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Given a prime p, and a polynomial f ∈ Z[x ] of degree d with
coefficients of absolute value < pt , it is a basic problem to count
the roots of f in Z/(pt).

I Aside from its natural cryptological relevance, counting roots
in Z/(pt) is closely related to factoring polynomials over the
p-adic rationals Qp

I and the latter problem is fundamental in polynomial-time
factoring over the rationals

I the study of prime ideals in number fields

I the computation of zeta functions and the detection of
rational points on curves.



Outline

I Introduction: t = 1

I Complications arise for t > 1

I t = 2, 3, 4

I General t

I Open problems



Factoring polynomials over finite fields

I By root rationality: gcd(f (x), xp − x)

I By root multiplicities: gcd(f (x), dfdx (x))

I

f (x) = f1(x)f 22 (x)f 33 (x)...f ll (x)F (x) (mod p), (1)

where each fi is a monic polynomial over Fp that can be split
into a product of distinct linear factors over Fp, and the fi are
pairwise relatively prime, and F (x) is free of linear factors in
Fp[x ].



I Further factorization is not known to be in deterministic
polynomial time.

I Use random r1 and r2 , can split further:

gcd(f (r1(x + r2)), x (p−1)/2 − 1)



Hensel lifting

x2 = 2

x21 = 2 (mod 7)

x1 = 3

(3 + 7x2)2 = 2 (mod 72)

9 + 42x2 = 2 (mod 72)

7 + 42x2 = 0 (mod 72)

1 + 6x2 = 0 (mod 7)

x2 = 1

x = 10 (mod 72)

...

A simple root of f (roots of f1(x) ) in Z/(p)
can be lifted uniquely to a root in Z/(pt),
according to the classical Hensel’s lemma

f (x1 + px2)

=f (x1) + px2
df

dx
(x1) (mod p2)

f (x1 + pt−1x2)

=f (x1) + pt−1x2
df

dx
(x1) (mod pt)
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When roots have multiplicities

I A root over Fp can be lifted to exponentially many roots: The
quadratic polynomial

x2 = 0,

which has roots 0, p, 2p, · · · , (p − 1)p in Z/(p2), is such an
example.

I A root over Fp can be lifted to no root in Z/p2Z:

x2 + p = 0

has no roots mod p2, even though it has a root mod p.

I There is surprisingly little written about root counting in
Z/(pt) for t ≥ 2: The cases t≥3, which we solve here,
appeared to be completely open.



More Complications

I One complication with t ≥ 2 is that polynomials in
(Z/(pt))[x ] do not have unique factorization, thus obstructing
a simple use of polynomial gcd.

I It is still an open problem whether there exists a deterministic
polynomial time algorithm for finding roots of polynomials
modulo p.



Igusa zeta function

I Let Nt(f ) denote the number of roots of f in Z/(pt) (setting
N0(f ) :=1). The Poincare series for f is

P(x) :=
∞∑
t=0

Nt(f )x t

I Example: x2 = 0
t 0 1 2 3 · · · i

# of roots mod pt 1 1 p p · · · pbi/2c

I
∑

pix2i +
∑

pix2i+1 = 1+x
1−px2



I Assuming P(x) is a rational function in x , one can reasonably
recover Nt(f ) for any t via standard generating function
techniques.

I That P(x) is in fact a rational function in x was first proved
in 1974 by Igusa (in the course of deriving a new class of zeta
functions), applying resolution of singularities.

I Denef found a new proof (using p-adic cell decomposition
leading to more algorithmic approaches later).

I While this in principle gives us a way to compute Nt(f ), there
are few papers studying the computational complexity of Igusa
zeta functions.



Main result

Theorem
There is a deterministic algorithm that computes the number,
Nt(f ), of roots in Z/(pt) of f in time (d + log(p) + 2t)O(1).

Note that Theorem 1 implies that if t = O(log log p) then there is
a deterministic (d + log p)O(1) algorithm to count the roots of f in
Z/(pt).



Main techniques I

I We use (triangular) ideals in the ring Zp[x1, x2, . . .] of
multivariate polynomials over the p-adic integers to keep track
of the roots of f in Z/(pt). More precisely, if
(x1, x2, · · · , xi ) ∈ Zi

p is a zero of I ⊆ Zp[x1, x2, · · · , xi ], then

f (x1 + px2 + · · ·+ pi−1xi ) = 0 (mod ps).

I We can decompose the ideals according to multiplicity type
and rationality of their roots, so that the ideals have only
rational roots and are radical over Fp.

I This process produces a tree of ideals which will ultimately
encode the summands making up our final count of roots.



Main techniques II

We manage to keep most of our computation within Z/(p) = Fp,
and maintain uniformity for the roots of our intermediate ideals, by
using Teichmuller lifting. Namely, if (x1, x2, · · · , xi ) ∈ Zi

p is a zero
of I ⊆ Zp[x1, x2, · · · , xi ], then xj is the Teichmuller lift of some
number in Fp.



I The core of our algorithm counts how many roots of f in
Z/(pt) are lifts of roots of fi in Fp.

I f (x)

fl(x)· · ·f2(x)f1(x)

I For f1, by Hensel’s lifting lemma, the answer should be deg f1
for all t.



Algorithm

I For other fi , however, Hensel’s lemma will not apply, so we
run our algorithm on the pair (f ,m), where m is the lift of fi
to Z[x ], for each i ∈ {2, . . . , l}, to see how many lifts (to
roots of f in Z/(pt)) are produced by the roots of fi in Z/(p).
The final count will be the summation of the results over all
the fi , since the roots of f in Z/(pt) are partitioned by the
roots of the fi .

I If randomness is allowed, m(x) has degree one.



Since m|f (in fact m2|f ) over Fp[x ], we have f (x) = 0
(mod (m(x), p)), and over Z[x1, x2],

f (x1 + px2) = 0 (mod (m(x1), p)).

If f (x1 + px2) = 0 (mod (m(x1), pt)), then each root of m in Fp

lifts to pt−1 roots of f in Z/(pt), and the counting problem for
(f ,m) is solved.



Otherwise we can find efficiently an integer 1 ≤ s < t and
g ∈Z[x1, x2] such that

f (x1 + px2) = psg(x1, x2) (mod (m(x1), pt)), (2)

where degx2 g ≤ t − 1, degx1 g < degm and g(x1, x2) 6= 0
(mod p,m(x1)).



Normalization

I Let
g(x1, x2) =

∑
0≤j<t

gj(x1)x j2.

Assume that the leading coefficient is invertible in
Fp[x ]/(m(x1)), so the polynomial can be made monic.

I Otherwise, f (x)

· · ·m2(x1)m1(x1)· · ·



s = 1

Since m2|f over Fp, we must have

f (x1 + px2) = pg0(x1) (mod m(x1), p2).

Since gcd(m, g0) = 1 over Fp, none of the roots of m in Fp can be
lifted to Z/p2. So for now on we assume that 1 < s < t.



t = 3

The only interesting case is when s = 2. We have
f (x1 + px2) = p2g(x1, x2) (mod m(x1), p3).

Theorem
The number of roots in Z/(p3) of f that are lifts of roots of m
(mod p) is equal to p times the number of roots in F2

p of the 2× 2
polynomial system below:

m(x1) = 0

g(x1, x2) = 0
(3)

which can be calculated in deterministic polynomial time.



The Fp-points of m(x1) = 0 ∩ g(x1, x2) = 0

x1

x2

α1 α2 α3 α4

g(x1, x2)

m(x1) = (x1 − α1)(x1 − α2)(x1 − α3)(x1 − α4)



I Run the Euclidean algorithm on

g(x1, x2)(= xn22 + m2(x1, x2)), xp2 − x2

over Fp[x1]/(m(x1)) = Fp ⊕ Fp · · ·Fp

I If a zero divisor in Fp[x1]/(m(x1)) is found, factor m(x1) and
rerun the algorithm.

I Let n′2 be the degree of the gcd.

I The number of Fp solutions is n′2 deg(m).



A theorem for a general t

Theorem
The number of roots in Z/(pt) of f that are lifts of the roots of m
(mod p) is equal to ps−1 times the number of solutions in
(Z/(pt−s))2 of the 2× 2 polynomial system (in the variables
(x1, x2)) below:

m(x1) = 0

g(x1, x2) = 0
(4)



A dichotomy

Theorem
If m2|f in Fp[x ], and t ≥ 2 , then any root of m in Fp is either not
liftable to a root in Z/(pt) of f , or can be lifted to at least p roots
of f in Z/(pt).



t=4

I I1 = (m(x1)) ⊆ Zp[x1]

I f (x1 + px2) = p2(xn22 + m2(x1, x2)) (mod m1(x1), p3)

I I2 = (m(x1), xn22 + m2(x1, x2)) ⊆ Zp[x1, x2]

I Computer the gcd of xn22 + m2(x1, x2) and xp2 − x2 over
Fp[x1]/(m(x1))

I Now assume that I2 is zero dimensional and all roots are
rational in Zp, and I2 (mod p) is radical in Fp[x1, x2].

I f (x1 + px2 + p2x3) = p3(xn33 + m3(x1, x2, x3)) (mod I2, p
4)

I I3 = (I2, x
n3
3 + m3(x1, x2, x3))

I Computer the gcd of xn33 + m3(x1, x2, x3) and xp3 − x3 over
Fp[x1, x2]/(I2)



t=4
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I f (x1 + px2) = p2(xn22 + m2(x1, x2)) (mod m1(x1), p3)

I I2 = (m(x1), xn22 + m2(x1, x2)) ⊆ Zp[x1, x2]

I Computer the gcd of xn22 + m2(x1, x2) and xp2 − x2 over
Fp[x1]/(m(x1))

I Now assume that I2 is zero dimensional and all roots are
rational in Zp, and I2 (mod p) is radical in Fp[x1, x2].

I f (x1 + px2 + p2x3) = p3(xn33 + m3(x1, x2, x3)) (mod I2, p
4)

I I3 = (I2, x
n3
3 + m3(x1, x2, x3))

I Computer the gcd of xn33 + m3(x1, x2, x3) and xp3 − x3 over
Fp[x1, x2]/(I2)



Triangular ideals

f (x)

· · ·m(x1)

· · ·xn22 + m2(x1, x2)

· · ·xn33 + m3(x1, x2, x3)· · ·

· · ·

· · ·



The need for uniformity

When we split m(x) ∈ Z[x ] over Fp, and lift naively back to Z, we
keep the first digit of Zp-root of m(x), but lose the information
about the other digits.



Teichmuller lift

I

Z ↪→ Zp � · · ·Z/(pn+1)Z� Z/(pnZ)� · · ·Z/pZ

I The Teichmuller lift of a ∈ Z/pZ to Z/(pn)Z is ap
n
.

I Example: The naive lift of 3 ∈ Z/5 to Z/125 is 3. The
Teichmuller lift is

3125 = 3 + 3 ∗ 5 + 2 ∗ 52 (mod 125).

I The lift is independent of the representation of a in Z/pZ
because

(a + bp)p
i

= ap
i

(mod pi )



Techmuller lift of polynomial roots

If m(x) ∈ Z[x ] is a monic polynomial of degree d > 0 such that
m(x) mod p splits as a product of distinct linear factors

m(x) ≡
d∏

i=1

(x − αi ) mod p, αi ∈ Z/pZ,

then the Teichmuller lifting of m(x) mod p is defined to be the
unique monic p-adic polynomial m̂(x) ∈ Zp[x ] of degree d such
that the p-adic roots of m̂(x) are exactly the Teichmuller lifting of
the roots of m(x) mod p. That is,

m̂(x) =
d∏

i=1

(x − w(αi )) ∈ Zp[x ].



The Teichmuller lifting m̂(x) can be computed without factoring
m(x) mod p. Using the coefficients of m(x), one forms a d × d
companion matrix M with integer entries such that
m(x) = det(xId −M). Then, one can show that

m̂(x) = lim
k→∞

det(xId −Mpk ), m̂(x) ≡ det(xId −Mpt ) mod pt .



Consistency from Teichmuller lift

The roots of Î over Z/ptZ are precisely the Teichmuller liftings
mod pt of the roots of I over Fp. Each point (r1, · · · , rk) over
Z/ptZ of Î satisfies the condition rpi ≡ ri mod pt .



I For any ideal Ii in the tree, there exists an integer
s ∈ {i , . . . , t}, and if (r1, . . . , ri ) is a solution of Ii in
(Z/(pt))i , then r1 + pr2 + · · ·+ pi−1ri + pi r is a solution of
f (x) (mod ps) for any integer r . Denote the maximum such s
by s(Ii ).

I If r is a root of f (mod pt), then there exists a terminal leaf
Ik in the tree such that

r ≡ r1 + pr2 + · · ·+ pk−1rk (mod pk)

for some root (r1, . . . , rk) of Ik .

I The root sets of ideals from distinct leaves are disjoint.



Termination conditions I

If s(Ik) = t then each root of Ik in Zk
p produces exactly pt−k roots

of f in Z/(pt). We can count the number of roots in Fk
p of Ik ,

multiply it by pt−k , output the number, and terminate the branch.



Termination conditions II

Let g be the polynomial satisfying

f (x1 + px2 + p2x3 + · · ·+ pk−1xk + pkxk+1)

≡ps(Ik )g(x1, . . . , xk+1) (mod Ik).

If g (mod p) is a constant polynomial in xk+1, and its constant is
an invertible element (mod Ik , p), then the count on this leaf is
zero.



Complexity analysis

f (x1 + px2 + p2x3 + p3x4 + · · · )
=g1(x1) + pg2(x1, x2) + p2g3(x1, x2, x3) + · · · (mod pt)

I The degree of x2 in g2 is less than t

I The degree of x3 in g3 is less than t/2

I The degree of xi in gi is less than t/(i − 1)



The proof

I The number of children that an ideal with distance k from the
root can have for is bounded from above by t/k , the degree
of g .

I The complexity is determined by the size of the tree, which is
bounded from above by d

∏
1≤k≤t(t/k) < det .

I We need to compute in the ring Fp[x1, . . . , xk ]/Ik . The ring is
a linear space over Fp with dimension at most
d
∏

1≤k≤t(t/k) < det .



Open problem

I Complexity from (d + log p + 2t)O(1) to (d + log p + t)O(1).



The end

Thank you !


