Constructing Picard curves with complex multiplication using the Chinese remainder theorem

Sonny Arora and Kirsten Eisenträger

Penn State University

July 18th, 2018

• For cryptographic protocols based on the discrete log problem, one wants to find a group whose order is divisible by a large prime.

- For cryptographic protocols based on the discrete log problem, one wants to find a group whose order is divisible by a large prime.
- One option: Use points on an elliptic curve or the Jacobian of a curve.

- For cryptographic protocols based on the discrete log problem, one wants to find a group whose order is divisible by a large prime.
- One option: Use points on an elliptic curve or the Jacobian of a curve.

Find an elliptic curve over a finite field whose group of points has order divisible by a large prime.

- For cryptographic protocols based on the discrete log problem, one wants to find a group whose order is divisible by a large prime.
- One option: Use points on an elliptic curve or the Jacobian of a curve.

Find an elliptic curve over a finite field whose group of points has order divisible by a large prime.

• This problem has been well studied and we review some approaches to this problem.

• Fix prime p (of cryptographic size), want elliptic curve over \mathbb{F}_p with N points where N in Hasse-Weil interval.

- Fix prime p (of cryptographic size), want elliptic curve over \mathbb{F}_p with N points where N in Hasse-Weil interval.
- E an elliptic curve over 𝔽_p. #E(𝔽_p) = p + 1 − a where a is the trace of Frobenius of E.

- Fix prime p (of cryptographic size), want elliptic curve over \mathbb{F}_p with N points where N in Hasse-Weil interval.
- E an elliptic curve over 𝔽_p. #E(𝔽_p) = p + 1 − a where a is the trace of Frobenius of E.
- Fixing number of points N equivalent to fixing a trace of Frobenius. Thus, equivalent to fixing characteristic polynomial of Frobenius $x^2 - ax + p$.

- Fix prime p (of cryptographic size), want elliptic curve over \mathbb{F}_p with N points where N in Hasse-Weil interval.
- E an elliptic curve over 𝔽_p. #E(𝔽_p) = p + 1 − a where a is the trace of Frobenius of E.
- Fixing number of points N equivalent to fixing a trace of Frobenius. Thus, equivalent to fixing characteristic polynomial of Frobenius $x^2 - ax + p$.
- If $a \neq 0 \mod p$, then E is ordinary and has endomorphism ring an order in the imaginary quadratic field $\mathbb{Q}(\pi)$ where π is a root of $x^2 ax + p$.

- Fix prime p (of cryptographic size), want elliptic curve over \mathbb{F}_p with N points where N in Hasse-Weil interval.
- E an elliptic curve over 𝔽_p. #E(𝔽_p) = p + 1 − a where a is the trace of Frobenius of E.
- Fixing number of points N equivalent to fixing a trace of Frobenius. Thus, equivalent to fixing characteristic polynomial of Frobenius $x^2 - ax + p$.
- If $a \neq 0 \mod p$, then E is ordinary and has endomorphism ring an order in the imaginary quadratic field $\mathbb{Q}(\pi)$ where π is a root of $x^2 ax + p$.
- When End(*E*) contains an order in a quadratic imaginary field, we say that *E* has **Complex Multiplication** (CM).

・ 回 ト ・ ヨ ト ・ ヨ ト ・

- Fix prime p (of cryptographic size), want elliptic curve over \mathbb{F}_p with N points where N in Hasse-Weil interval.
- E an elliptic curve over 𝔽_p. #E(𝔽_p) = p + 1 − a where a is the trace of Frobenius of E.
- Fixing number of points N equivalent to fixing a trace of Frobenius. Thus, equivalent to fixing characteristic polynomial of Frobenius $x^2 - ax + p$.
- If $a \neq 0 \mod p$, then E is ordinary and has endomorphism ring an order in the imaginary quadratic field $\mathbb{Q}(\pi)$ where π is a root of $x^2 ax + p$.
- When End(*E*) contains an order in a quadratic imaginary field, we say that *E* has **Complex Multiplication** (CM).
- Given an ordinary elliptic curve *E* with CM by *K* then (up to a twist) *E* has *N* points.

• Suffices to solve the following:

글 🖌 🔺 글 🕨

- Suffices to solve the following:
- Problem: Given K an imaginary quadratic field, construct an ordinary elliptic curve over F_p which has Complex Multiplication (CM) by O_K.

- Suffices to solve the following:
- Problem: Given K an imaginary quadratic field, construct an ordinary elliptic curve over F_p which has Complex Multiplication (CM) by O_K.
- Idea: Find elliptic curves with CM by $\mathcal{O}_{\mathcal{K}}$ over \mathbb{C} and reduce them modulo p.

- Suffices to solve the following:
- Problem: Given K an imaginary quadratic field, construct an ordinary elliptic curve over F_p which has Complex Multiplication (CM) by O_K.
- Idea: Find elliptic curves with CM by $\mathcal{O}_{\mathcal{K}}$ over \mathbb{C} and reduce them modulo p.

Definition

For K a quadratic imaginary number field, the **Hilbert class polynomial** H_K with respect to K is a polynomial that has as roots the *j*-invariants of all elliptic curves over \mathbb{C} with endomorphism ring \mathcal{O}_K .

- Suffices to solve the following:
- Problem: Given K an imaginary quadratic field, construct an ordinary elliptic curve over F_p which has Complex Multiplication (CM) by O_K.
- Idea: Find elliptic curves with CM by $\mathcal{O}_{\mathcal{K}}$ over \mathbb{C} and reduce them modulo p.

Definition

For K a quadratic imaginary number field, the **Hilbert class polynomial** H_K with respect to K is a polynomial that has as roots the *j*-invariants of all elliptic curves over \mathbb{C} with endomorphism ring \mathcal{O}_K .

Approach

• Compute the Hilbert class polynomial H_K .

- Suffices to solve the following:
- Problem: Given K an imaginary quadratic field, construct an ordinary elliptic curve over F_p which has Complex Multiplication (CM) by O_K.
- Idea: Find elliptic curves with CM by $\mathcal{O}_{\mathcal{K}}$ over \mathbb{C} and reduce them modulo p.

Definition

For K a quadratic imaginary number field, the **Hilbert class polynomial** H_K with respect to K is a polynomial that has as roots the *j*-invariants of all elliptic curves over \mathbb{C} with endomorphism ring \mathcal{O}_K .

Approach

- Compute the Hilbert class polynomial H_K .
- Reduce *H_K* modulo *p*.

- Suffices to solve the following:
- Problem: Given K an imaginary quadratic field, construct an ordinary elliptic curve over F_p which has Complex Multiplication (CM) by O_K.
- Idea: Find elliptic curves with CM by $\mathcal{O}_{\mathcal{K}}$ over \mathbb{C} and reduce them modulo p.

Definition

For K a quadratic imaginary number field, the **Hilbert class polynomial** H_K with respect to K is a polynomial that has as roots the *j*-invariants of all elliptic curves over \mathbb{C} with endomorphism ring \mathcal{O}_K .

Approach

- Compute the Hilbert class polynomial H_K .
- Reduce H_K modulo p.
- Root of H_K modulo p gives *j*-invariant of curve with CM by \mathcal{O}_K , if p satisfies certain condition.

CRT Approach due to Agashe-Lauter-Venkatesan and others:

• Hilbert class polynomial has integer coefficients.

CRT Approach due to Agashe-Lauter-Venkatesan and others:

- Hilbert class polynomial has integer coefficients.
- One method:

CRT Approach due to Agashe-Lauter-Venkatesan and others:

- Hilbert class polynomial has integer coefficients.
- One method:
 - **(**) Compute for several small primes ℓ_j satisfying certain conditions:

 $H_{\mathcal{K}} \mod \ell_j$

CRT Approach due to Agashe-Lauter-Venkatesan and others:

- Hilbert class polynomial has integer coefficients.
- One method:
 - **(**) Compute for several small primes ℓ_j satisfying certain conditions:

 $H_{\mathcal{K}} \mod \ell_j$

Use the Chinese Remainder Theorem (CRT) to reconstruct H_K from H_K mod l_j.

CRT Approach due to Agashe-Lauter-Venkatesan and others:

- Hilbert class polynomial has integer coefficients.
- One method:
 - **(**) Compute for several small primes ℓ_j satisfying certain conditions:

 $H_{\mathcal{K}} \mod \ell_j$

- Use the Chinese Remainder Theorem (CRT) to reconstruct H_K from H_K mod l_j.
- Step 1) involves enumerating all isomorphism classes of elliptic curves *E* defined over 𝔽_{ℓ_j} and determining if the endomorphism ring of *E* is 𝒪_K.

b) a (B) b) a (B) b)

CRT Approach due to Agashe-Lauter-Venkatesan and others:

- Hilbert class polynomial has integer coefficients.
- One method:
 - **(**) Compute for several small primes ℓ_j satisfying certain conditions:

 $H_K \mod \ell_j$

- Use the Chinese Remainder Theorem (CRT) to reconstruct H_K from H_K mod l_j.
- Step 1) involves enumerating all isomorphism classes of elliptic curves *E* defined over 𝔽_{ℓ_j} and determining if the endomorphism ring of *E* is 𝒪_K.
- Step 2) involves using a bound on the coefficients of H_K .

伺い イラト イラト

- CRT method heuristically has the same running time as two other main approaches: The Complex Analytic and the *p*-adic approach.
- Several improvements to CRT method: Belding-Bröker-Enge-Lauter, Sutherland-Enge, Sutherland and others.
- Largest known examples of Hilbert class polynomials modulo a prime have been computed using a CRT approach.

For a given CM-field K of degree 2g, construct curves C of genus g over a finite field \mathbb{F}_p whose Jacobian is ordinary and $\operatorname{End}(\operatorname{Jac}(C)) \cong \mathcal{O}_K$.

★ ∃ ► < ∃ ►</p>

For a given CM-field K of degree 2g, construct curves C of genus g over a finite field \mathbb{F}_p whose Jacobian is ordinary and $\text{End}(\text{Jac}(C)) \cong \mathcal{O}_K$.

Definition

A CM-field is a totally imaginary quadratic extension of a totally real number field.

通 ト イ ヨ ト イ ヨ ト

For a given CM-field K of degree 2g, construct curves C of genus g over a finite field \mathbb{F}_p whose Jacobian is ordinary and $\text{End}(\text{Jac}(C)) \cong \mathcal{O}_K$.

Definition

A CM-field is a totally imaginary quadratic extension of a totally real number field.

Example

n > 2, $\mathbb{Q}(\zeta_n)$ is a totally imaginary quadratic extension of the totally real field $\mathbb{Q}(\zeta_n + \overline{\zeta_n})$ where ζ_n is an *n*-th root of unity. Thus, it is a CM-field.

b) a) (E) b) a) (E) b)

For a given CM-field K of degree 2g, construct curves C of genus g over a finite field \mathbb{F}_p whose Jacobian is ordinary and $\text{End}(\text{Jac}(C)) \cong \mathcal{O}_K$.

Definition

A CM-field is a totally imaginary quadratic extension of a totally real number field.

Example

n > 2, $\mathbb{Q}(\zeta_n)$ is a totally imaginary quadratic extension of the totally real field $\mathbb{Q}(\zeta_n + \overline{\zeta_n})$ where ζ_n is an *n*-th root of unity. Thus, it is a CM-field.

Definition

An abelian variety A has CM by K if there exists an embedding $\iota: K \hookrightarrow \text{End}(A) \otimes \mathbb{Q}$. If $\iota^{-1}(\text{End}(A)) = \mathcal{O}$ for \mathcal{O} an order of K, then, we say that A has CM by \mathcal{O} .

< 同 > < 三 > < 三 >

• Every genus 2 curve is hyperelliptic.

通 ト イ ヨ ト イ ヨ ト

- Every genus 2 curve is hyperelliptic.
- Analogue of *j*-invariant for genus 2 curves: triple of Igusa invariants (j_1, j_2, j_3) .

きょうきょう

- Every genus 2 curve is hyperelliptic.
- Analogue of *j*-invariant for genus 2 curves: triple of Igusa invariants (j_1, j_2, j_3) .
- Analogue of quadratic imaginary field: Quartic CM-field.

- Every genus 2 curve is hyperelliptic.
- Analogue of *j*-invariant for genus 2 curves: triple of Igusa invariants (j_1, j_2, j_3) .
- Analogue of quadratic imaginary field: Quartic CM-field.
- Analogue of Hilbert class polynomials: **Three** Igusa class polynomials which have rational coefficients.

- Every genus 2 curve is hyperelliptic.
- Analogue of *j*-invariant for genus 2 curves: triple of Igusa invariants (j_1, j_2, j_3) .
- Analogue of quadratic imaginary field: Quartic CM-field.
- Analogue of Hilbert class polynomials: **Three** Igusa class polynomials which have rational coefficients.
- Several methods to construct curves whose Jacobian have complex multiplication.

- Every genus 2 curve is hyperelliptic.
- Analogue of *j*-invariant for genus 2 curves: triple of Igusa invariants (j_1, j_2, j_3) .
- Analogue of quadratic imaginary field: Quartic CM-field.
- Analogue of Hilbert class polynomials: **Three** Igusa class polynomials which have rational coefficients.
- Several methods to construct curves whose Jacobian have complex multiplication.
- Work of Eisenträger-Lauter, Freeman-Lauter presented a CRT approach to constructing genus 2 curves. Improvements made by Lauter-Robert.

Goal

For a a sextic CM field K, construct genus 3 curves C with Jac(C) ordinary and $End(Jac(C)) \cong \mathcal{O}_{K}$.

通 ト イ ヨ ト イ ヨ ト
For a a sextic CM field K, construct genus 3 curves C with Jac(C) ordinary and $End(Jac(C)) \cong \mathcal{O}_{K}$.

• Genus 3 curves are either hyperelliptic or smooth plane quartics.

For a a sextic CM field K, construct genus 3 curves C with Jac(C) ordinary and $End(Jac(C)) \cong \mathcal{O}_K$.

- Genus 3 curves are either hyperelliptic or smooth plane quartics.
- Invariants exist for each class of curves respectively, however, no invariants are known for the entire class of genus 3 curves.

For a a sextic CM field K, construct genus 3 curves C with Jac(C) ordinary and $End(Jac(C)) \cong \mathcal{O}_K$.

- Genus 3 curves are either hyperelliptic or smooth plane quartics.
- Invariants exist for each class of curves respectively, however, no invariants are known for the entire class of genus 3 curves.
- Restrict to a certain class of genus 3 curves called Picard curves which have a good invariant theory.

For a a sextic CM field K, construct genus 3 curves C with Jac(C) ordinary and $End(Jac(C)) \cong \mathcal{O}_K$.

- Genus 3 curves are either hyperelliptic or smooth plane quartics.
- Invariants exist for each class of curves respectively, however, no invariants are known for the entire class of genus 3 curves.
- Restrict to a certain class of genus 3 curves called Picard curves which have a good invariant theory.
- Need a restriction on sextic CM-field K so that all curves with CM by O_K are Picard curves.

A Picard curve is a curve of the form $y^3 = f(x)$ over a field k of characteristic not 2 or 3 where f is a degree 4 polynomial with has no repeated roots over the algebraic closure of k.

A Picard curve is a curve of the form $y^3 = f(x)$ over a field k of characteristic not 2 or 3 where f is a degree 4 polynomial with has no repeated roots over the algebraic closure of k.

A Picard curve is a curve of the form $y^3 = f(x)$ over a field k of characteristic not 2 or 3 where f is a degree 4 polynomial with has no repeated roots over the algebraic closure of k.

- For a CRT approach to constructing Picard curves, one must first define suitable invariants.

A Picard curve is a curve of the form $y^3 = f(x)$ over a field k of characteristic not 2 or 3 where f is a degree 4 polynomial with has no repeated roots over the algebraic closure of k.

- For a CRT approach to constructing Picard curves, one must first define suitable invariants.
- Use the invariants j_1, j_2, j_3 for a Picard curve C whose Jacobian is simple. These are defined in Kılıçer-García-Streng

A Picard curve is a curve of the form $y^3 = f(x)$ over a field k of characteristic not 2 or 3 where f is a degree 4 polynomial with has no repeated roots over the algebraic closure of k.

- For a CRT approach to constructing Picard curves, one must first define suitable invariants.
- Use the invariants j_1, j_2, j_3 for a Picard curve C whose Jacobian is simple. These are defined in Kılıçer-García-Streng
- To define class polynomials, need notion of CM-type.

周 ト イ ヨ ト イ ヨ ト

Let K be a CM-field. Let ρ denote complex conjugation on K. Then, any subset of the embeddings Φ that satisfies $\Phi \sqcup \rho \circ \Phi = \text{Hom}(K, \mathbb{C})$ is called a **CM-type** on K.

4 3 5 4 3 5 5

Let K be a CM-field. Let ρ denote complex conjugation on K. Then, any subset of the embeddings Φ that satisfies $\Phi \sqcup \rho \circ \Phi = \text{Hom}(K, \mathbb{C})$ is called a **CM-type** on K.

 For A an abelian variety over C of dimension g with CM by K of degree 2g over Q, if ι : K → End(A) ⊗ Q then we can associate to (A, ι) a CM-type Φ.

Let K be a CM-field. Let ρ denote complex conjugation on K. Then, any subset of the embeddings Φ that satisfies $\Phi \sqcup \rho \circ \Phi = \text{Hom}(K, \mathbb{C})$ is called a **CM-type** on K.

 For A an abelian variety over C of dimension g with CM by K of degree 2g over Q, if ι : K → End(A) ⊗ Q then we can associate to (A, ι) a CM-type Φ.

Definition

With assumptions as above, we say that an abelian variety A over \mathbb{C} with CM by K has CM-type Φ if there exists an embedding $\iota : K \hookrightarrow \text{End}(A) \otimes \mathbb{Q}$ such that Φ is the unique CM-type associated to (A, ι) .

くぼう くほう くほう

• For fixed primitive CM-type Φ , define class polynomials defined over \mathbb{Q} for i = 1, 2, 3 as follows:

$$H_i := H_i^{(K,\Phi)} := \prod (X - j_i(C))$$

where the product runs over all isomorphism classes of curves whose Jacobian has CM by $\mathcal{O}_{\mathcal{K}}$ and type $\sigma\Phi$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$

• For fixed primitive CM-type Φ , define class polynomials defined over \mathbb{Q} for i = 1, 2, 3 as follows:

$$H_i := H_i^{(K,\Phi)} := \prod (X - j_i(C))$$

where the product runs over all isomorphism classes of curves whose Jacobian has CM by $\mathcal{O}_{\mathcal{K}}$ and type $\sigma\Phi$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$

• Coefficients can have denominators. For CRT we need to clear denominators.

• For fixed primitive CM-type Φ , define class polynomials defined over \mathbb{Q} for i = 1, 2, 3 as follows:

$$H_i := H_i^{(K,\Phi)} := \prod (X - j_i(C))$$

where the product runs over all isomorphism classes of curves whose Jacobian has CM by $\mathcal{O}_{\mathcal{K}}$ and type $\sigma\Phi$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$

- Coefficients can have denominators. For CRT we need to clear denominators.
- Recall, if K is a sextic CM-field with $\mathbb{Q}(\zeta_3) \subset K$, all principally polarized abelian varieties with CM by \mathcal{O}_K are Jacobians of Picard curves.

Theorem (A.-Eisenträger)

Let K be a sextic CM-field with $\mathbb{Q}(\zeta_3) \subset K$. On input a bound B on the denominators of the coefficients of class polynomials H_i and a bound M on the size of the coefficients, we construct the polynomials H_i for i = 1, 2, 3 using a CRT approach. In particular, this gives an algorithm to construct Picard curves over \mathbb{F}_p with complex multiplication by \mathcal{O}_K .

• Multiply H_i by B to clear denominators

★ ∃ ► < ∃ ►</p>

• Multiply H_i by B to clear denominators

Or Compute for several small primes ℓ_j :

 $B \cdot H_i \mod \ell_j$

きょうきょう

Idea of Proof of Theorem

- Multiply H_i by B to clear denominators
 - **Or Compute for several small primes** ℓ_j :

 $B \cdot H_i \mod \ell_j$

Ouse the Chinese Remainder Theorem (CRT) to reconstruct B ⋅ H_i from B ⋅ H_i mod ℓ_j.

Idea of Proof of Theorem

- Multiply H_i by B to clear denominators
 - **Or Compute for several small primes** ℓ_j :

 $B \cdot H_i \mod \ell_j$

- Use the Chinese Remainder Theorem (CRT) to reconstruct B · H_i from B · H_i mod l_j.
- Step 1):

- Multiply H_i by B to clear denominators
 - Compute for several small primes ℓ_j :

 $B \cdot H_i \mod \ell_j$

- Ouse the Chinese Remainder Theorem (CRT) to reconstruct B ⋅ H_i from B ⋅ H_i mod ℓ_j.
- Step 1):
 - Determine conditions on primes ℓ_j for good reduction properties.

- Multiply H_i by B to clear denominators
 - Compute for several small primes ℓ_j :

```
B \cdot H_i \mod \ell_j
```

- Ouse the Chinese Remainder Theorem (CRT) to reconstruct B ⋅ H_i from B ⋅ H_i mod ℓ_j.
- Step 1):
 - Determine conditions on primes ℓ_j for good reduction properties.
 - Need one-to-one correspondence of curves over C with CM by O_K of type Φ and computable set of curves over F_p. This involves the Taniyama-Shimura congruence relation which relates the type of an abelian variety to the Frobenius of its reduction.

- Multiply H_i by B to clear denominators
 - Compute for several small primes ℓ_j :

```
B \cdot H_i \mod \ell_j
```

- Ouse the Chinese Remainder Theorem (CRT) to reconstruct B ⋅ H_i from B ⋅ H_i mod ℓ_j.
- Step 1):
 - Determine conditions on primes ℓ_j for good reduction properties.
 - Need one-to-one correspondence of curves over C with CM by O_K of type Φ and computable set of curves over F_p. This involves the Taniyama-Shimura congruence relation which relates the type of an abelian variety to the Frobenius of its reduction.
 - Need genus 3 algorithm for determining if endomorphism ring is O_K. Generalizes algorithm in genus 2.

伺い イラト イラト

Bounds on Denominators of Coefficients of Class Polynomials

• Genus 2: Bound on denominators of coefficients of Igusa class polynomials: Goren-Lauter, Bruinier-Yang, Yang, Lauter-Viray and others.

Bounds on Denominators of Coefficients of Class Polynomials

- Genus 2: Bound on denominators of coefficients of Igusa class polynomials: Goren-Lauter, Bruinier-Yang, Yang, Lauter-Viray and others.
- Genus 3: Bound on primes occurring in denominators of class polynomials presented for hyperelliptic curves and Picard curves through work of Bouw-Cooley-Lauter-Garcia-Manes-Newton-Ozman and Kılıçer-Lauter-Garcia-Newton-Ozman-Streng.

Bounds on Denominators of Coefficients of Class Polynomials

- Genus 2: Bound on denominators of coefficients of Igusa class polynomials: Goren-Lauter, Bruinier-Yang, Yang, Lauter-Viray and others.
- Genus 3: Bound on primes occurring in denominators of class polynomials presented for hyperelliptic curves and Picard curves through work of Bouw-Cooley-Lauter-Garcia-Manes-Newton-Ozman and Kılıçer-Lauter-Garcia-Newton-Ozman-Streng.
- Bound on powers to which primes occur in the denominators of class polynomials for genus 3 still open.

Example 1:

• K^+ be generated by a root of $y^3 - y^2 - 2y + 1$ over \mathbb{Q} .

э.

Example 1:

- K^+ be generated by a root of $y^3 y^2 2y + 1$ over \mathbb{Q} .
- K^+ totally real cubic extension of \mathbb{Q} .

3

Example 1:

- K^+ be generated by a root of $y^3 y^2 2y + 1$ over \mathbb{Q} .
- K^+ totally real cubic extension of \mathbb{Q} .
- Set $K = K^+(\zeta_3)$. K is a sextic CM-field.

伺い イラト イラト

Example 1:

- K^+ be generated by a root of $y^3 y^2 2y + 1$ over \mathbb{Q} .
- K^+ totally real cubic extension of \mathbb{Q} .
- Set $K = K^+(\zeta_3)$. K is a sextic CM-field.
- Smallest primes satisfying conditions for CRT are 13, 43, 97, 127.
- Over \mathbb{F}_{127} , our algorithm finds one Picard curve *C* with $End(Jac(C)) \cong \mathcal{O}_{\mathcal{K}}$:

$$y^3 = x^4 + 75x^2 + 37x + 103$$

b) a) (E) b) a) (E) b)

Example 1:

- K^+ be generated by a root of $y^3 y^2 2y + 1$ over \mathbb{Q} .
- K^+ totally real cubic extension of \mathbb{Q} .
- Set $K = K^+(\zeta_3)$. K is a sextic CM-field.
- Smallest primes satisfying conditions for CRT are 13, 43, 97, 127.
- Over \mathbb{F}_{127} , our algorithm finds one Picard curve *C* with $End(Jac(C)) \cong \mathcal{O}_{\mathcal{K}}$:

$$y^3 = x^4 + 75x^2 + 37x + 103$$

• All Picard curves over \mathbb{C} (there is only one) with CM by \mathcal{O}_K as above were computed in work of Koike-Weng.

Example 1:

- K^+ be generated by a root of $y^3 y^2 2y + 1$ over \mathbb{Q} .
- K^+ totally real cubic extension of \mathbb{Q} .
- Set $K = K^+(\zeta_3)$. K is a sextic CM-field.
- Smallest primes satisfying conditions for CRT are 13, 43, 97, 127.
- Over \mathbb{F}_{127} , our algorithm finds one Picard curve *C* with $End(Jac(C)) \cong \mathcal{O}_{\mathcal{K}}$:

$$y^3 = x^4 + 75x^2 + 37x + 103$$

- All Picard curves over \mathbb{C} (there is only one) with CM by \mathcal{O}_K as above were computed in work of Koike-Weng.
- Our output agrees with the result of their paper reduced modulo 127.

くぼう くうち くうち

Example 1:

- K^+ be generated by a root of $y^3 y^2 2y + 1$ over \mathbb{Q} .
- K^+ totally real cubic extension of \mathbb{Q} .
- Set $K = K^+(\zeta_3)$. K is a sextic CM-field.
- Smallest primes satisfying conditions for CRT are 13, 43, 97, 127.
- Over \mathbb{F}_{127} , our algorithm finds one Picard curve *C* with $End(Jac(C)) \cong \mathcal{O}_{\mathcal{K}}$:

$$y^3 = x^4 + 75x^2 + 37x + 103$$

- All Picard curves over \mathbb{C} (there is only one) with CM by \mathcal{O}_K as above were computed in work of Koike-Weng.
- Our output agrees with the result of their paper reduced modulo 127.
- Our algorithm took 7 Hours and 9 minutes of clock time.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Example 1 (continued):

• For K as in previous slide. Given we know

$$C: y^3 = x^4 - 7^2 \cdot 2x^2 + 7^2 \cdot 2^3 - 7^3$$

is the only Picard curve over \mathbb{C} with CM by $\mathcal{O}_{\mathcal{K}}$.

きょうきょう

Example 1 (continued):

• For K as in previous slide. Given we know

$$C: y^3 = x^4 - 7^2 \cdot 2x^2 + 7^2 \cdot 2^3 - 7^3$$

is the only Picard curve over \mathbb{C} with CM by $\mathcal{O}_{\mathcal{K}}$.

• Construct class polynomials H_i , i = 1, 2, 3.

Example 1 (continued):

• For K as in previous slide. Given we know

$$C: y^3 = x^4 - 7^2 \cdot 2x^2 + 7^2 \cdot 2^3 - 7^3$$

is the only Picard curve over \mathbb{C} with CM by $\mathcal{O}_{\mathcal{K}}$.

- Construct class polynomials H_i , i = 1, 2, 3.
- Compute bounds B and M for theorem. $B = 2^{12}$, M = 7 work.
Example 1 (continued):

• For K as in previous slide. Given we know

$$C: y^3 = x^4 - 7^2 \cdot 2x^2 + 7^2 \cdot 2^3 - 7^3$$

is the only Picard curve over \mathbb{C} with CM by $\mathcal{O}_{\mathcal{K}}$.

- Construct class polynomials H_i , i = 1, 2, 3.
- Compute bounds B and M for theorem. $B = 2^{12}$, M = 7 work.
- Need 4 primes for CRT: 13, 43, 97, 127.

Example 1 (continued):

• For K as in previous slide. Given we know

$$C: y^3 = x^4 - 7^2 \cdot 2x^2 + 7^2 \cdot 2^3 - 7^3$$

is the only Picard curve over \mathbb{C} with CM by $\mathcal{O}_{\mathcal{K}}$.

- Construct class polynomials H_i , i = 1, 2, 3.
- Compute bounds B and M for theorem. $B = 2^{12}$, M = 7 work.
- Need 4 primes for CRT: 13, 43, 97, 127.
- Construct class polynomials using CRT algorithm in 8 hours 55 minutes of clock time.

Example 1 (continued):

• For K as in previous slide. Given we know

$$C: y^3 = x^4 - 7^2 \cdot 2x^2 + 7^2 \cdot 2^3 - 7^3$$

is the only Picard curve over \mathbb{C} with CM by $\mathcal{O}_{\mathcal{K}}$.

- Construct class polynomials H_i , i = 1, 2, 3.
- Compute bounds B and M for theorem. $B = 2^{12}$, M = 7 work.
- Need 4 primes for CRT: 13, 43, 97, 127.
- Construct class polynomials using CRT algorithm in 8 hours 55 minutes of clock time.
- Output agrees with example computed by Koike-Weng.

• K^+ be generated by a root of $y^3 - y^2 - 2y + 1$ over \mathbb{Q} .

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- K^+ be generated by a root of $y^3 y^2 2y + 1$ over \mathbb{Q} .
- K^+ totally real cubic extension of \mathbb{Q} .

通 ト イ ヨ ト イ ヨ ト

- K^+ be generated by a root of $y^3 y^2 2y + 1$ over \mathbb{Q} .
- K^+ totally real cubic extension of \mathbb{Q} .
- Set $K = K^+(\zeta_3)$. K is a sextic CM-field.

• = • • = •

- K^+ be generated by a root of $y^3 y^2 2y + 1$ over \mathbb{Q} .
- K^+ totally real cubic extension of \mathbb{Q} .
- Set $K = K^+(\zeta_3)$. K is a sextic CM-field.
- Smallest prime satisfying conditions for CRT: 67.
- Over \mathbb{F}_{67} , our algorithm finds three ordinary, Picard curves with CM by \mathcal{O}_{K} . $y^{3} = x^{4} + 8x^{2} + 64x + 61$, $y^{3} = x^{4} + 62x^{2} + 25x + 6$, $y^{3} = x^{4} + 54x + 54$.