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Input
® An algebraic power series
f(t) = ap + a1t + aot® + -+ € Fp[[d]]
specified by:

s an irreducible polynomial E(t,y) s.t. E(t, f(t)) =0
i the first a;'s

@ An integer N

Output

The coefficient ay
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The guestion is quite natural since
efficient methods exist for rational fractions
binary powering: cost O(log N)

Compute the N-th coefficient of an
algebraic series over Q by modular techniques

standard methods compute separately the numerator
and the denominator of a highly reducible fraction

One of the most difficult questions in modular computations is
the complexity of computations mod p for a large prime p of
coefficients in the expansion of an algebraic function

Chudnovsky, Chudnovsky

Beyond its relevance to complexity theory, this problem is
important in applications to integer factorization and point-

counting Bostan, Gaudry, Schost
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Our strategy

Christol's Theorem

Let f(t) = ap+ art+ agt® + -+ + apt" + - -
be an algebraic power series over F),.

Then there exists a finite dimensional [F,-vector space
containing f(t), and stable under the section operators Sy

Sr(C() + ct+ C2t2 + - ) =C+ Cr—‘,—pt"‘ Cr+2pt2 + -
for0<r<p
Rough idea behind our algorithms
We write N =T, rrP; then ay = (S, - -+ 5, 5,,1)(0)

We compute a finite dimension vector space as above
and the linear actions of the S,'s on it

Expected complexity: O(log, N)
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Effective version of Christol's Theorem

Theorem (BC?D, 2018)
Set d=deg, E and h = deg, E. Then, the F,-vector space

dz_:l -(t)f(it)i with  a;(t) € k[t], degaj(t) < h
=" B A) 5 . degai(t) <

contains f and is stable by the §,s

Ingredients of the proof
Q(t, A1)
5 (t.f(1))

@ We prove a commmutation relation
between residue and section operators

® We write:

= residue,_q;

Difficulty: residue are local around f(t)
whereas section operators are local around 0

Solution: We use Cartier operator
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First algorithm
d—1 ; d—1 ;
ft) ft)
Sy a(t) s5m/——— | = bi(t) sm———
<IZ(; g—f(t, f(t))> : 9E (t, f(t)) deg b;(t) < h
Quasi-Toeplitz linear system; displacement rank d

Precomputation

flt)! O(dhp) ~( 42
Compute P9 mod tOUdhe) O (d*hp)
Inverse the quasi-Toeplitz system ................. O (d“h)

Computation
Evaluate the left hand side ........................ O(d*h?)
Solve the system ................................... O(d*h?)

Total cost O (d*hp+ d“h) + O(d*h*log N)
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Why"?
The complexity O (d?hp+ d“h) + O(d?h*log N)
is good wnrt. d, h, N but is exponential in logp
Observation
In order to compute
d—1 ;
ft)
Sr ai(t) sm/——— mod 29"
(; O (1, (1))
we only need 2dh coefficients of the argument
Strategy
To compute S,(g(t)) :
® we compute a recurrence on the coefficients of g(t)

use differential equations

® we unroll the recurrence Chudnovsky algorithm
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Let g(t) € k(D)[f] = k(t)[y]/E(t,y) = L
L is a finite extension of k(t) of degree d

Differential equation
Lemma: L is stable by the derivation d%

Proof: Differentiate the relation E(t, f(t)) =0

Corollary: g(t),g'(t),...,g@(t) are dependent over k(t):
Aa(D)g D () + -+ Ai(D)g” (1) + Ao()g(t) = 0

Hecurrence

We write g(t) = go + git + got> +---
The differential equation gives:

bo(n)gn + bi1(n)gn—1 + b2(n)gn—2+ -+ b(n)gn—r =0
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Unrolling the recurrence
bo(n)gn + b1(n)gn—1 + ba2(n)gn—o + -+ + b(n)gr—r =0

Matricial formulation

1
bi(n)

(gn—r+1 A r+1 () (gO gr—l)T

Matrix factorial

To compute A(n—1)--- A(1)A(0) (for n= m?) :

® we compute B(x) = A(mx+m—1)--- A(mx+ 1)A(mx)
divide and conguer: cost O™ (m) = O (y/n)

@ we compute B(m—1)---B(1)B(0)

fast multipoint evaluation: cost O™ (m) = O™ (y/n)
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Difficulties to overcome

= the denominator by(n) vanishes for some n

we lift everything in characteristic zero
in Zp, the ring of p-adic integers

Bo(n)é‘n + Bl(n)gnfl + BQ(”)gn72 + -+ Br(n)gnfr =0

v difficult to control the p-adic valuation of by(n)

® we first study the ordinary case
i.e. 0 is an ordinary point of the differential equation

then:  by(n) =n(n+1)---(n4r—1)
® we change the origin

1 we need to relate the section operators at 0
and the section operators at another point
we use (again) the Cartier operator

Conclusion
We get an algorithm with complexity O"(/p)



That's all folks

Thanks for
your attention



