,—-12,—-16,—19, —27,—28,—43,—-67,—163

there is a unique X with (p,disc) = (20, A) over Q.

Quartic model «+— choice of H € NS with (H,H) = 4, up to
equivalence <— even lattice L of rank 19, disc. 4|A| (with one
further condition on L*/L if A not squarefree). Smooth: no
vector of norm 2. Then lines «<—— =+ pairs of dual vectors of
norm 9/4. There are literally thousands of choices; the first
picture shows the unique one with n = 46.
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The g = 2 setup: Let P(X,Y,Z) be a homogeneous sextic
such that the curve S : P = 0 is not too singular, and consider

X T?=P(X,Y,2),

the double cover of the plane branched on S.

22



The g = 2 setup: Let P(X,Y,Z) be a homogeneous sextic
such that the curve S : P = 0 is not too singular, and consider

X T?=P(X,Y,2),

the double cover of the plane branched on S.

Pairs of “lines” < lines [; in the plane on which P restricts
to a perfect square; geometrically, [; is tritangent to S (with
allowances made for double points, etc.). Each yields a pair
of points on the genus-2 curve obtained by restricting to a
random line [ in the plane. In NS: line «<— L* vector of norm
5/2 modulo R(L), with disc(L) = 2|A| and R(L) = span of
norm-2 vectors <— singularities of S.
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The g = 2 setup: Let P(X,Y,Z) be a homogeneous sextic
such that the curve S : P = 0 is not too singular, and consider

X T?=P(X,Y,2),

the double cover of the plane branched on S.

Pairs of “lines” < lines [; in the plane on which P restricts
to a perfect square; geometrically, [; is tritangent to S (with
allowances made for double points, etc.). Each yields a pair
of points on the genus-2 curve obtained by restricting to a
random line [ in the plane. In NS: line «<— L* vector of norm
5/2 modulo R(L), with disc(L) = 2|A| and R(L) = span of
norm-2 vectors <— singularities of S.

So, how many tritangents can such a curve have?

Again an open question. For C, probably 72 (for S invariant
under Jordan’s ‘*Hessian’ group = Weil rep’'n on C3). But for
ANTS let me concentrate on Q . ..
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The ““Rorschach test” shows one of five examples with minimal
R(L) (just one node) and n € [52,54] such tritangents (allow-
ing intersection with the double point as “tangency’”), and the
only one with bilateral symmetry. The restriction to a generic
line | yields a curve of genus 2 with at least n pairs of rational
points and no symmetry beyond the automatic (z,vy) < (z, —vy).
That was a new record for N(2,Q) by a large margin.
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The ““Rorschach test” shows one of five examples with minimal
R(L) (just one node) and n € [52,54] such tritangents (allow-
ing intersection with the double point as “tangency’”), and the
only one with bilateral symmetry. The restriction to a generic
line | yields a curve of genus 2 with at least n pairs of rational
points and no symmetry beyond the automatic (z,vy) < (z, —vy).
That was a new record for N(2,Q) by a large margin.

You might have noticed that our construction doesn’t quite fit
in the ¢ 5 Pl picture: we started with a K3 surface (dimen-
sion 2), but somehow got a 2-parameter family of curves, one
for each line [.

But it works exactly if we require [ to go through a point Py
on the plane, and then every other point is on a unique [.

Some choices of Py raise our N(2) bound well beyond 2 - 54,
thanks to the purple conics. ..
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The K3 theory promises 1000+ conics ¢ on which the sextic
P(X,Y,Z) is a perfect square (geometrically, the 12 intersec-
tions of ¢ with S pair up into six tangency points). It happens
that 18 of those go through a point that lies on only two of
the [;,. Using that point as our Py, we sacrifice one point-pair
but gain at least 18 others.
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The K3 theory promises 1000+ conics ¢ on which the sextic
P(X,Y,Z) is a perfect square (geometrically, the 12 intersec-
tions of ¢ with S pair up into six tangency points). It happens
that 18 of those go through a point that lies on only two of
the [;,. Using that point as our Py, we sacrifice one point-pair
but gain at least 18 others.

With some further fiddling we find two more, and can force
another four using two other conics. At the end we find N(2) >
2-75 =150, the current record.
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The K3 theory promises 1000+ conics ¢ on which the sextic
P(X,Y,Z) is a perfect square (geometrically, the 12 intersec-
tions of ¢ with S pair up into six tangency points). It happens
that 18 of those go through a point that lies on only two of
the [;,. Using that point as our Py, we sacrifice one point-pair
but gain at least 18 others.

With some further fiddling we find two more, and can force
another four using two other conics. At the end we find N(2) >
2-75 =150, the current record.

Some of these curves have many more points; I found one
with at least 2268 = 536. This already beat Stahlke's record
for a genus-2 curve with minimal automorphism group. Later
Stoll searched more extensively, finding a number of examples
with even more points, some even beyond the 12 .49 —= 588
of Keller and Kulesz; his current record curve (2008—9) has at
least 642 = 2-.321 points. (Can the list be proved complete!?)
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In case you haven’t seen this curve yet . ..

y2 = P(z) ;= 82342800z° — 470135160 2> + 52485681 z*
+ 2396040466 23 + 567207969 z° — 985905640 = + 157407,

with P having no repeated roots, has (at least) 2321 = 642
rational solutions, in pairs (x, ty) with = equal

0, -1, —4, 4, 5, 6, 1/3, —5/3, —3/5, 7/4, ..., 12027943/13799424,
—71658936,/86391295, 148596731/35675865,
58018579/158830656, 208346440/37486601,

—1455780835/761431834, —3898675687 /2462651894

... how you have.



Similar tricks starting with the 46-line quartic yield infinitely
many g = 3 curves C with #(C/Q) > 64.

Again can search for special planes that intersect X in a smooth
quartic with even more points. Current strategy: find all X(Q)
points of height at most H (i.e. (x iy :2z:t) with z,y,z2,t € Z
all in [-H, H]) that are not on any of the n lines on X’; find all
coplanar quadruples of height at most Hp;, for each one that
has a few more point in the list up to height H, search further
(using p-adic version of technique introduced at ANTS-1V).

Repeat with X replaced by runners-up such as this quartic with
42 lines (30 “in the frame”):
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Current records for g = 3:

Quartic curve with Aut(C) = 1: at least 108 points on

(—8140y + 59702)z3 + (—8022y2 — 49832y + 1637222)z2
+ (—930y3 — 192872y2 + 4010722y + 192223)x
+ 572y* — 87122y3 + 1788522y2 4+ 1083823y — 2371224 = 0.

Quartic with involution from X: at least 144 = 2 - 72 pts. on

412 — (37y? + 672y + 1358622)x + 9y*
4 4383zy3 4+ 7581422y2 — 181970023y — 12562100z% = 0.

Hyperelliptic curve with # Aut = 2, from double P x P1: at
least 176 = 2 - 88 points, tying Keller-Kulesz record of 11 -16

for B(3,Q), on

Y2 = 76X% +671X7 —8539X° —89512X° + 147851 X%
4 3076727X3 + 6159667 X2 — 3720486 X — 3527271.
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P.S. How to find equations such as
—76¢* 4+ 52¢3d — 68c¢2d? — 52¢d> 4+ (167¢? + 2¢d + 75d%)a?
+ (77¢? 4 98cd — 3d?)b? — 100a® + 294262 — b* =0
for the 46-line quartic surface?
Well, it's determined uniquely by more equations than variables

(—163 and all that), and rational points on a zero-dimensional
variety are easy.
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P.S. How to find equations such as

—76¢* 4+ 52¢3d — 68c¢2d? — 52¢d> 4+ (167¢? + 2¢d + 75d%)a?
+ (77¢? + 98cd — 3d?)b? — 100a* 4+ 29a2b° — b* =0

for the 46-line quartic surface?

Well, it's determined uniquely by more equations than variables
(—163 and all that), and rational points on a zero-dimensional
variety are easy.

In theory. ..

[But that’s another talk.]
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Further questions etc.:

Better search strategy? Having found a family of genus-g curves
C with N rational points, still a nontrivial computational prob-
lem to efficiently find good candidates for curves in the family

with #2C(Q) much above N.
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Further questions etc.:

Better search strategy? Having found a family of genus-g curves
C with N rational points, still a nontrivial computational prob-
lem to efficiently find good candidates for curves in the family
with #2C(Q) much above N.

Jacobian ranks? These families with Aut(C) = {1} or {1,.}
are also good candidates for record ranks of simple Jacobians

Jo(Q); e.g. r > 29 for

Y2 = 3115323179136X° 4+ 13377846720672X°
4+ 2083591459177X% — 31185870903704 X3
+ 3365838909904 X2 4+ 11170486506240X + 13377602,

and r > 31 for

Y2 = 36902X°% 4+ 136193480460X " + 855554427369 .X°
— 073414777968X° 4+ 8046400145942 X% + 7241370511844 X3
+ 2187498173777X° 4+ 273643583472X + 1101522,

in each case generated by points of height < 103.
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(Why “simple’'? Reducible Jacobians may be unfair competi-
tion, e.g. r =38 for g = 2 from E(Q) £ (Z/2Z) & Z1°))

Genus 4 and beyond? As g grows, so do the lower bounds on
B(g,Q) and N(g), with either the elementary Brumer-Mestre
approach or via K3's; but B-M et al. are faster. Already for
g =4, Idon’'t know better than 126 (for any of N(4), N(4,Q),
B(4,Q)"). But that's with big Aut(C), so probably still some
small-Aut(C) records to be found.
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(Why “simple’'? Reducible Jacobians may be unfair competi-
tion, e.g. r =38 for g = 2 from E(Q) £ (Z/2Z) & Z1°))

Genus 4 and beyond? As g grows, so do the lower bounds on
B(g,Q) and N(g), with either the elementary Brumer-Mestre
approach or via K3's; but B-M et al. are faster. Already for
g =4, Idon’'t know better than 126 (for any of N(4), N(4,Q),
B(4,Q)"). But that's with big Aut(C), so probably still some
small-Aut(C) records to be found.

If you have any constructions, curves, references, suggestions,
etc. to add, please tell mel
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