Counting points on genus-3 hyperelliptic curves
with real multiplication
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What? Where?

Our favorite geometrical object:

Hyperelliptic curves C given by equation Y? = f(X).
Polynomial f € F,[X] monic squarefree of degree 2g + 1.
The genus of the curve is the integer g.

Point counting

If C defined over F,, P = (x,y) is rational if (x,y) € (Fq)>.
Let C(Fy) = {(x,¥) € (Fq)*ly? = F(x)} U {oo},

Point counting over [, is computing the local ¢ function of C:

((s) = exp (; #C(Fqk)%> = (1-— 5,/;((51)— qs)

With A € Z[T] of degree 2g with bounded coefficients.
In practice, we want the coeffs of the polynomial A, or simply A(1).
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Why counting points?

Cryptographic purposes (genus < 2)

Curves provide groups with no known subexponential algorithm for
DLP. Size of group determines security level [Pohlig-Hellman].

In other algorithms

Primality proving with proven complexity [Adleman-Huang]
Deterministic factorization in F,[X] ? (ongoing [Kayal, Poonen])

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus > 2.
L-functions associated: L(s,C) = -, A,/p° with A, = #C(F,)//p-
Computing them relies on point-counting primitives.
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Algorithms for point counting

n

Let C be a curve over F, with g = p".

p-adic methods
o elliptic curves: Satoh’99, Mestre'00
@ hyp. curves: Kedlaya'01, Denef-Vercauteren'06, Lauder-Wan'06

@ more general curves: Castryck-Denef-Vercauteren'06, Tuitman'l7

Asymptotic complexity: polynomial in g, exponential in log p.

(-adic methods
Elliptic curves (Schoof'85) extended to Abelian varieties (Pila’90).
Asymptotic complexity: exponential in g, polynomial in log g.
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/-adic methods

Elliptic curves (Schoof'85) extended to Abelian varieties (Pila’90).
Asymptotic complexity: exponential in g, polynomial in log g.

No classical polynomial algorithm in both g and log p,
Average polynomial for reductions modulo p of a curve (Harvey'14).
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Algorithms for point counting

n

Let C be a curve over F, with g = p".

p-adic methods
o elliptic curves: Satoh’99, Mestre'00
@ hyp. curves: Kedlaya'01, Denef-Vercauteren'06, Lauder-Wan'06

@ more general curves: Castryck-Denef-Vercauteren'06, Tuitman'l7

Asymptotic complexity: polynomial in g, exponential in log p.

/-adic methods

Elliptic curves (Schoof'85) extended to Abelian varieties (Pila’90).
Asymptotic complexity: exponential in g, polynomial in log g.

No classical polynomial algorithm in both g and log p,
Average polynomial for reductions modulo p of a curve (Harvey'14).
Exponential algorithms are also efficient in practice (Sutherland’09).
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Schoof’s algorithm in genus < 2

Pila’s algorithm is highly impractical (23-bit exponent for log q).

Asymptotic complexities

Genus Eomplexity Authors
g=1 O(log* q) | Schoof-Elkies-Atkin (~ 1990)
g=2 O(log® q) | Gaudry-Harley-Schost (2000)

g =2 with RM | O(log® q) | Gaudry-Kohel-Smith (2011)
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Genus gomplexity Authors
g=1 O(log* q) | Schoof-Elkies-Atkin (~ 1990)
g=2 O(log® q) | Gaudry-Harley-Schost (2000)

g =2 with RM | O(log® q) | Gaudry-Kohel-Smith (2011)

Records

Genus 1: 16645-bit Jacobian using SEA (Sutherland’10).
Genus 2: 256-bit cryptographic Jacobian (Gaudry-Schost’12).
Genus 2 with RM: 1024-bit Jacobian (Gaudry-Kohel-Smith'11).
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Schoof’s algorithm in genus < 2

Pila’s algorithm is highly impractical (23-bit exponent for log q).

Asymptotic complexities

Genus gomplexity Authors
g=1 O(log* q) | Schoof-Elkies-Atkin (~ 1990)
g=2 O(log® q) | Gaudry-Harley-Schost (2000)

g =2 with RM | O(log® q) | Gaudry-Kohel-Smith (2011)

Records

Genus 1: 16645-bit Jacobian using SEA (Sutherland’10).
Genus 2: 256-bit cryptographic Jacobian (Gaudry-Schost’12).
Genus 2 with RM: 1024-bit Jacobian (Gaudry-Kohel-Smith'11).

What about genus 37 With RM?
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Schoof’s algorithm in genus 3
What about genus 37 Asymptotic complexity? Practicality?

Main results

For C a genus-3 hyperelliptic curve with explicit RM, we glve a Las
Vegas algorithm to compute the local zeta function in O(Iog q) bit
ops. Without RM, the algorithm runs in O(log'* q) bit ops.
Experiments: g = 3 and p = 2% — 59, 192-bit RM-Jacobian.

Complexities

Genus Complexity Authors
g=1 a(log q) Schoof-Elkies-Atkin
g="2 O(Iog q) Gaudry-Schost
g = 2 with RM O(Iog q) Gaudry-Kohel-Smith
g =3 O(Iog q) | A.-Gaudry-Spaenlehauer
g =3 with RM | O(log®q) | A.-Gaudry-Spaenlehauer
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Jacobians, real multiplication
Let C : y? = f(x) be a hyperelliptic curve of genus g over F,.

Mumford form

Any D € JacC(F,) can be represented as a sum of w < g points.
Unique representation of D € JacC(F,) by (u, v) in Fo[X]? such that:

o degu=w

o ulvi—f

Simon Abelard Point counting July 18, 2018 7 /26



Jacobians, real multiplication
Let C : y> = f(x) be a hyperelliptic curve of genus g over .

Mumford form

Any D € JacC(F,) can be represented as a sum of w < g points.
Unique representation of D € JacC(F,) by (u, v) in Fo[X]? such that:

o degu=w

o ulvi—f

Explicit real multiplication

We say that C has RM by an order Z[n] if Z[n] <— End(J)
with Q(n) is a degree-g totally real field.

Over finite fields all curves have RM by ¢ = 7 + 7V

We ask for an explicit expression of 7(P — 00) = (u, v).
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A prototype of Schoof’s algorithm

Let C : y? = f(x) be a hyperelliptic curve over F,,.
Let J be its Jacobian and g its genus.

@ (Hasse-Weil) bounds on coeffs of A = compute A mod ¢

@ number and size of ¢ bounded by O(g log q)

@ (-torsion J[(] = {D € J|D = 0} ~ (Z/(Z)*®

@ action on Frobenius 7 : (x,y) — (x9,y9) on J[{] yields A mod ¢

Algorithm a /a Schoof

For sufficiently many primes ¢
Describe /, the ideal of /-torsion
Compute x mod ¢ by testing char. eq. of 7w in I
Deduce A mod /

Recover A by CRT
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Our plan

Describing the /-torsion

@ How to describe the /-torsion ?

e Using RM to split J[¢] for g = 3.

Handling the system
@ Writing and bounding degrees of input system.

@ Solving the system.

@ And in practice ?
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Modelling the ¢-torsion

To model the ¢-torsion, consider a divisor D, compute ¢D formally,
Then write a system equivalent to /D = 0 in J, and “solve” it.
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Modelling the ¢-torsion

To model the ¢-torsion, consider a divisor D, compute ¢D formally,
Then write a system equivalent to /D =0 in J, and “solve” it.

Bad news

In genus 3, the ideal J[¢] has degree ¢°.

The size of the torsion impacts the complexity of solving part.
Hard to go lower than quadratic in the degree, i.e. ¢*? field ops.
= Even ¢ =5 already seems out of reach. ..
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Modelling the /-torsion

To model the ¢-torsion, consider a divisor D, compute ¢D formally,
Then write a system equivalent to /D =0 in J, and “solve” it.

Bad news

In genus 3, the ideal J[¢] has degree ¢°.

The size of the torsion impacts the complexity of solving part.
Hard to go lower than quadratic in the degree, i.e. ¢*? field ops.
= Even ¢ =5 already seems out of reach. ..

Wishful thinking

Can we find curves with smaller ¢-torsion? No.
Can we split J[/] into small (7-stable) subspaces?
(i.e. does A factors modulo £7)

For curves with explicit RM, it is possible.

Simon Abelard Point counting July 18, 2018 10 / 26



Our plan

Describing the /-torsion

@ How to describe the ¢-torsion 7
— Write /D = 0 and solve this system.

e Using RM to split J[¢] for g = 3.

Handling the system
@ Writing and bounding degrees of input system.

@ Solving the system.

@ And in practice ?
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Tuning Schoof's algorithm using RM

Let C be a genus-3 hyperelliptic curve with explicit RM by Z[n].

Replacing x

Let oy =7+ 7V, ¢ € Z[n] so we write ) = a + 1 + 10>

We write a system to express A from knowledge of 7 and («, 3,7).
Replace x(D) = 0 mod J[{] by ¢yw(D) = 7%(D) + ¢°D.
Advantage: «, 3,7 are in O(,/q) vs Weil's bounds in O(q*/?).
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Tuning Schoof's algorithm using RM

Let C be a genus-3 hyperelliptic curve with explicit RM by Z[n].

Replacing x

Let oy =7+ 7V, ¢ € Z[n] so we write ) = a + 1 + 10>

We write a system to express A from knowledge of 7 and (o, 3, 7).
Replace (D) = 0 mod J[{] by ¢7(D) = 7?(D) + ¢>D.
Advantage: «, 3,7 are in O(,/q) vs Weil's bounds in O(q*/?).

Splitting J[/]

For some ¢, decompose multiplication as ¢ = p1pops in Z[n),
Find €; = a; + by + ¢n? in p; with |a;], |bi], |ci| in O(£*/3).
The action of 7 on all the J[¢;] uniquely determines ¢ hence A.
Advantage: model Ker¢; instead of J[¢], degree O(¢?) vs (°.
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Our plan

Describing the /-torsion
@ How to describe the ¢-torsion 7
— Write /D = 0 and solve this system.
e Using RM to split J[/] for g = 3.
— Split it in the RM case.
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@ Writing and bounding degrees of input system.

@ Solving the system.

@ And in practice ?
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Cantor's division polynomials ( Cantor'94)

Problem

We have to compute ¢D or ¢;(D) to write our systems.
Recall ¢; = a; + b + ¢;n? with 7 known = scalar multiplication ?
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Cantor's division polynomials ( Cantor'94)

Problem

We have to compute ¢D or ¢;(D) to write our systems.
Recall ¢; = a; + b + ¢;n? with 7 known = scalar multiplication ?

For n > g and P = (x,y) a generic point on C, n(P — o0) equals
g d ( ) g— 1 . dO(X) egfl(x) g—1 . eO(X)
(e ot (g 25))

The d; and e; are called Cantor's n-division polynomials.
In genus 1 and 2, it is know that their degrees are in O(n?).
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Cantor's division polynomials ( Cantor'94)

Problem

We have to compute ¢D or ¢;(D) to write our systems.
Recall ¢; = a; + b + ¢;n? with 7 known = scalar multiplication ?

For n > g and P = (x,y) a generic point on C, n(P — o0) equals
g d ( ) g— 1 . do(X) egfl(x) g—1 . eO(X)
<X i dg(x) ) i dg(X)J/( eg(x) XA eg(X)>>

The d; and e; are called Cantor's n-division polynomials.
In genus 1 and 2, it is know that their degrees are in O(n?).

In genus 3, Cantor’s n-division polynomials have degrees in O(n?

Theorem (A.-Gaudry-Spaenlehauer)
o
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Bounding degrees

We need to solve the system ¢;(D) = 0, let us write it.
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Bounding degrees

We need to solve the system ¢;(D) = 0, let us write it.

Our polynomial systems

Write €;(Py — 00) + €;(P2 — 00) = —¢€;(P3 — 00):
671(X1,X2, )d3(X3) 3( )dl(X3) =0,
dz(Xl,Xz, )d3(X3) 3( )dz(Xs) =0,
673(X1,X2; )d3(X3) 3( )d3(X3) =0
July 18, 2018
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Bounding degrees

We need to solve the system ¢;(D) = 0, let us write it.

Our polynomial systems

Write E,'(Pl —

OO) + 6,'(P2 —

?

0,
- 3(X1,X2)d2(X3) =0,
0

X1,X27}’)d3(X3 — 3(X1,X2)d3(X3):

Recall that ¢; = a; + by + ¢;n? amounts to multlpllcatlon by ¢1/3.
Cantor's polynomials = degrees of the d;'s and d;'s are in O(¢?/3).
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Bounding degrees

We need to solve the system ¢;(D) = 0, let us write it.

Our polynomial systems
Write E,'(Pl — OO) -+ 6,'(P2 — ) = —

)
( ) 07
2(X1,X2,)’)d3(X3) - 3(X1,X2)d2(X3) =0,
( ) 0

Recall that ¢; = a; + b)) + ¢;17* amounts to multiplication by 083,
Cantor's polynomials = degrees of the d;'s and d;'s are in O(¢?/3).

Remark: without splitting J[¢], degrees would be in O(¢?).
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Our plan

Describing the /-torsion
@ How to describe the ¢-torsion 7
— Write /D = 0 and solve this system.
e Using RM to split J[/] for g = 3.
— Split it in the RM case.

Handling the system

@ Writing and bounding degrees of input system.
— Cantor's n-division polynomials.

@ Solving the system.

@ And in practice ?
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Solving the systems, in theory

Successive elimination by resultants

Input system is trivariate of degree d in each variable.
Compute tri- then bi-variate resultants to get a triangular system.
Final complexity in O(d®) field operations.
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Solving the systems, in theory

Successive elimination by resultants

Input system is trivariate of degree d in each variable.
Compute tri- then bi-variate resultants to get a triangular system.
Final complexity in O(d®) field operations.

Complexities

For £ inert, d = O(¢2) and J[(] is computed in O(¢*?) field ops.
For ¢ totally split, d = O(¢?/3), cost decreased to O(¢*) field ops.
Overall complexities of O(log'* q) in general and O(log® q) with RM.
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Our plan

Describing the /-torsion
@ How to describe the ¢-torsion 7
— Write /D = 0 and solve this system.
e Using RM to split J[¢] for g = 3.
— Split it in the RM case.

Handling the system

@ Writing and bounding degrees of input system.
— Cantor's n-division polynomials.

@ Solving the system.
— Successive resultants.

@ And in practice ?
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A genus-3 family with explicit RM

An RM family [Mestre'91, Tautz-Top-Verberkmoes'91]

Family C; : y?> = x" — 7x® + 14x® — Tx + t with t € FF,,.
— hyperelliptic curves of genus 3, with explicit RM.
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A genus-3 family with explicit RM

An RM family [Mestre'91, Tautz-Top-Verberkmoes'91]

Family C; : y?> = x" — 7x® + 14x® — Tx + t with t € FF,,.
— hyperelliptic curves of genus 3, with explicit RM.

An explicit endomorphism [Kohel-Smith'06]

Plus, Z[n] = Z[2 cos(27/7)] € Q(¢7) and 7 has explicit expression:
For P = (x,y) a generic point on C,

11 1
n(P—oo):<X2+7xX+X2—E6,y>.
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A practical example

C:y?=x"—T7x%+ 14x3 — Tx + 42 over F,, with p = 2% — 50.

Retrieving modular information

With general (non-RM related) techniques: A modulo 12 = 3 x 4.
Smallest totally-split prime: A modulo ¢ = 13.
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Our plan

Describing the /-torsion
@ How to describe the ¢-torsion 7
— Write /D = 0 and solve this system.
e Using RM to split J[¢] for g = 3.
— Split it in the RM case.

Handling the system

@ Writing and bounding degrees of input system.
— Cantor's n-division polynomials.

@ Solving the system.
— Successive resultants.

@ And in practice ?
— Grobner bases and final collision search.
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From theory to practice

Timing estimates for resultants

Evaluation/Interpolation: many not-so-small univariate resultants.

¢ | #res | Deg Cost (NTL) | Cost (FLINT)
13 | 525M | 16,000 1,850 days 735 days
29 | 12.8G | 80,000 | 310,000 days | 190,000 days

Recovering modular information (F4,FGLM in Magma)

mod ¢ #var | degree bounds time memory
2 J— J— R R
4 (inert?) 6 15 1 min negl.
3 (inert) 5 55 14 days | 140 GB
13 = p1Pop3 5 52 3x3 days 41 GB

Simon Abelard Point counting July 18, 2018
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A practical example

C:y*=x"—7x° +14x3 — Tx + 42 over F, with p = 2% — 59.

Retrieving modular information

With general (non-RM related) techniques: A modulo 12 = 3 x 4.
Smallest totally-split prime: ¢ =13

We deduce A modulo m = 156, still far from sufficient. . .
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A practical example

C:y?>=x"—7x>+14x> — Tx + 42 over F, with p = 264 — 59.

Retrieving modular information

With general (non-RM related) techniques: A modulo 12 = 3 x 4.
Smallest totally-split prime: ¢ =13

We deduce A modulo m = 156, still far from sufficient. . .

Finishing the computation

Testing y7(D) = 7%(D) + gD in J (not in J[{]), by collision search.
[Matsuo-Chao-Tsujii'02,Gaudry-Schost'04,Galbraith-Ruprai’09].

Main drawback: exponential complexity in O(q3/4/m?3/?)

Advantages: memory efficient, massively run in parallel.

In our experiments, it represents 105 CPU-days.
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Conclusion

Complexities

Genus 3 hyperelliptic with RM
Object to model (-torsion J[/] Kere; where £ =[]¢;
Equation (D=0 e(D)=0
Degrees Oo(?) O(¢2/3)
Complexity O ((log 9)*) O((log 9)°)
i



Conclusion

Complexities

Genus 3 hyperelliptic with RM
Object to model (-torsion J[/] Kere; where ¢ =] ¢;
Equation (D=0 e(D)=0
Degrees Oo(?) O(¢2/3)
Complexity O ((log 9)'*) O((log 9)°)

Experiments

We count points in a 192-bit hyperelliptic Jacobian with RM.
Previously: 183-bit by Sutherland (generic group methods).
Both are for particular cases, although RM is less likely.
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Conclusion

Complexities

Genus 3 hyperelliptic with RM
Object to model (-torsion J[/] Kere; where ¢ =] ¢;
Equation (D=0 e(D)=0
Degrees Oo(?) O(¢2/3)
Complexity O ((log 9)**) O((log 9)°)

Experiments

We count points in a 192-bit hyperelliptic Jacobian with RM.
Previously: 183-bit by Sutherland (generic group methods).
Both are for particular cases, although RM is less likely.
Further: ¢ =7 (ramified), ¢ = 29 (next totally split, hot topic)
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Ongoing and future work

Villard's algorithm for bivariate resultant (ISSAC 18)

Genus Usual resultants | Villard's algorithm

g=2 O(log® q) O((log q)*~2/+)
g = 2 with RM O(Iog q) O((log q)°~%/«)

g=3 O(log™* q) O((log q)**=*/«)
g = 3 with RM | O(log® q) O((log q)®~*/G))
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Ongoing and future work

Villard's algorithm for bivariate resultant (ISSAC 18)
Genus Usual resultants | Villard's algorithm
g=2 O(log® q) O((log q)*~2/)

g = 2 with RM O(Iog q) O((log q)°~%/«)
g=3 O(log** q) O((log )**~*/)
g = 3 with RM | O(log® q) O((log q)®~*/G))

@ Modular equations ([Martindale et al., Milio] ) hope for RM-SEA ?
@ Non-hyperelliptic curves ?

@ Hyperelliptic curves of greater genus ?
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Ongoing and future work

Villard's algorithm for bivariate resultant (ISSAC 18)
Genus Usual resultants | Villard's algorithm
g=2 O(log® q) O((log q)*~2/)

g = 2 with RM O(Iog q) O((log g)°>~/«)
g=3 O(log™ q) O((log g)*+~*/)
g = 3 with RM | O(log® q) O((log q)®~*/G))

@ Modular equations ([Martindale et al., Milio] ) hope for RM-SEA ?
Large objects and ongoing research already in genus 2.

@ Non-hyperelliptic curves ?

@ Hyperelliptic curves of greater genus ?
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Ongoing and future work

Villard's algorithm for bivariate resultant (ISSAC 18)
Genus Usual resultants | Villard's algorithm
g=2 O(log® q) O((log q)*~2/)

g = 2 with RM O(Iog q) O((log g)°>~/«)
g=3 O(log™ q) O((log g)*+~*/)
g = 3 with RM | O(log® q) O((log q)®~*/G))

@ Modular equations ([Martindale et al., Milio] ) hope for RM-SEA ?
Large objects and ongoing research already in genus 2.

@ Non-hyperelliptic curves ?
Need analogues and bound for degrees of Cantor's polynomials.

@ Hyperelliptic curves of greater genus ?
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Ongoing and future work

Villard's algorithm for bivariate resultant (ISSAC 18)

Genus
g=2

g = 2 with RM
g=3

g = 3 with RM

Usual resultants
O(log® q)
O(log® q)
(Iog q)
O(

log® q)

O O

Villard's algorithm
O((log q)*~2/)
O((log q)°~ /)
O((log q)**=*/+)

O((log q)°=*/())

@ Modular equations ([Martindale et al.,

Large objects and ongoing research already in genus 2.

@ Non-hyperelliptic curves ?

Need analogues and bound for degrees of Cantor's polynomials.

@ Hyperelliptic curves of greater genus ?
Work in progress, hope for complexity in Og(log8 q).
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Thanks for your attention
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