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Motivation

Question
How do we find rational points on curves?

That is, given a curve X defined over Q, how do we compute
X(Q)? Can we make this algorithmic?
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Challenges in studying rational points on curves

Theorem (Faltings, 1983)
Let X be a smooth projective curve over Q of genus at least 2. The set
X(Q) is finite.

How do we find X(Q)? Faltings’ proof is not constructive.
There is another proof of finiteness due to Vojta, but it, too, is
ineffective.

I We could start by enumerating rational numbers and
checking to see if they satisfy the equation of X. But when
do we stop?

I Can we compute an upper bound on the “largest” point
which can appear in X(Q)?

I Can we compute an upper bound on |X(Q)|? If so, is it tight?

Motivating problem (Explicit Faltings): Given a curve X/Q
with g > 2, compute X(Q).
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Example 1: Can we compute X(Q)?
Consider X with affine equation

y2 = 82342800x6 − 470135160x5 + 52485681x4 + 2396040466x3+

567207969x2 − 985905640x + 247747600.

It has at least 642 rational points*, with x-coordinates:
0, -1, 1/3, 4, -4, -3/5, -5/3, 5, 6, 2/7, 7/4, 1/8, -9/5, 7/10, 5/11, 11/5, -5/12, 11/12, 5/12, 13/10, 14/9, -15/2, -3/16, 16/15, 11/18, -19/12, 19/5, -19/11,
-18/19, 20/3, -20/21, 24/7, -7/24, -17/28, 15/32, 5/32, 33/8, -23/33, -35/12, -35/18, 12/35, -37/14, 38/11, 40/17, -17/40, 34/41, 5/41, 41/16, 43/9, -47/4,
-47/54, -9/55, -55/4, 21/55, -11/57, -59/15, 59/9, 61/27, -61/37, 62/21, 63/2, 65/18, -1/67, -60/67, 71/44, 71/3, -73/41, 3/74, -58/81, -41/81, 29/83, 19/83,
36/83, 11/84, 65/84, -86/45, -84/89, 5/89, -91/27, 92/21, 99/37, 100/19, -40/101, -32/101, -104/45, -13/105, 50/111, -113/57, 115/98, -115/44, 116/15,
123/34, 124/63, 125/36, 131/5, -64/133, 135/133, 35/136, -139/88, -145/7, 101/147, 149/12, -149/80, 75/157, -161/102, 97/171, 173/132, -65/173,
-189/83, 190/63, 196/103, -195/196, -193/198, 201/28, 210/101, 227/81, 131/240, -259/3, 265/24, 193/267, 19/270, -279/281, 283/33, -229/298,
-310/309, 174/335, 31/337, 400/129, -198/401, 384/401, 409/20, -422/199, -424/33, 434/43, -415/446, 106/453, 465/316, -25/489, 490/157, 500/317,
-501/317, -404/513, -491/516, 137/581, 597/139, -612/359, 617/335, -620/383, -232/623, 653/129, 663/4, 583/695, 707/353, -772/447, 835/597,
-680/843, 853/48, 860/697, 515/869, -733/921, -1049/33, -263/1059, -1060/439, 1075/21, -1111/30, 329/1123, -193/1231, 1336/1033, 321/1340,
1077/1348, -1355/389, 1400/11, -1432/359, -1505/909, 1541/180, -1340/1639, -1651/731, -1705/1761, -1757/1788, -1456/1893, -235/1983, -1990/2103,
-2125/84, -2343/635, -2355/779, 2631/1393, -2639/2631, 396/2657, 2691/1301, 2707/948, -164/2777, -2831/508, 2988/43, 3124/395, -3137/3145,
-3374/303, 3505/1148, 3589/907, 3131/3655, 3679/384, 535/3698, 3725/1583, 3940/939, 1442/3981, 865/4023, 2601/4124, -2778/4135, 1096/4153,
4365/557, -4552/2061, -197/4620, 4857/1871, 1337/5116, 5245/2133, 1007/5534, 1616/5553, 5965/2646, 6085/1563, 6101/1858, -5266/6303,
-4565/6429, 6535/1377, -6613/6636, 6354/6697, -6908/2715, -3335/7211, 7363/3644, -4271/7399, -2872/8193, 2483/8301, -8671/3096, -6975/8941,
9107/6924, -9343/1951, -9589/3212, 10400/373, -8829/10420, 10511/2205, 1129/10836, 675/11932, 8045/12057, 12945/4627, -13680/8543, 14336/243,
-100/14949, -15175/8919, 1745/15367, 16610/16683, 17287/16983, 2129/18279, -19138/1865, 19710/4649, -18799/20047, -20148/1141, -20873/9580,
21949/6896, 21985/6999, 235/25197, 16070/26739, 22991/28031, -33555/19603, -37091/14317, -2470/39207, 40645/6896, 46055/19518,
-46925/11181, -9455/47584, 55904/8007, 39946/56827, -44323/57516, 15920/59083, 62569/39635, 73132/13509, 82315/67051, -82975/34943,
95393/22735, 14355/98437, 15121/102391, 130190/93793, -141665/55186, 39628/153245, 30145/169333, -140047/169734, 61203/171017,
148451/182305, 86648/195399, -199301/54169, 11795/225434, -84639/266663, 283567/143436, -291415/171792, -314333/195860, 289902/322289,
405523/327188, -342731/523857, 24960/630287, -665281/83977, -688283/82436, 199504/771597, 233305/795263, -799843/183558, -867313/1008993,
1142044/157607, 1399240/322953, -1418023/463891, 1584712/90191, 726821/2137953, 2224780/807321, -2849969/629081, -3198658/3291555,
675911/3302518, -5666740/2779443, 1526015/5872096, 13402625/4101272, 12027943/13799424, -71658936/86391295, 148596731/35675865,
58018579/158830656, 208346440/37486601, -1455780835/761431834, -3898675687/2462651894

Is this list complete?
*Noam Elkies and Michael Stoll (2008)
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Example 2: Can we compute X(Q)?

Consider X:

−x3y+2x2y2−xy3−x3z+x2yz+xy2z−2xyz2+2y2z2+xz3−3yz3 = 0.

This is a model for the “split Cartan” curve Xs(13).

One can find the following points: (0 : 0 : 1), (−1 : 0 : 1),
(0 : 3 : 2), (1, 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 0).

Question: Is this set of points above precisely X(Q)?
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Example 3: Can we compute X(Q)?
Consider X with affine equation

y2 = x(x − 1)(x − 2)(x − 5)(x − 6).

The Chabauty–Coleman bound tells us that

|X(Q)| 6 10.

We find the points

(0, 0), (1, 0), (2, 0), (5, 0), (6, 0),∞
and

(3,±6), (10,±120)

in X(Q).

We’ve found 10 points!

Hence we have provably determined

X(Q) = {(0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6), (10,±120),∞}.
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Chabauty–Coleman

What is different in this last example? What allows us to
compute X(Q)?

(A bit of luck + ) satisfying an inequality between the genus of
the curve X and the rank of the Mordell-Weil group of its
Jacobian J(Q) (+ work of Chabauty and Coleman).
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Chabauty’s theorem

Theorem (Chabauty, ’41)
Let X be a curve of genus g > 2 over Q. Suppose the Mordell-Weil
rank r of J(Q) is less than g. Then X(Q) is finite.

To make Chabauty’s theorem effective:
I Need to find a way to bound X(Qp) ∩ J(Q)

I Do this by constructing functions (p-adic integrals of
1-forms) on J(Qp) that vanish on J(Q) and restrict them to
X(Qp)

This was done by Coleman (1985).
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The method of Chabauty–Coleman
Assume X(Q) , ∅ and fix a basepoint b ∈ X(Q).
I ι : X ↪→ J, sending P 7→ [(P) − (b)]
I p > 2: prime of good reduction for X

Recall that the map H0(JQp ,Ω1) −→ H0(XQp ,Ω1) induced by ι is
an isomorphism of Qp-vector spaces. SupposeωJ restricts toω.
Then for Q, Q ′ ∈ X(Qp), define∫Q ′

Q
ω :=

∫ [Q ′−Q]

0
ωJ.

If r < g, there existsω ∈ H0(XQp ,Ω1) such that∫P

b
ω = 0

for all P ∈ X(Q). Thus by studying the zeros of
∫
ω, we can find

a finite set of p-adic points containing the rational points of X.
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Recap of the method (+bonus observations)
Given a curve X/Q of genus g > 2, embed it inside its Jacobian J
and consider the rank r of J(Q).
I If r < g, we can use the Chabauty–Coleman method to

compute a regular 1-form whose p-adic (Coleman) integral
vanishes on rational points.

I By studying the zeros of this integral, Coleman gave the
bound

#X(Q) 6 #X(Fp) + 2g − 2.

I This bound can be sharp in practice, as in the third
example (g = 2, r = 1, p = 7).

I Regardless, the Coleman integral cuts out a finite set of
p-adic points; this set contains X(Q) as a subset.

I Even when the bound is not sharp, we can often combine
Chabauty–Coleman data at multiple primes (Mordell–Weil
sieve) to extract X(Q).
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Computing rational points via Chabauty–Coleman

We have

X(Q) ⊂ X(Qp)1 :=

{
z ∈ X(Qp) :

∫ z

b
ω = 0,

}
for a p-adic line integral

∫∗
b ω, withω ∈ H0(XQp ,Ω1).

We would like to compute an annihilating differentialω and
then calculate the finite set of p-adic points X(Qp)1 .
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Example: Chabauty–Coleman with g = 2, r = 1
Suppose we have a genus 2 curve X/Q with rk J(Q) = 1 and
X(Q) , ∅. Fix a basepoint b ∈ X(Q).
I We know H0(XQp ,Ω1) = 〈ω0,ω1〉.
I Since r = 1 < 2 = g, we can compute X(Qp)1 as the zero set

of a p-adic integral.
I If we know one more point P ∈ X(Q), we can compute the

constants A, B ∈ Qp:∫P

b
ω0 = A,

∫P

b
ω1 = B,

then solve the equation

f (z) :=
∫ z

b
(Bω0 − Aω1) = 0

for z ∈ X(Qp).
I The set of such z is finite, and X(Q) is contained in this set.
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Beyond Chabauty–Coleman
Do we have any hope of doing this when r > g?
I Conjecturally, yes, via Kim’s nonabelian Chabauty

program.
I Instead of using the Jacobian of X and abelian integrals,

use nonabelian geometric objects associated to X, which carry
iterated Coleman integrals.

I These iterated integrals cut out Selmer varieties, which
give a sequence of sets

X(Q) ⊂ · · · ⊂ X(Qp)n ⊂ X(Qp)n−1 ⊂ · · · ⊂ X(Qp)2 ⊂ X(Qp)1

where the depth n set X(Qp)n is given by equations in
terms of n-fold Coleman integrals∫P

b
ωn · · ·ω1.

I Note that X(Qp)1 is the classical Chabauty–Coleman set.
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Nonabelian Chabauty

Conjecture (Kim, ’12)
For n� 0, the set X(Qp)n is finite.

This is implied by the Bloch-Kato conjectures.

Questions:
I When can X(Qp)n be shown to be finite?
I For which classes of curves can nonabelian Chabauty be

used to prove Faltings’ theorem?
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Finiteness of X(Qp)n

Theorem (Coates–Kim ’10)
For X/Q with CM Jacobian, for n� 0, the set X(Qp)n is finite.

Theorem (Ellenberg–Hast ’17)
Can extend the above to give a new proof of Faltings’ theorem for
curves X/Q that are solvable Galois covers of P1.

Theorem (B.–Dogra ’16)
For X/Q with g > 2 and

r < g + rk NS(JQ) − 1,

the set X(Qp)2 is finite.

So when can we explicitly compute X(Qp)2? We call this
quadratic Chabauty.
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Quadratic Chabauty: Q-points and p-adic heights

Basic strategy:
I Use “quadratic Chabauty” (Kim’s nonabelian Chabauty at

level 2) to compute X(Qp)2, a finite set of p-adic points that
contains all rational points on X.

I We know that X(Qp)2 is finite when r = g and rk NS(J) > 1.
The difficulty is in making this effective.

I The functions cutting out p-adic points can be expressed in
terms of p-adic heights pairings; the key is to move from
linear relations (as in Chabauty–Coleman) to bilinear
relations.

I These p-adic heights have a natural interpretation in terms
of p-adic differential equations, with relevant constants
computed in terms of known rational points.
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From classical Chabauty to quadratic Chabauty

Recap: we can think of classical Chabauty as using linear
relations among

∫x
b ω forω ∈ H0(XQp ,Ω1), when r < g, i.e.,

understanding

X(Q)→ X(Qp)
AJb−−→ H0(XQp ,Ω1)∗

x 7→ (ω 7→
∫ x

b
ω).

The simplest generalization of Chabauty–Coleman comes from
considering bilinear relations on H0(XQp ,Ω1)∗ when r = g. This
motivates the notion of a quadratic Chabauty function.
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Quadratic Chabauty function

Definition
A quadratic Chabauty function θ is a function θ : X(Qp)→ Qp
such that:

1. On each residue disk, the map
(AJb, θ) : X(Qp)→ H0(XQp ,Ω1)∗ ×Qp is given by a power
series.

2. There exist
I an endomorphism E of H0(XQp ,Ω1)∗,
I a functional c ∈ H0(XQp ,Ω1)∗, and
I a bilinear form

B : H0(XQp ,Ω1)∗ ⊗H0(XQp ,Ω1)∗ → Qp

such that for all x ∈ X(Q),

θ(x) − B(AJb(x), E(AJb(x)) + c) = 0.
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Quadratic Chabauty functions

Lemma
A quadratic Chabauty function induces a function F : X(Qp)→ Qp
such that F(X(Q)) = 0 and F has finitely many zeros.

I The goal is to make this explicit: need a quadratic
Chabauty function: need an E, c, and need to solve for B.

I Solving for B is very similar to solving for linear relations
in Chabauty–Coleman.

We find quadratic Chabauty functions using p-adic height
functions. As a warm-up, we’ll use p-adic heights to find
integral points on affine hyperelliptic curves when r = g.
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p-adic heights on Jacobians of curves (Coleman-Gross)
I Assume X(Q) , ∅ and fix a basepoint b ∈ X(Q).
I Let ι : X ↪→ J, sending P 7→ [P − b].

The Coleman-Gross p-adic height

h : J(Q)→ Qp

I is a quadratic form
I decomposes as a finite sum of local heights h =

∑
v hv over

finite primes v
I hp is computed with respect to a splitting s of the Hodge

filtration on H1
dR(XQp)

I work of Bernardi, Néron, Perrin-Riou, Schneider,
Mazur-Tate, Coleman-Gross, Nekovář, Besser

*More generally, for X defined over a number field K, also depends on a choice of idele class character
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Coleman-Gross global height as a sum of local heights
Using the Coleman-Gross p-adic height, we start to see

global p-adic height as a sum of local heights

playing a role in understanding rational points:

I The Coleman-Gross p-adic height pairing is a (symmetric)
bilinear pairing

h : Div0(X)×Div0(X)→ Qp,

with h =
∑

v hv

I We have h(D, div(g)) = 0 for g ∈ Q(X)×, so h is
well-defined on J × J.

I Construction of local height hv depends on whether v = p
or v , p.

I v , p: intersection theory
I v = p: normalized differentials, Coleman integration
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Quadratic Chabauty (roughly)
Given a global p-adic height h, we study it on rational points:

h︸︷︷︸
quadratic form, rewrite as a

p-adic analytic function
using Coleman integrals

= hp︸︷︷︸
p-adic analytic function

via p-adic differential equation

+
∑
v,p

hv︸   ︷︷   ︸
takes on finite

number of values
on rational points

(we can sometimes prove)

For example, using the Coleman-Gross p-adic height, the
statement of quadratic Chabauty for integral points has, as its
main ideas, (1) computing the local height hp as a double Coleman
integral and (2) controlling the finite number of values∑

v,p

hv(z − b, z − b)

takes on integral points z.
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Quadratic Chabauty for integral points

We use these double and single Coleman integrals to rewrite the
global p-adic height pairing h and to study it on integral points:

h︸︷︷︸
quadratic form, rewrite as a

p-adic analytic function
using Coleman integrals

= hp︸︷︷︸
p-adic analytic function

via double Coleman integral

+
∑
v,p

hv︸   ︷︷   ︸
takes on finite

number of values
on integral points
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Quadratic Chabauty for integral points

We use these double and single Coleman integrals to rewrite the
global p-adic height pairing h and to study it on integral points:

hp︸︷︷︸
p-adic analytic function

via double Coleman integral

− h︸︷︷︸
quadratic form, rewrite as a

p-adic analytic function
using Coleman integrals

= −
∑
v,p

hv︸   ︷︷   ︸
takes on finite

number of values
on integral points
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Quadratic Chabauty for integral points

Theorem (B.-Besser-Müller)
Let X/Q be a hyperelliptic curve. If r = g > 1 and fi(x) :=

∫x
b ωi for

ωi ∈ H0(XQp ,Ω1) are linearly independent, then there is an
explicitly computable finite set S ⊂ Qp and explicitly computable
constants αij ∈ Qp such that

θ(P) −
∑

06i6j6g−1

αijfifj(P),

takes values in S on integral points, where θ(P) =
∑g−1

i=0

∫P
b ωiω̄i.

This gives a quadratic Chabauty function θ and a finite set of
values S (giving a quadratic Chabauty pair).

How can we use these ideas to study rational points?
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From integral to rational points
Main problem generalizing this to rational points: we can’t
control hv(x) for v , p when x is rational but not integral.

Workaround for rational points:
I Construct a QCF by associating to points of X certain

p-adic Galois representations, and then take Nekovář
p-adic heights .

I Idea is to construct a representation AZ(b, x) for every
x ∈ X(Q). Depends on a choice of “nice” correspondence Z
on X. Such a correspondence exists when rk NS(J) > 1.

I Restrict to case of X with everywhere potential good
reduction, then for all v , p, local heights hv(AZ(b, x)) are
trivial.

I Compute p-adic height of AZ(b, x) via explicit description
of Dcris(AZ(b, x)) as a filtered φ-module.
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Quadratic Chabauty for rational points

I Using Nekovář’s p-adic height h, there is a local
decomposition

h(AZ(b, x)) = hp(AZ(b, x)) +
∑
v,p

hv(AZ(b, x))

where
1. x 7→ hp(AZ(b, x)) extends to a locally analytic function
θ : X(Qp)→ Qp by Nekovář’s construction and

2. For v , p the local heights hv(AZ(b, x)) are trivial since by
assumption, all primes v , p are of potential good reduction

This gives a QCF whose pairing is h and whose endomorphism
is induced by Z.
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Quadratic Chabauty
Suppose X/Q satisfies
I r = g,
I rk NS(JQ) > 1,
I p-adic closure J(Q) has finite index in J(Qp),
I X has everywhere potential good reduction,
I and that we know enough rational points Pi ∈ X(Q).

If we can solve the following problems, we have an algorithm
for computing a finite subset of X(Qp) containing X(Q):

1. Expand the function x 7→ hp(AZ(b, x)) into a p-adic power
series on every residue disk.

2. Evaluate h(AZ(b, Pi)) for the known rational points
Pi ∈ X(Q).

Note that since we are assuming we have everywhere
potentially good reduction, we have

h(AZ(b, x)) = hp(AZ(b, x)),

i.e., the second problem is subsumed by the first.
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Working example: a special curve
Serre’s uniformity problem: Does there exist an absolute
constant p0 such that for any non-CM elliptic curve E/Q and
any prime p > p0, the Galois representation

ρ̄E,p : GQ → Aut(E[p]) � GL2(Fp)

is surjective?

I Serre: Yes, if we allow p0 to depend on E.
I Folklore: p0 = 37 should work.

Maximal subgroups of GL2(Fp):

(1) Borel subgroups
(2) Exceptional subgroups
(3) Normalizers of split Cartan subgroups
(4) Normalizers of non-split Cartan subgroups

Known for (1), (2), (3).
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Serre’s uniformity problem, rational points on curves

For every p, there is a modular curve Xs(p) (resp. Xns(p)) such
that for an elliptic curve E/Q:

If im(ρ̄E,p) is contained in the normalizer of a split (resp.
non-split) Cartan subgroup of GL2(Fp), we get a point
P ∈ Xs(p)(Q) (resp. P ∈ Xns(p)(Q)) which is not a cusp.

I Bilu–Parent (’11): There exists p0 such that
Xs(p)(Q) = {cusps, CM-points} for p > p0.

I Bilu–Parent–Rebolledo (’13): Xs(p)(Q) = {cusps,
CM-points} for p > 11, p , 13.
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The curve

One curve remained after the work of Bilu–Parent–Rebolledo:
the split Cartan case of p = 13. The curve Xs(13) is known to be
I non-hyperelliptic (smooth plane quartic) with r > g = 3,
I isomorphic over Q to Xns(13) (Baran).

We would like to compute Xs(13)(Q). A model for X is given by

x3y+x3z−2x2y2−x2yz+xy3−xy2z+2xyz2−xz3−2y2z2+3yz3 = 0.
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Aside: non-hyperelliptic difficulties

One computational difficulty: need action of Frobenius to solve
p-adic differential equations and compute Coleman integrals.

I In the case of hyperelliptic curves, can do this by
reworking Kedlaya’s zeta function algorithm for
hyperelliptic curves over finite fields (computed in terms
of p-adic Monsky-Washnitzer cohomology).

I Tuitman (’14,’15) gave an algorithm vastly generalizing
Kedlaya’s zeta function algorithm from hyperelliptic
curves to smooth curves.

I Main ideas: pick a nice lift of Frobenius, work in rigid
cohomology, do the bookkeeping in terms of a map
x : X→ P1.
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An interesting curve

We are interested in the following smooth plane quartic:

X : x3y+x3z−2x2y2−x2yz+xy3−xy2z+2xyz2−xz3−2y2z2+3yz3 = 0.

The Jacobian J of X has r = rk J(Q) = 3. The set X(Q) contains
the following 7 rational points (Galbraith):

(0 : 1 : 0), (0 : 0 : 1), (−1 : 0 : 1),

(1 : 0 : 0), (1 : 1 : 0), (0 : 3 : 2), (1 : 0 : 1).

Question: Does X(Q) have more rational points?

Since r = g = 3 and rk NS(JQ) = 3, we can carry out quadratic
Chabauty on this curve.

Jennifer Balakrishnan, Boston University Effective aspects of quadratic Chabauty 31



An interesting curve

We are interested in the following smooth plane quartic:

X : x3y+x3z−2x2y2−x2yz+xy3−xy2z+2xyz2−xz3−2y2z2+3yz3 = 0.

The Jacobian J of X has r = rk J(Q) = 3. The set X(Q) contains
the following 7 rational points (Galbraith):

(0 : 1 : 0), (0 : 0 : 1), (−1 : 0 : 1),

(1 : 0 : 0), (1 : 1 : 0), (0 : 3 : 2), (1 : 0 : 1).

Question: Does X(Q) have more rational points?

Since r = g = 3 and rk NS(JQ) = 3, we can carry out quadratic
Chabauty on this curve.

Jennifer Balakrishnan, Boston University Effective aspects of quadratic Chabauty 31



An interesting curve

We are interested in the following smooth plane quartic:

X : x3y+x3z−2x2y2−x2yz+xy3−xy2z+2xyz2−xz3−2y2z2+3yz3 = 0.

The Jacobian J of X has r = rk J(Q) = 3. The set X(Q) contains
the following 7 rational points (Galbraith):

(0 : 1 : 0), (0 : 0 : 1), (−1 : 0 : 1),

(1 : 0 : 0), (1 : 1 : 0), (0 : 3 : 2), (1 : 0 : 1).

Question: Does X(Q) have more rational points?

Since r = g = 3 and rk NS(JQ) = 3, we can carry out quadratic
Chabauty on this curve.

Jennifer Balakrishnan, Boston University Effective aspects of quadratic Chabauty 31



High-level strategy: our favorite curve

Practical matters:
I Make a small change of coordinates to work with the

following curve X:

Q(x, y) = y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z −
10y3z − 32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0

so that we have enough (5 of the known) rational points in
each of two affine patches (and satisfy hypotheses of
Tuitman’s algorithm).

I Since rk NS(JQ) = 3, we have two independent nontrivial
nice correspondences Z1, Z2 on X; we compute equations
for 17-adic heights hZ1 , hZ2 on X

I Check the simultaneous solutions of the above two
equations...are they precisely on the 7 known rational
points?!
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Recovered zeros: first affine patch
X(F17) det(T1(x)) = 0 det(T2(x)) = 0
(0, 0) 0 0
(0, 2) 0 0

9 · 17 + 11 · 172 + 11 · 173

(4, 1) 4 + 13 · 17 + 11 · 172 + 4 · 173 + 12 · 174

4 + 15 · 17 + 4 · 172 + 2 · 173 + 11 · 174

(5,−2) 5 + 14 · 17 + 7 · 172 + 13 · 173 + 12 · 174

5 + 15 · 17 + 10 · 172 + 8 · 173 + 8 · 174

5 + 3 · 17 + 8 · 172 + 4 · 173 + 2 · 174

(7,−7) 7 + 8 · 17 + 8 · 172 + 8 · 173 + 8 · 174 7 + 8 · 17 + 8 · 172 + 8 · 173 + 8 · 174

7 + 6 · 17 + 10 · 172 + 14 · 173 + 15 · 174

7 + 7 · 17 + 8 · 173 + 7 · 174

(7, 6) 7 + 8 · 17 + 13 · 172 + 3 · 173 + 3 · 174

(8, 0) 8 + 8 · 17 + 12 · 172 + 16 · 173 + 7 · 174

8 + 16 · 17 + 16 · 172 + 173 + 9 · 174

8 + 10 · 17 + 7 · 172 + 2 · 173 + 10 · 174

8 + 5 · 17 + 16 · 172 + 6 · 173 + 12 · 174

(8,−14) 8 + 8 · 17 + 14 · 172 + 8 · 173 + 16 · 174

8 + 10 · 17 + 12 · 172 + 2 · 173 + 8 · 174

(9,−4) 9 + 10 · 17 + 8 · 172 + 4 · 173 + 6 · 174

(9,−8) 9 + 8 · 17 + 8 · 172 + 8 · 173 + 8 · 174 9 + 8 · 17 + 8 · 172 + 8 · 173 + 8 · 174

9 + 6 · 172 + 6 · 173 + 3 · 174

(13,−8) 13 + 12 · 17 + 7 · 172 + 2 · 173 + 12 · 174

13 + 13 · 17 + 7 · 172 + 7 · 173 + 13 · 174

13 + 4 · 17 + 10 · 172 + 3 · 173 + 7 · 174

(15,−3) 15 + 8 · 17 + 9 · 172 + 4 · 173 + 16 · 174

15 + 4 · 17 + 5 · 172 + 2 · 174

Upshot: recovered four points in Xs(13), proved no other Q-points in
the first affine patch. (A total of five Q-points here, as we’d hoped!)
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Rational points on Xs(13)

Repeating this for the second affine patch similarly shows that
there are no new rational points found.

Theorem (B.–Dogra–Müller–Tuitman–Vonk)
We have |Xs(13)(Q)| = 7.

This completes the classification of rational points on split
Cartan curves by Bilu–Parent–Rebolledo.

By the work of Baran, we know Xs(13) is isomorphic to Xns(13)
over Q, so we also get (for free) that |Xns(13)(Q)| = 7.
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A quadratic Chabauty bound

Recall that Coleman showed, via a study of zeros of an integral
defining X(Qp)1, that when r < g, we have

#X(Q) 6 #X(Fp) + 2g − 2.

Can similarly study zeros of a quadratic Chabauty function to
prove

Theorem (B.–Dogra)
Suppose r = g and rk NS(JQ) > 1. Let κp = 1 +

p−1
p−2

1
log(p) . Then

#X(Q) < κp

(∏
bad v

nv

)
#X(Fp)(16g3 + 15g2 − 16g + 10).
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