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Setting

I k ⊂ C a number field
I C a proper smooth absolutely irreducible curve over k of

genus g, represented by an affine plane model:

C̃ : f (x,y) = 0 where f (x,y) ∈ k[x,y].

Analytic Jacobian:

J(C)∼= H0(CC,Ω
1
C)
∗/H1(C(C),Z)∼= Cg/ΩZ2g,

I Basis for H0(CC,Ω
1
C): ω1, . . . ,ωg

I Basis for H1(C(C),Z): α1, . . . ,αg,β1, . . . ,βg

I Period matrix: Ω =

(∫
αj

ωi

∣∣∣∣ ∫
βj

ωi

)
i,j

Goal: Numerically compute Ω and read off properties of C.
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Previous work

Design criterion: Applications need lots of digits. Machine
precision (53 bits) is not enough.
Other work:
Deconinck-van Hoeij (2001): General case (Maple)
van Wamelen (2006): Hyperelliptic curves (Magma)
Molin-Neurohr (2017): Superelliptic curves (C/Arb)
Neurohr (2018): General implementation (in Magma?)

Our contributions:
I Use certified homotopy continuation
I Simple way of getting homology generators
I Flexible implementation that is easy to improve and adapt

(in Sage)
I Compute automorphisms of C via Torelli theorem
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Basis for H0(CC,Ω
1
C)

H0(CC,Ω
1
C) = H0(C,Ω1

C)⊗C contains the regular differentials on
C (i.e., the ones that have no poles)

I If C̃ : f (x,y) = 0 with deg(f ) = n then

H0(C,Ω1
C)⊂

{
hdx

∂yf (x,y)
: deg(h)≤ n−3

}
.

I Singularities impose linear conditions on h.
I If singularities are in {(1 : 0 : 0),(0 : 1 : 0),(0 : 0 : 1)},

conditions are easy to write down
I Otherwise, adjoint ideal gives required information
I Algebraic process, implemented in Singular.

Result: Basis ω1, . . . ,ωg, where

ωi =
hi(x,y)dx
∂yf (x,y)

with hi ∈ k[x,y]



Basis for H1(C(C),Z)

I H1(C(C),Z) consists of cycles modulo equivalence

I C(C) is a compact Riemann surface, so H1(C(C),Z)' Z2g

I Generated by classes of generators of the fundamental
group

I C(C) is an oriented topological surface, so H1(C(C),Z)
comes with a non-degenerate alternating intersection
pairing.

Strategy:
I Determine loops on C(C) that generate fundamental group
I Compute their intersection pairing matrix
I Use Z-linear algebra to get a basis for H1(C(C),Z).

One solution: Tretkoff-Tretkoff (1984) – rather opaque
algorithm.
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Lifting homotopy

Consider finite cover C̃→ C; (x,y) 7→ x of degree n = degy(f ).
Unramified outside

S = {x ∈ C : discy f (x,y) = 0}

I Determine a connected plane graph (V,E) in C−S for
which a cycle basis generates the fundamental group of
C−S

I Lift graph to (Ṽ, Ẽ) on C̃− x−1(S).
I A cycle basis of (Ṽ, Ẽ) generates the fundamental group of

C̃− x−1(S) and hence of C.
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Using Voronoi decomposition

Example: C̃ : y2 = x3− x−1

S = {s1,s2,s3}

Take (bounded) Voronoi cells:

v0

v1

v2

v3v4

v5

v6

v7v10

v11

s ′1

s ′2s ′3

s ′4

s ′5 s ′6

s1

s2

s3



Lifting edges

Lifting vertices and edges
I Lift v to C to v(i) = (xv,y

(i)
v ) by solving f (xv,y

(i)
v ) = 0.

I Given edge e = (v,w), parametrize x(t) = (1− t)xv + txw.
I Let y(i)(t) be the continuous function determined by

y(i)(0) = y(i)v and f (x(t),y(i)(t)) = 0
I Then e(i) = {(x(t),y(i)(t) : t ∈ [0,1]} is a lift of e to C̃.

Certified continuation:

I For t0, set ε =
1
3

min
i6=j
|y(i)(t0)− y(j)(t0)|

I (Kranich 2015): Compute explicit δ > 0 such that for
t0 ≤ t1 < t0 +δ we have |y(i)(t1)− y(i)(t0)|< ε

I Store sequence of points along e(i) from which (x(t),y(t))
can be reliably interpolated.
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Intersection pairing

I Cycle basis γ1, . . . ,γr for (Ṽ, Ẽ) gives us generators for
H1(C(C),Z).

I Orientation gives us a signed intersection pairing:

αβ

P

α

β

P

α

β
P

〈α,β 〉P = 1 〈α,β 〉P =−1 〈α,β 〉P =−1
2

I There is a basis α1, . . . ,αg,β1, . . . ,βg such that the Gram
matrix for the pairing is (

0 I
−I 0

)
I An algorithm of Frobenius allows us to find such a basis.



Computing period matrices

I Cycles αi,βi represented as Z-linear combinations of
edges e(k)vw : ∫

e(k)vw

ωi = |w− v|
∫ 1

t=0

hi(x(t),y(t))
∂yf (x(t),y(t))

dt

I Integral is well-suited for computation using a high-order
method, such as Gauss-Legendre.

I Presently heuristic adaptive integration method
I Future: Johansen’s ARB/ACB library now provides

numerical integration with guaranteed error bounds and
has a good interface in Sage.



Application: Homomorphisms

Suppose C1,C2 are curves with Jacobians J1,J2, with bases for
differentials and homology

I Consider a homomorphism φ : J1→ J2.
I T = Tφ : H0(C1,Ω

1
C1
)∗→ H0(C2,Ω

1
C2
)∗ Tφ ∈Mg2,g1(C)

I R = Rφ : H1(C1,Z)→ H1(C2,Z) Rφ ∈M2g2,2g1(Z)

Lemma: If Ωi = (Igi |τi) then

R =

(
D B
C A

)
, where D,B,C,A ∈Mg2,g1(Z).

and T = D+ τ2C, with B+ τ2A = (D+ τ2C)τ1.

Result: 2g1g2 equations with real coefficients in 4g1g2 integer
variables, so LLL can find small integer solutions.
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Application: Idempotents and automorphisms

Suppose we have a Z-basis B1, . . . ,Br for End(J) = Hom(J,J).

I We can determine idempotents in End(J), which give
isogeny factors.

I We can determine units.
I If symplectic structure is taken into account, we get a finite

group of symplectic automorphisms. The Torelli theorem
relates this to Aut(C).

Via action on tangent space, we get action of automorphisms
on canonical model of C. We can verify automorphisms
algebraically this way.

Similarly, numerically found endomorphisms can be certified:
[Costa-Mascot-Sijsling-Voight, 2016]



Example: genus 3 curves

(from Sutherland):

C1 : − x2y2− xy3 + x3 +2x2y+2xy2− x2− y = 0

C2 : y2 +(x4 + x3 + x2 +1)y = x7−8x5−4x4 +18x3−3x2−16x+8

We find a homomorphism (on homology):

1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 4





Example: non-galois cover

Consider

C : 4x6−54x5y−729x4 +108x3y3 +39366x2−54xy5−531441 = 0.

From idempotent computations we see for

D2 : y2 =−16x5−40x4 +32x3 +88x2−32x−23.

there is a degree 3 map C→ D2, but Aut(C) = Z/2.

Construction: From action of idempotent on tangent space,
we can construct a projection from canonical model of C to
construct D2.



Example: Prym varieties

Construction of W.P. Milne (1923) associates to a genus 4
curve (e.g.):

C : x2 + xy+ y2 +3xz+ z2− yw+w2 = xyz+ xyw+ xzw+ yzw = 0

a plane quartic:

F : 5s4 +28s3t+28s3 +47s2t2 +76s2t+44s2 +34st3 +82st2

+66st+18s+16t4 +34t3 +32t2 +18t+1 = 0.

Unramified double cover of C:

D̃ : u4v4−3u4v2 +u4−u3v3−2u3v+u2v2−u2 +3uv3

+2uv+ v4 + v2 +1 = 0.

Numerical computation: Jac(D̃)' Jac(F)× Jac(C). (consisten
with Jac(F) being the Prym variety of D̃→ C.
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Example usage

sage: E=EllipticCurve([0,1])

sage: S=E.riemann_surface(prec=100)

sage: A=S.symplectic_isomorphisms()

sage: A=S.symplectic_isomorphisms(); A

[

[ 0 -1] [ 1 1] [1 0] [ 0 1] [-1 -1] [-1 0]

[ 1 1], [-1 0], [0 1], [-1 -1], [ 1 0], [ 0 -1]

]

sage: TA=S.tangent_representation_algebraic(A); TA

[[a], [-a + 1], [1], [-a], [a - 1], [-1]]

sage: parent(TA[0])

Full MatrixSpace of 1 by 1 dense matrices over Number

Field in a with defining polynomial y^2 - y + 1


