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Elliptic Curves in Cryptography

For cryptographic protocols based on the discrete log problem, one
wants to find a group whose order is divisible by a large prime.

One option: Use points on an elliptic curve or the Jacobian of a
curve.

Problem

Find an elliptic curve over a finite field whose group of points has order
divisible by a large prime.

This problem has been well studied and we review some approaches
to this problem.

Sonny Arora and Kirsten Eisenträger Constructing Picard curves with complex multiplication using the Chinese remainder theorem



Elliptic Curves in Cryptography

For cryptographic protocols based on the discrete log problem, one
wants to find a group whose order is divisible by a large prime.

One option: Use points on an elliptic curve or the Jacobian of a
curve.

Problem

Find an elliptic curve over a finite field whose group of points has order
divisible by a large prime.

This problem has been well studied and we review some approaches
to this problem.
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Elliptic Curves with Complex Multiplication

Fix prime p (of cryptographic size), want elliptic curve over Fp with
N points where N in Hasse-Weil interval.

E an elliptic curve over Fp. #E (Fp) = p + 1− a where a is the
trace of Frobenius of E .

Fixing number of points N equivalent to fixing a trace of Frobenius.
Thus, equivalent to fixing characteristic polynomial of Frobenius
x2 − ax + p.

If a 6≡ 0 mod p, then E is ordinary and has endomorphism ring an
order in the imaginary quadratic field Q(π) where π is a root of
x2 − ax + p.

When End(E ) contains an order in a quadratic imaginary field, we
say that E has Complex Multiplication (CM).

Given an ordinary elliptic curve E with CM by K then (up to a
twist) E has N points.
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Constructing Elliptic Curves with CM

Suffices to solve the following:

Problem: Given K an imaginary quadratic field, construct an
ordinary elliptic curve over Fp which has Complex Multiplication
(CM) by OK .

Idea: Find elliptic curves with CM by OK over C and reduce them
modulo p.

Definition

For K a quadratic imaginary number field, the Hilbert class polynomial
HK with respect to K is a polynomial that has as roots the j-invariants of
all elliptic curves over C with endomorphism ring OK .

Approach

Compute the Hilbert class polynomial HK .

Reduce HK modulo p.

Root of HK modulo p gives j-invariant of curve with CM by OK , if p
satisfies certain condition.
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Computing the Hilbert class polynomial: CRT Approach

CRT Approach due to Agashe-Lauter-Venkatesan and others:

Hilbert class polynomial has integer coefficients.

One method:

1 Compute for several small primes `j satisfying certain conditions:

HK mod `j

2 Use the Chinese Remainder Theorem (CRT) to reconstruct HK from
HK mod `j .

Step 1) involves enumerating all isomorphism classes of elliptic
curves E defined over F`j and determining if the endomorphism ring
of E is OK .

Step 2) involves using a bound on the coefficients of HK .
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Computing the Hilbert class polynomial: CRT Approach

CRT method heuristically has the same running time as two other
main approaches: The Complex Analytic and the p-adic approach.

Several improvements to CRT method: Belding-Bröker-Enge-Lauter,
Sutherland-Enge, Sutherland and others.

Largest known examples of Hilbert class polynomials modulo a prime
have been computed using a CRT approach.
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Higher Genus

Problem

For a given CM-field K of degree 2g , construct curves C of genus g over
a finite field Fp whose Jacobian is ordinary and End(Jac(C )) ∼= OK .

Definition

A CM-field is a totally imaginary quadratic extension of a totally real
number field.

Example

n > 2, Q(ζn) is a totally imaginary quadratic extension of the totally real
field Q(ζn + ζn) where ζn is an n-th root of unity. Thus, it is a CM-field.

Definition

An abelian variety A has CM by K if there exists an embedding
ι : K ↪→ End(A)⊗Q. If ι−1(End(A)) = O for O an order of K , then, we
say that A has CM by O.
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Genus 2

Every genus 2 curve is hyperelliptic.

Analogue of j-invariant for genus 2 curves: triple of Igusa invariants
(j1, j2, j3).

Analogue of quadratic imaginary field: Quartic CM-field.

Analogue of Hilbert class polynomials: Three Igusa class
polynomials which have rational coefficients.

Several methods to construct curves whose Jacobian have complex
multiplication.

Work of Eisenträger-Lauter, Freeman-Lauter presented a CRT
approach to constructing genus 2 curves. Improvements made by
Lauter-Robert.
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Work of Eisenträger-Lauter, Freeman-Lauter presented a CRT
approach to constructing genus 2 curves. Improvements made by
Lauter-Robert.
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Genus 3

Goal

For a a sextic CM field K , construct genus 3 curves C with Jac(C )
ordinary and End(Jac(C )) ∼= OK .

Genus 3 curves are either hyperelliptic or smooth plane quartics.

Invariants exist for each class of curves respectively, however, no
invariants are known for the entire class of genus 3 curves.

Restrict to a certain class of genus 3 curves called Picard curves
which have a good invariant theory.

Need a restriction on sextic CM-field K so that all curves with CM
by OK are Picard curves.
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Sonny Arora and Kirsten Eisenträger Constructing Picard curves with complex multiplication using the Chinese remainder theorem



Genus 3

Goal

For a a sextic CM field K , construct genus 3 curves C with Jac(C )
ordinary and End(Jac(C )) ∼= OK .

Genus 3 curves are either hyperelliptic or smooth plane quartics.

Invariants exist for each class of curves respectively, however, no
invariants are known for the entire class of genus 3 curves.

Restrict to a certain class of genus 3 curves called Picard curves
which have a good invariant theory.

Need a restriction on sextic CM-field K so that all curves with CM
by OK are Picard curves.
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Picard Curves

Definition

A Picard curve is a curve of the form y3 = f (x) over a field k of
characteristic not 2 or 3 where f is a degree 4 polynomial with has no
repeated roots over the algebraic closure of k .

Koike and Weng show that if K is a sextic CM-field with
Q(ζ3) ⊂ K , then every curve C/C such that Jac(C ) has CM by OK

is (geometrically) a Picard curve. So will only consider such fields.

For a CRT approach to constructing Picard curves, one must first
define suitable invariants.

Use the invariants j1, j2, j3 for a Picard curve C whose Jacobian is
simple. These are defined in Kılıçer-Garćıa-Streng

To define class polynomials, need notion of CM-type.
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CM-types

Definition

Let K be a CM-field. Let ρ denote complex conjugation on K . Then, any
subset of the embeddings Φ that satisfies Φ t ρ ◦ Φ = Hom(K ,C) is
called a CM-type on K .

For A an abelian variety over C of dimension g with CM by K of
degree 2g over Q, if ι : K ↪→ End(A)⊗Q then we can associate to
(A, ι) a CM-type Φ.

Definition

With assumptions as above, we say that an abelian variety A over C with
CM by K has CM-type Φ if there exists an embedding
ι : K ↪→ End(A)⊗Q such that Φ is the unique CM-type associated to
(A, ι).
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Class Polynomials

For fixed primitive CM-type Φ, define class polynomials defined over
Q for i = 1, 2, 3 as follows:

Hi := H
(K ,Φ)
i :=

∏
(X − ji (C ))

where the product runs over all isomorphism classes of curves whose
Jacobian has CM by OK and type σΦ for σ ∈ Gal(Q/Q)

Coefficients can have denominators. For CRT we need to clear
denominators.

Recall, if K is a sextic CM-field with Q(ζ3) ⊂ K , all principally
polarized abelian varieties with CM by OK are Jacobians of Picard
curves.
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Main Theorem

Theorem (A.-Eisenträger)

Let K be a sextic CM-field with Q(ζ3) ⊂ K. On input a bound B on the
denominators of the coefficients of class polynomials Hi and a bound M
on the size of the coefficients, we construct the polynomials Hi for
i = 1, 2, 3 using a CRT approach. In particular, this gives an algorithm to
construct Picard curves over Fp with complex multiplication by OK .
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Idea of Proof of Theorem

Multiply Hi by B to clear denominators

1 Compute for several small primes `j :

B · Hi mod `j

2 Use the Chinese Remainder Theorem (CRT) to reconstruct B · Hi

from B · Hi mod `j .

Step 1):

Determine conditions on primes `j for good reduction properties.
Need one-to-one correspondence of curves over C with CM by OK of
type Φ and computable set of curves over Fp. This involves the
Taniyama-Shimura congruence relation which relates the type of an
abelian variety to the Frobenius of its reduction.
Need genus 3 algorithm for determining if endomorphism ring is OK .
Generalizes algorithm in genus 2.
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Bounds on Denominators of Coefficients of Class
Polynomials

Genus 2: Bound on denominators of coefficients of Igusa class
polynomials: Goren-Lauter, Bruinier-Yang, Yang, Lauter-Viray and
others.

Genus 3: Bound on primes occurring in denominators of class
polynomials presented for hyperelliptic curves and Picard curves
through work of Bouw-Cooley-Lauter-Garcia-Manes-Newton-Ozman
and Kılıçer-Lauter-Garcia-Newton-Ozman-Streng.

Bound on powers to which primes occur in the denominators of class
polynomials for genus 3 still open.
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Examples

Example 1:

K+ be generated by a root of y3 − y2 − 2y + 1 over Q.

K+ totally real cubic extension of Q.

Set K = K+(ζ3). K is a sextic CM-field.

Smallest primes satisfying conditions for CRT are 13, 43, 97, 127.

Over F127, our algorithm finds one Picard curve C with
End(Jac(C )) ∼= OK :

y3 = x4 + 75x2 + 37x + 103

All Picard curves over C (there is only one) with CM by OK as
above were computed in work of Koike-Weng.

Our output agrees with the result of their paper reduced modulo
127.

Our algorithm took 7 Hours and 9 minutes of clock time.

Sonny Arora and Kirsten Eisenträger Constructing Picard curves with complex multiplication using the Chinese remainder theorem



Examples

Example 1:

K+ be generated by a root of y3 − y2 − 2y + 1 over Q.

K+ totally real cubic extension of Q.

Set K = K+(ζ3). K is a sextic CM-field.

Smallest primes satisfying conditions for CRT are 13, 43, 97, 127.

Over F127, our algorithm finds one Picard curve C with
End(Jac(C )) ∼= OK :

y3 = x4 + 75x2 + 37x + 103

All Picard curves over C (there is only one) with CM by OK as
above were computed in work of Koike-Weng.

Our output agrees with the result of their paper reduced modulo
127.

Our algorithm took 7 Hours and 9 minutes of clock time.
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Sonny Arora and Kirsten Eisenträger Constructing Picard curves with complex multiplication using the Chinese remainder theorem



Examples

Example 1 (continued):

For K as in previous slide. Given we know

C : y3 = x4 − 72 · 2x2 + 72 · 23 − 73

is the only Picard curve over C with CM by OK .

Construct class polynomials Hi , i = 1, 2, 3.

Compute bounds B and M for theorem. B = 212, M = 7 work.

Need 4 primes for CRT: 13, 43, 97, 127.

Construct class polynomials using CRT algorithm in 8 hours 55
minutes of clock time.

Output agrees with example computed by Koike-Weng.
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Examples

Example 2:

K+ be generated by a root of y3 − y2 − 2y + 1 over Q.

K+ totally real cubic extension of Q.

Set K = K+(ζ3). K is a sextic CM-field.

Smallest prime satisfying conditions for CRT: 67.

Over F67, our algorithm finds three ordinary, Picard curves with CM
by OK .
y3 = x4 + 8x2 + 64x + 61, y3 = x4 + 62x2 + 25x + 6, y3 =
x4 + 54x + 54.
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