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Average rank

Given an elliptic curve over Q in its minimal short Weierstrass form:

E : y2 = x3 + a4x + a6, a4, a6 ∈ Z,

de�ne its naive height as: h(E ) := max{4|a4|3, 27a26}.

Elliptic curves (isomorphism classes) can be ordered according to their

naive height h, and it is natural to consider the average rank:

lim
N→∞

∑
h(E)≤N r(E )

#{E : h(E ) ≤ N}
.
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A conjecture and a known result

Minimalist conjecture (Quadratic twist family by Goldfeld, 1979)

Half of all elliptic curves have rank 0 and half have rank 1.

This would mean that the average rank should tend to 1/2.

Theorem (Bhargava�Shankar, 2015)

The average rank of all elliptic curves over Q is at most 0.885.
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Database

Balakrishnan, Ho, Kaplan, Spicer, Stein, and Weigandt (2016) created a

database of all elliptic curves with h(E ) < 2.7 · 1010, a total of 238,764,310
curves. The database contains the minimal model, the torsion subgroup,

the conductor, the Tamagawa product, the rank, and the size of the

2-Selmer group for each curve.
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Figure: Average rank of elliptic curves over Q order by naive height.
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Building a database for a special family

No elliptic curves recorded in the previous database have the largest

possible torsion subgroup for E/Q:

Z/2Z× Z/8Z.

The �rst curve with such a torsion subgroup is

y2 = x3 − 1386747x + 368636886,

with h(E ) ≈ 1.07 · 1019.

We built a database for the family of elliptic curves with torsion subgroup

Z/2Z× Z/8Z. We call this the (2, 8)-torsion family.

For each isomorphism class of the elliptic curves, we compute:

rank bounds, 2-Selmer rank, Tamagawa product and root number.
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The special family

This family has a nice parametrisation:

E : y2 = x(x + 1)(x + u4), where u =
2t

t2 − 1
, t ∈ Q ∩ (0, 1).

Write the parameter t = a
b for coprime integers a and b.

We work with parameter height H(E ) := max{|a|, |b|}, because
it is easier to enumerate and compare curves;

the curves have very large naive height:

0.559 · h(E )1/48 < H(E ) < 0.672 · h(E )1/48.

For each isomorphism class, we only consider the model with minimal H.
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Why this family?

We chose the (2, 8)-torsion family because:

we can quickly see curves of large naive height,

its torsion structure makes it easier to carry out 2-power descent,

it has interesting properties: e.g. it is not known whether this family

has a curve of rank 4.

The (2, 8)-torsion family is 0% of all E/Q. Average results on all elliptic

curves over Q does not apply to the (2, 8)-torsion family, and vice versa.
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Bounding rank � descent

The Selmer rank provides an upper bound on the rank, and is (in principle)

computable.

Implementations used

Sage: mwrank (Cremona's package) for 2-descent (with point search)

Magma: TwoPowerIsogenyDescentRankBound (Fisher's method) for

2-power descent via isogeny (with point search)
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Conditional upper bound � analytic rank

The Birch and Swinnerton-Dyer Conjecture (BSD)

The rank of an elliptic curve E equals to its analytic rank.

The analytic rank of E is the order of the zero of LE (s) at s = 1.

Computation with �nite precision gives an upper bound on the rank.

Implementations used

Sage: analytic_rank_upper_bound (Bober's method assumes GRH)

Magma: AnalyticRank

If at any point the upper bound and lower bound di�er by 1, assuming the

Parity conjecture (special case of BSD) gives the actual rank of the curve.
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Example

The last curve determined with H < 100 (at t = 67/99):

y2 = x3 − 19042627804923027301781026322193147x

+ 1009379401557416277213540098882110665433479125641686

has naive height ≈ 10103.

conductor ≈ 1020

root number = +1

Tamagawa product = 67,108,864

2-Selmer rank = 4

rank bounds:

mwrank: 0 ≤ r ≤ 2;
TwoPowerIsogenyDescentRankBound (MaxSteps:= 6): 0 ≤ r ≤ 2;
analytic_rank_upper_bound (∆ := 4.0): r ≤ 2;
AnalyticRank: r ≤ 0.
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Average rank

The average rank seems to peak at 0.744 at H = 24, at the 121st curve.

All curves determined up to H = 100.

92.1% of curves determined for H < 1000.
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Figure: Average rank in the (2, 8)-torsion family.
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Rank distribution

Rank H < 100 H < 250 H < 500 H < 1000

0 43.3 % 45.0 % 43.8 % 41.8 %

1 51.1 % 49.5 % 49.7 % 50.1 %

2 5.6 % 2.4 % 0.9 % 0.3 %

3 0.2 % 0.1 % 0.0 % 0.0 %

≥ 4 0.0 % 0.0 % 0.0 % 0.0 %

Unknown 0.0 % 3.0 % 5.6 % 7.8 %

# curves 2000 12607 50565 202461

Av rank 0.626 [0.545, 0.606] [0.516, 0.628] [0.508, 0.663]

Table: Rank distribution up to di�erent heights.
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Average Tamagawa product

From the BHKSSW database:
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Figure: Average Tamagawa product of all elliptic curves order by height.
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Average Tamagawa product
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Figure: Average Tamagawa product in the (2, 8)-torsion family.

Theorem (C.�H.�L.)

The average Tamagawa product in the (2, 8)-torsion family up to height N
has order of magnitude (logN)33.
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Average size of the 2-Selmer group

Theorem (Bhargava�Shankar, 2013)

For n ≤ 5, the average size of Seln(E ) for all elliptic curves E/Q equals the

sum of divisors of n.

For n = 2, from the BHKSSW database:
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Figure: Average size of the 2-Selmer group of all elliptic curves order by height.
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Average size of the 2-Selmer group

What about the (2, 8)-torsion family?

Is the average size of the 2-Selmer group converging?
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Figure: Average size of the 2-Selmer group in the (2, 8)-torsion family.

Maybe? Maybe not?
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Average size of the 2-Selmer group

Theorem (Klagsbrun�Lemke Oliver, 2014)

The average size of Sel2(E ) tends to in�nity for the family of elliptic curves

over Q with a 2-torsion point.

Modifying their method, we proved:

Theorem (C.�H.�L.)

The average size of Sel2(E ) tends to in�nity in the (2, 8)-torsion family.
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