# Computing normalizers of tiled orders in $M_n(\mathbb{Q}_p)$

Angelica Babei

Dartmouth College

ANTS - XIII

July 17th, 2018





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

### Goal

We want to compute the normalizer of a tiled order  $\Gamma \subset M_n(\mathbb{Q}_p)$ . We accomplish this by realizing the normalizer as the symmetries of a certain convex polytope, and later as the automorphisms of a valued quiver.

Let  $V = \mathbb{Q}_p^n$ , fix a basis  $\{e_1, e_2, \dots, e_n\}$  and identify  $B = M_n(\mathbb{Q}_p)$  with  $\operatorname{End}_{\mathbb{Q}_p}(V)$ .

**1.** Given  $L_0 = \mathbb{Z}_p e_1 \oplus \mathbb{Z}_p e_2 \oplus \cdots \oplus \mathbb{Z}_p e_n$ , we identify  $\Lambda_0 := M_n(\mathbb{Z}_p)$  with  $\operatorname{End}_{\mathbb{Z}_p}(L_0)$ .

**2.** For any maximal order  $\Lambda \subset B$ , there exists  $\xi \in B^{\times}$  such that  $\Lambda = \xi \Lambda_0 \xi^{-1}$ , and we identify  $\Lambda$  with  $\operatorname{End}_{\mathbb{Z}_p}(\xi L_0)$ .

**3.**  $\operatorname{End}_{\mathbb{Z}_p}(L) = \operatorname{End}_{\mathbb{Z}_p}(M)$  if and only if  $L = \alpha M$ ,  $\alpha \in \mathbb{Q}_p^{\times}$ , in which case L and M are homothetic and we write [L] = [M].

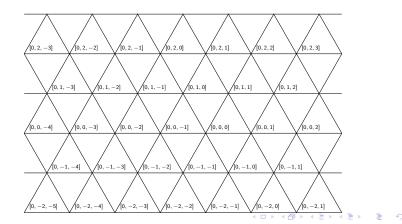
Construct the building for  $SL_n(\mathbb{Q}_p)$ :

- The vertices of the building correspond to homothety classes of lattices in V (or maximal orders in B).
- ► There is an edge between two vertices if there are lattices L<sub>1</sub> and L<sub>2</sub> in their respective homothety classes of lattices such that pL<sub>1</sub> ⊊ L<sub>2</sub> ⊊ L<sub>1</sub>.
- ► The vertices of *m*-simplices correspond to chains of lattices *pL*<sub>1</sub> ⊆ *L*<sub>2</sub> ⊆ ··· ⊆ *L*<sub>*m*+1</sub> ⊆ *L*<sub>1</sub>. The maximal (*n* − 1)-simplices are called chambers.

## The building for $SL_n(\mathbb{Q}_p)$ (cont.)

Notation. If  $L = \mathbb{Z}_p p^{m_1} e_1 \oplus \mathbb{Z}_p p^{m_2} e_2 \oplus \cdots \oplus \mathbb{Z}_p p^{m_n} e_n$ , then  $[L] = [\mathbb{Z}_p e_1 \oplus \mathbb{Z}_p p^{m_2 - m_1} e_2 \oplus \cdots \oplus \mathbb{Z}_p p^{m_n - m_1} e_n]$ , and we encode  $[L] = [0, m_2 - m_1, m_3 - m_1, \dots, m_n - m_1]$ .

A piece of an apartment in the building for  $SL_3(\mathbb{Q}_p)$ :



### Intro to tiled orders

### Definition

Let  $\Gamma \subset B$  be an order. We say  $\Gamma$  is **tiled** if it contains a conjugate of the ring diag $(\mathbb{Z}_p, \mathbb{Z}_p, \dots, \mathbb{Z}_p)$ .

By restricting ourselves to one apartment, we may assume  $\operatorname{diag}(\mathbb{Z}_p, \mathbb{Z}_p, \dots, \mathbb{Z}_p) \subset \Gamma$ , in which case:

**1.**  $\Gamma = (p^{\nu_{ij}}\mathbb{Z}_p)$ , where

$$u_{ij} + \nu_{jk} \ge \nu_{ik}, \ \nu_{ii} = 0 \quad \text{for all } i, j, k \le n.$$

We define the exponent matrix  $M_{\Gamma} := (\nu_{ij}) \in M_n(\mathbb{Z})$ .

**2.**  $\Gamma = \bigcap_{i=1}^{n} \Lambda_i$  can be written as the intersection of *n* maximal orders, and we can choose  $\Lambda_i$  to be  $\operatorname{End}_{\mathbb{Z}_p}(P_i)$ , where  $P_i$  is given by the *i*th column of  $\Gamma$ .

# Tiled orders (example)

$$\begin{split} &\Gamma = \begin{pmatrix} \mathbb{Z}_p & p\mathbb{Z}_p & p^2\mathbb{Z}_p \\ \mathbb{Z}_p & \mathbb{Z}_p & p\mathbb{Z}_p \\ \mathbb{Z}_p & p\mathbb{Z}_p & \mathbb{Z}_p \end{pmatrix} = \Lambda_1 \cap \Lambda_2 \cap \Lambda_3, \text{ where} \\ &\Lambda_1 = M_3(\mathbb{Z}_p) = \text{End}(\mathbb{Z}_p e_1 \oplus \mathbb{Z}_p e_2 \oplus \mathbb{Z}_p e_3), \\ &\Lambda_2 = \begin{pmatrix} \mathbb{Z}_p & p\mathbb{Z}_p & \mathbb{Z}_p \\ p^{-1}\mathbb{Z}_p & \mathbb{Z}_p & p^{-1}\mathbb{Z}_p \\ \mathbb{Z}_p & p\mathbb{Z}_p & \mathbb{Z}_p \end{pmatrix} = \text{End}(\mathbb{Z}_p p e_1 \oplus \mathbb{Z}_p e_2 \oplus \mathbb{Z}_p p e_3), \\ &\Lambda_3 = \begin{pmatrix} \mathbb{Z}_p & p\mathbb{Z}_p & p^2\mathbb{Z}_p \\ p^{-1}\mathbb{Z}_p & \mathbb{Z}_p & p\mathbb{Z}_p \\ p^{-2}\mathbb{Z}_p & p^{-1}\mathbb{Z}_p & \mathbb{Z}_p \end{pmatrix} = \text{End}(\mathbb{Z}_p p^2 e_1 \oplus \mathbb{Z}_p p e_2 \oplus \mathbb{Z}_p e_3). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

# Convex polytopes $C_{\Gamma}$ of $\Gamma$

$$\Gamma = \begin{pmatrix} \mathbb{Z}_{p} & p^{2}\mathbb{Z}_{p} & p^{3}\mathbb{Z}_{p} \\ p\mathbb{Z}_{p} & p^{3}\mathbb{Z}_{p} & \mathbb{Z}_{p} \end{pmatrix} \text{ with } M_{\Gamma} = \begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{pmatrix}$$
gives the following polytope  $C_{\Gamma}$ :
$$\frac{1}{1} = \begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{pmatrix}$$

#### Definition

Let  $\mathcal{N}(\Gamma) = \{\xi \in GL_n(\mathbb{Q}_p) | \xi \Gamma \xi^{-1} = \Gamma\}$ . This is the normalizer of  $\Gamma$  in B.

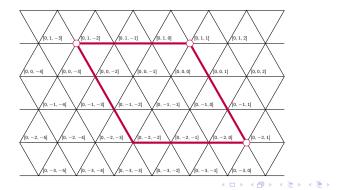
The normalizer permutes the vertices given by the columns of the exponent matrix and corresponds to symmetries of the convex polytope  $C_{\Gamma}$ . This induces a group homomorphism  $\mathcal{N}(\Gamma) \to S_n$ , with kernel  $\mathbb{Q}_p^{\times} \Gamma^{\times}$ .

Our goal is to compute  $\mathcal{N}(\Gamma)/\mathbb{Q}_p^{\times}\Gamma^{\times} \hookrightarrow S_n$ .

## The normalizer of a tiled order (example)

For 
$$M_{\Gamma} = \left( \begin{array}{ccc} 0 & 2 & 2 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{array} \right)$$

The symmetry of the polytope corresponds to a fold, and the normalizer is  $\mathbb{Z}/2\mathbb{Z}.$ 



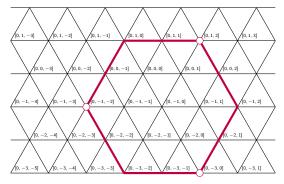
996

э

## The normalizer of a tiled order (example)

For 
$$M_{\Gamma} = \left( egin{array}{ccc} 0 & 3 & 2 \ 1 & 0 & 1 \ 2 & 3 & 0 \end{array} 
ight).$$

The polytope has both reflections and rotations, and the normalizer corresponds to  $S_3$ .



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

## Structural invariants

#### Definition (Zassenhaus, 1975)

Given  $\Gamma=(p^{\nu_{ij}}\mathbb{Z}_p)$  a tiled order, the structural invariants of  $\Gamma$  are given by

$$m_{ijk} = \nu_{ij} + \nu_{jk} - \nu_{ik}$$
, for  $1 \le i, j, k \le n$ .

#### Proposition (Zassenhaus, 1975)

Two tiled orders  $\Gamma$  with set of structural invariants  $\{m_{ijk}\}\$  and  $\Gamma'$  with set of structural invariants  $\{m'_{ijk}\}\$  are isomorphic if and only if there exists  $\sigma \in S_n$  such that

$$m_{ijk} = m'_{\sigma(i)\sigma(j)\sigma(k)}$$
 for all  $1 \le i, j, k \le n$ .

### Proposition (B., 2017)

Let H be the subgroup of  $S_n$  given by  $\mathcal{N}(\Gamma)/\mathbb{Q}_p^{\times}\Gamma^{\times} \cong H$ . Then  $\sigma \in H$  if and only if

$$m_{ijk} = m_{\sigma(i)\sigma(j)\sigma(k)}$$
 for all  $1 \le i, j, k \le n$ .

Moreover, we get a monomial representative of  $\sigma$  given by  $\xi_{\sigma} = (p^{\nu_{i1} - \nu_{\sigma(i)\sigma(1)}} \delta_{\sigma(i)j}) \in \mathcal{N}(\Gamma)$ , where  $\delta_{ij}$  is the Kronecker delta.

Given a tiled order  $\Gamma$ , we construct a tiled order  $\Gamma_0$  such that  $\mathcal{N}(\Gamma_0)/\mathbb{Q}_p^{\times}\Gamma_0^{\times} \cong \mathcal{N}(\Gamma)/\mathbb{Q}_p^{\times}\Gamma^{\times}$ , where all the monomial representatives  $\xi_{\sigma} \in \mathcal{N}(\Gamma_0)$  are given by permutation matrices.

#### Theorem (B., 2017)

Given a tiled order  $\Gamma = (p^{\nu_{ij}})$  with structural invariants  $\{m_{ijk}\}$ , define  $\Gamma_0 = (p^{\mu_{ij}})$ , where  $\mu_{ij} = \sum_{k=1}^n m_{ijk}$ . Then  $\Gamma_0$  is a tiled order with structural invariants  $\widetilde{m}_{ijk} = n \cdot m_{ijk}$  for all  $1 \le i, j, k \le n$ , and  $\sigma \in S_n$  is a symmetry of  $C_{\Gamma}$  if and only if  $\mu_{ij} = \mu_{\sigma(i)\sigma(j)}$ .

## Example

$$M_{\Gamma} = \begin{pmatrix} 0 & 1 & 3 & 2 \\ 3 & 0 & 4 & 3 \\ 2 & 1 & 0 & -1 \\ 3 & 2 & 5 & 0 \end{pmatrix} \longrightarrow M_{\Gamma_0} = \begin{pmatrix} 0 & 8 & 8 & 12 \\ 8 & 0 & 8 & 12 \\ 12 & 12 & 0 & 4 \\ 8 & 8 & 12 & 0 \end{pmatrix}$$

In  $M_{\Gamma_0}$ ,  $\nu_{12} = \nu_{21}$ ,  $\nu_{13} = \nu_{23}$ ,  $\nu_{14} = \nu_{24}$ ,  $\nu_{31} = \nu_{32}$ ,  $\nu_{41} = \nu_{42}$  so  $\sigma = (12)$  is a symmetry. In fact,

$$\mathcal{N}(\Gamma)/\mathbb{Q}_p^{\times}\Gamma^{\times}\cong\mathbb{Z}/2\mathbb{Z}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Quivers

Wiedemann and Roggenkamp defined the quiver of a tiled order:

- The vertices of Q(Γ) are the (projective indecomposable)
   Γ-lattices {P<sub>i</sub>}<sup>n</sup><sub>i=1</sub> given by the columns of Γ.
- There exists an arrow α from i to j if P<sub>i</sub> is a direct summand in the projective cover of rad P<sub>j</sub>. Explicitly, there exists an arrow i → j in Q<sub>v</sub>(Γ) if m<sub>jki</sub> > 0 for all k ≠ i, j, and there is an arrow i → i if m<sub>iki</sub> > 1 for all k ≠ i.

#### Theorem (Haefner, Pappacena, 2002)

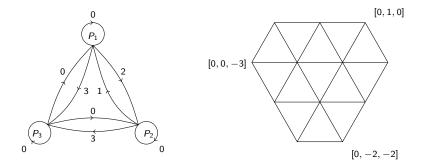
Given a tiled order  $\Gamma$  with  $\mathcal{N}(\Gamma)/\mathbb{Q}_p^{\times}\Gamma^{\times}\cong H\leq S_n,$  there is an inclusion

 $H \hookrightarrow Aut(Q(\Gamma)).$ 

### Valued quivers

To obtain a valued quiver  $Q_v(\Gamma)$ , we denote the value of each arrow  $\alpha : i \to j$  in the quiver by  $v(\alpha) = \nu_{ij}$ .

 $\Gamma \text{ tiled order with exponent matrix } M_{\Gamma} = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$ 



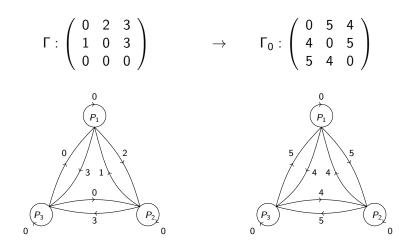
### Theorem (B., 2018)

Let  $\Gamma=(p^{\nu_{ij}})$  be a tiled order and  $\Gamma_0=(p^{\mu_{ij}})$  as defined earlier. Then

$$\mathcal{N}(\Gamma)/\mathbb{Q}_p^{\times}\Gamma \cong \mathcal{N}(\Gamma_0)/\mathbb{Q}_p^{\times}\Gamma_0 \cong Aut(Q_v(\Gamma_0)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Valued quivers (cont.)



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

### A more involved example

$$\Gamma: \left(\begin{array}{cccccc} 0 & 1 & 3 & 3 & 1 \\ 2 & 0 & 2 & 3 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 2 & 2 & 2 & 2 & 0 \end{array}\right) \qquad \longrightarrow \quad \Gamma_0: \left(\begin{array}{ccccccccc} 0 & 5 & 10 & 10 & 5 \\ 10 & 0 & 5 & 10 & 5 \\ 5 & 5 & 0 & 10 & 10 \\ 5 & 10 & 5 & 0 & 10 \\ 10 & 10 & 5 & 5 & 0 \end{array}\right)$$

$$\longrightarrow \quad Q_{\nu}(\Gamma_0) : \begin{pmatrix} 0 & 10 & 10 \\ 10 & 0 & 5 \\ & 5 & 0 & 10 & 10 \\ & & 5 & 0 & 10 \\ 10 & 10 & & 0 \end{pmatrix}$$

Thank you!

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>