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/* */ E,C,
/* */ c,r,
/* */ u,l,

e,s,
i=5,

d[5],Q[999 ]={0};main(n ){for
(;i--;e=scanf("%" "d",d+i));for(C =*d;
++i<C ;++Q[ i*i% C],c= i[Q]?
c:i); for(;i --;) for(u =C;u
--;n +=!u*Q [l%C ],e+= Q[(C
+l*l- c*s* s%C) %C]) for(
l=i,s=u,r=4;r;E= i*l+c*u*s,s=(u*l +i*s)
%C,l=E%C+r --[d]);printf ("%d"

"\n",
(e+n*
n)/2

/* cc caramba.c; echo f3 f2 f1 f0 p | ./a.out */ -C);}

CARAMBA
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What? Where?
Our favorite geometrical object:
Hyperelliptic curves C given by equation Y 2 = f (X ).
Polynomial f ∈ Fq[X ] monic squarefree of degree 2g + 1.
The genus of the curve is the integer g .

Point counting
If C defined over Fq, P = (x , y) is rational if (x , y) ∈ (Fq)2.
Let C(Fqi ) =

{
(x , y) ∈ (Fqi )2 |y 2 = f (x)

}
∪ {∞},

Point counting over Fq is computing the local ζ function of C:

ζ(s) = exp
(∑

k
#C(Fqk )sk

k

)
thm= Λ(s)

(1− s)(1− qs)

With Λ ∈ Z[T ] of degree 2g with bounded coefficients.
In practice, we want the coeffs of the polynomial Λ, or simply Λ(1).
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Why counting points?

Cryptographic purposes (genus ≤ 2)
Curves provide groups with no known subexponential algorithm for
DLP. Size of group determines security level [Pohlig-Hellman].

In other algorithms
Primality proving with proven complexity [Adleman-Huang ]
Deterministic factorization in Fq[X ] ? (ongoing [Kayal, Poonen])

Arithmetic geometry
Conjectures in number theory e.g. Sato-Tate in genus ≥ 2.
L-functions associated: L(s, C) = ∑

p Ap/ps with Ap = #C(Fp)/√p.
Computing them relies on point-counting primitives.
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Algorithms for point counting
Let C be a curve over Fq with q = pn.

p-adic methods
elliptic curves: Satoh’99, Mestre’00
hyp. curves: Kedlaya’01, Denef-Vercauteren’06, Lauder-Wan’06
more general curves: Castryck-Denef-Vercauteren’06, Tuitman’17

Asymptotic complexity: polynomial in g , exponential in log p.

`-adic methods
Elliptic curves (Schoof’85) extended to Abelian varieties (Pila’90).
Asymptotic complexity: exponential in g , polynomial in log q.

No classical polynomial algorithm in both g and log p,
Average polynomial for reductions modulo p of a curve (Harvey’14).
Exponential algorithms are also efficient in practice (Sutherland’09).
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Schoof’s algorithm in genus ≤ 2
Pila’s algorithm is highly impractical (23-bit exponent for log q).

Asymptotic complexities
Genus Complexity Authors
g = 1 Õ(log4 q) Schoof-Elkies-Atkin (∼ 1990)
g = 2 Õ(log8 q) Gaudry-Harley-Schost (2000)

g = 2 with RM Õ(log5 q) Gaudry-Kohel-Smith (2011)

Records
Genus 1: 16645-bit Jacobian using SEA (Sutherland’10).
Genus 2: 256-bit cryptographic Jacobian (Gaudry-Schost’12).
Genus 2 with RM: 1024-bit Jacobian (Gaudry-Kohel-Smith’11).

What about genus 3? With RM?
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g = 1 Õ(log4 q) Schoof-Elkies-Atkin (∼ 1990)
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Schoof’s algorithm in genus 3
What about genus 3? Asymptotic complexity? Practicality?

Main results
For C a genus-3 hyperelliptic curve with explicit RM, we give a Las
Vegas algorithm to compute the local zeta function in Õ(log6 q) bit
ops. Without RM, the algorithm runs in Õ(log14 q) bit ops.
Experiments: g = 3 and p = 264 − 59, 192-bit RM-Jacobian.

Complexities
Genus Complexity Authors
g = 1 Õ(log4 q) Schoof-Elkies-Atkin
g = 2 Õ(log8 q) Gaudry-Schost

g = 2 with RM Õ(log5 q) Gaudry-Kohel-Smith
g = 3 Õ(log14 q) A.-Gaudry-Spaenlehauer

g = 3 with RM Õ(log6 q) A.-Gaudry-Spaenlehauer
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Jacobians, real multiplication
Let C : y 2 = f (x) be a hyperelliptic curve of genus g over Fq.

Mumford form
Any D ∈ Jac C(Fq) can be represented as a sum of w ≤ g points.
Unique representation of D ∈ Jac C(Fq) by 〈u, v〉 in Fq[X ]2 such that:

deg u = w
u|v 2 − f

Explicit real multiplication
We say that C has RM by an order Z[η] if Z[η] ↪→ End(J)
with Q(η) is a degree-g totally real field.
Over finite fields all curves have RM by ψ = π + π∨.
We ask for an explicit expression of η(P −∞) = 〈u, v〉.
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A prototype of Schoof’s algorithm
Let C : y 2 = f (x) be a hyperelliptic curve over Fq.
Let J be its Jacobian and g its genus.

1 (Hasse-Weil) bounds on coeffs of Λ ⇒ compute Λ mod `
2 number and size of ` bounded by O(g log q)
3 `-torsion J [`] = {D ∈ J |`D = 0} ' (Z/`Z)2g

4 action on Frobenius π : (x , y) 7→ (xq, yq) on J [`] yields Λ mod `

Algorithm a la Schoof
For sufficiently many primes `
Describe I` the ideal of `-torsion
Compute χ mod ` by testing char. eq. of π in I`
Deduce Λ mod `

Recover Λ by CRT
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Our plan
Describing the `-torsion

How to describe the `-torsion ?

→ Write `D = 0 and solve this system.

Using RM to split J [`] for g = 3.

→ Split it in the RM case.

Handling the system
Writing and bounding degrees of input system.

→ Cantor’s n-division polynomials.

Solving the system.

→ Successive resultants.

And in practice ?

→ Gröbner bases and final collision search.
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Modelling the `-torsion
To model the `-torsion, consider a divisor D, compute `D formally,
Then write a system equivalent to `D = 0 in J , and “solve” it.

Bad news
In genus 3, the ideal J [`] has degree `6.
The size of the torsion impacts the complexity of solving part.
Hard to go lower than quadratic in the degree, i.e. `12 field ops.
⇒ Even ` = 5 already seems out of reach. . .

Wishful thinking
Can we find curves with smaller `-torsion? No.
Can we split J [`] into small (π-stable) subspaces?
(i.e. does Λ factors modulo `?)
For curves with explicit RM, it is possible.
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Tuning Schoof’s algorithm using RM
Let C be a genus-3 hyperelliptic curve with explicit RM by Z[η].

Replacing χπ
Let ψ = π + π∨, ψ ∈ Z[η] so we write ψ = α + βη + γη2.
We write a system to express Λ from knowledge of η and (α, β, γ).
Replace χπ(D) = 0 mod J [`] by ψπ(D) = π2(D) + q2D.
Advantage: α, β, γ are in O(√q) vs Weil’s bounds in O(q3/2).

Splitting J [`]
For some `, decompose multiplication as ` = p1p2p3 in Z[η],
Find εi = ai + biη + ciη

2 in pi with |ai |, |bi |, |ci | in O(`1/3).
The action of π on all the J [εi ] uniquely determines ψ hence Λ.
Advantage: model Ker εi instead of J [`], degree O(`2) vs `6.
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Cantor’s division polynomials (Cantor’94 )

Problem
We have to compute `D or εi(D) to write our systems.
Recall εi = ai + biη + ciη

2 with η known ⇒ scalar multiplication ?

For n > g and P = (x , y) a generic point on C, n(P −∞) equals〈
X g + dg−1(x)

dg (x) X g−1 + · · ·+ d0(x)
dg (x) , y

(
eg−1(x)
eg (x) X g−1 + · · ·+ e0(x)

eg (x)

)〉

The di and ei are called Cantor’s n-division polynomials.
In genus 1 and 2, it is know that their degrees are in O(n2).

Theorem (A.-Gaudry-Spaenlehauer)
In genus 3, Cantor’s n-division polynomials have degrees in O(n2).
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Bounding degrees

We need to solve the system εi(D) = 0, let us write it.

Our polynomial systems
Write εi(P1 −∞) + εi(P2 −∞) = −εi(P3 −∞):

d̃1(x1, x2, y)d3(x3)− d̃3(x1, x2)d1(x3) = 0,
d̃2(x1, x2, y)d3(x3)− d̃3(x1, x2)d2(x3) = 0,
d̃3(x1, x2, y)d3(x3)− d̃3(x1, x2)d3(x3) = 0.

Recall that εi = ai + biη + ciη
2 amounts to multiplication by `1/3.

Cantor’s polynomials ⇒ degrees of the di ’s and d̃i ’s are in O(`2/3).
Remark: without splitting J [`], degrees would be in O(`2).
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Our plan
Describing the `-torsion

How to describe the `-torsion ?
→ Write `D = 0 and solve this system.
Using RM to split J [`] for g = 3.
→ Split it in the RM case.

Handling the system
Writing and bounding degrees of input system.
→ Cantor’s n-division polynomials.
Solving the system.

→ Successive resultants.

And in practice ?

→ Gröbner bases and final collision search.
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Solving the systems, in theory

Successive elimination by resultants
Input system is trivariate of degree d in each variable.
Compute tri- then bi-variate resultants to get a triangular system.
Final complexity in Õ(d6) field operations.

Complexities
For ` inert, d = O(`2) and J [`] is computed in Õ(`12) field ops.
For ` totally split, d = O(`2/3), cost decreased to Õ(`4) field ops.
Overall complexities of Õ(log14 q) in general and Õ(log6 q) with RM.

Simon Abelard Point counting July 18, 2018 17 / 26



Solving the systems, in theory

Successive elimination by resultants
Input system is trivariate of degree d in each variable.
Compute tri- then bi-variate resultants to get a triangular system.
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A genus-3 family with explicit RM

An RM family [Mestre’91,Tautz-Top-Verberkmoes’91]
Family Ct : y 2 = x7 − 7x5 + 14x3 − 7x + t with t ∈ Fq.
−→ hyperelliptic curves of genus 3, with explicit RM.

An explicit endomorphism [Kohel-Smith’06]
Plus, Z[η] ∼= Z[2 cos(2π/7)] ⊂ Q(ζ7) and η has explicit expression:
For P = (x , y) a generic point on C,

η(P −∞) =
〈

X 2 + 11
2 xX + x2 − 16

9 , y
〉
.
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A practical example

C : y 2 = x7 − 7x5 + 14x3 − 7x + 42 over Fp with p = 264 − 59.

Retrieving modular information
With general (non-RM related) techniques: Λ modulo 12 = 3× 4.
Smallest totally-split prime: Λ modulo ` = 13.

Finishing the computation
Testing ψπ(D) = π2(D) + qD in J (not in J [`]), by collision search.
Inspired by [Matsuo-Chao-Tsujii’02,Gaudry-Schost’04,Galbraith-Ruprai’09].
Main drawback: exponential complexity in log p
Advantages: memory efficient, massively run in parallel.
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Our plan
Describing the `-torsion

How to describe the `-torsion ?
→ Write `D = 0 and solve this system.
Using RM to split J [`] for g = 3.
→ Split it in the RM case.

Handling the system
Writing and bounding degrees of input system.
→ Cantor’s n-division polynomials.
Solving the system.
→ Successive resultants.
And in practice ?
→ Gröbner bases and final collision search.
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From theory to practice
Timing estimates for resultants
Evaluation/Interpolation: many not-so-small univariate resultants.

` #res Deg Cost (NTL) Cost (FLINT)
13 525M 16,000 1,850 days 735 days
29 12.8G 80,000 310,000 days 190,000 days

Recovering modular information (F4,FGLM in Magma)
mod `k #var degree bounds time memory
2 — — — —
4 (inert2) 6 15 1 min negl.
3 (inert) 5 55 14 days 140 GB
13 = p1p2p3 5 52 3× 3 days 41 GB
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A practical example
C : y 2 = x7 − 7x5 + 14x3 − 7x + 42 over Fp with p = 264 − 59.

Retrieving modular information
With general (non-RM related) techniques: Λ modulo 12 = 3× 4.
Smallest totally-split prime: ` = 13

We deduce Λ modulo m = 156, still far from sufficient. . .

Finishing the computation
Testing ψπ(D) = π2(D) + qD in J (not in J [`]), by collision search.
[Matsuo-Chao-Tsujii’02,Gaudry-Schost’04,Galbraith-Ruprai’09].
Main drawback: exponential complexity in O(q3/4/m3/2)
Advantages: memory efficient, massively run in parallel.
In our experiments, it represents 105 CPU-days.
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Conclusion

Complexities
Genus 3 hyperelliptic with RM

Object to model `-torsion J [`] Ker εi where ` = ∏
εi

Equation `D = 0 εi(D) = 0
Degrees O(`2) O(`2/3)

Complexity Õ ((log q)14) Õ((log q)6)

Experiments
We count points in a 192-bit hyperelliptic Jacobian with RM.
Previously: 183-bit by Sutherland (generic group methods).
Both are for particular cases, although RM is less likely.

Further: ` = 7 (ramified), ` = 29 (next totally split, hot topic)
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Ongoing and future work
Villard’s algorithm for bivariate resultant (ISSAC 18)

Genus Usual resultants Villard’s algorithm
g = 2 Õ(log8 q) Õ((log q)8−2/ω)

g = 2 with RM Õ(log5 q) Õ((log q)5−1/ω)
g = 3 Õ(log14 q) Õ((log q)14−4/ω)

g = 3 with RM Õ(log6 q) Õ((log q)6−4/(3ω))

Modular equations ([Martindale et al., Milio] ) hope for RM-SEA ?

Large objects and ongoing research already in genus 2.

Non-hyperelliptic curves ?

Need analogues and bound for degrees of Cantor’s polynomials.

Hyperelliptic curves of greater genus ?

Work in progress, hope for complexity in Og(log8 q).

Simon Abelard Point counting July 18, 2018 25 / 26



Ongoing and future work
Villard’s algorithm for bivariate resultant (ISSAC 18)

Genus Usual resultants Villard’s algorithm
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Thanks for your attention
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