Counting points on genus-3 hyperelliptic curves with real multiplication

Simon Abelard

Joint work with P. Gaudry and P.-J. Spaenlehauer

July 18, 2018

Point counting

What? Where?

Our favorite geometrical object:

Hyperelliptic curves C given by equation $Y^2 = f(X)$. Polynomial $f \in \mathbb{F}_q[X]$ monic squarefree of degree 2g + 1. The genus of the curve is the integer g.

Point counting

If C defined over \mathbb{F}_q , P = (x, y) is rational if $(x, y) \in (\mathbb{F}_q)^2$. Let $C(\mathbb{F}_{q^i}) = \{(x, y) \in (\mathbb{F}_{q^i})^2 | y^2 = f(x)\} \cup \{\infty\}$, Point counting over \mathbb{F}_q is computing the local ζ function of C:

$$\zeta(s) = \exp\left(\sum_k \# \mathcal{C}(\mathbb{F}_{q^k}) \frac{s^k}{k}\right) \stackrel{thm}{=} \frac{\Lambda(s)}{(1-s)(1-qs)}$$

With $\Lambda \in \mathbb{Z}[T]$ of degree 2g with bounded coefficients. In practice, we want the coeffs of the polynomial Λ , or simply $\Lambda(1)$.

Why counting points?

Cryptographic purposes (genus ≤ 2)

Curves provide groups with no known subexponential algorithm for DLP. Size of group determines security level [*Pohlig-Hellman*].

In other algorithms

Primality proving with proven complexity [Adleman-Huang] Deterministic factorization in $\mathbb{F}_q[X]$? (ongoing [Kayal, Poonen])

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus ≥ 2 . *L*-functions associated: $L(s, C) = \sum_{p} A_{p}/p^{s}$ with $A_{p} = \#C(\mathbb{F}_{p})/\sqrt{p}$. Computing them relies on point-counting primitives.

Algorithms for point counting

Let C be a curve over \mathbb{F}_q with $q = p^n$.

p-adic methods

- elliptic curves: Satoh'99, Mestre'00
- hyp. curves: Kedlaya'01, Denef-Vercauteren'06, Lauder-Wan'06
- more general curves: Castryck-Denef-Vercauteren'06, Tuitman'17

Asymptotic complexity: polynomial in g, exponential in $\log p$.

ℓ -adic methods

Elliptic curves (*Schoof'85*) extended to Abelian varieties (*Pila'90*). Asymptotic complexity: exponential in g, polynomial in $\log q$.

Algorithms for point counting

Let C be a curve over \mathbb{F}_q with $q = p^n$.

p-adic methods

- elliptic curves: Satoh'99, Mestre'00
- hyp. curves: Kedlaya'01, Denef-Vercauteren'06, Lauder-Wan'06
- more general curves: Castryck-Denef-Vercauteren'06, Tuitman'17

Asymptotic complexity: polynomial in g, exponential in $\log p$.

ℓ -adic methods

Elliptic curves (*Schoof'85*) extended to Abelian varieties (*Pila'90*). Asymptotic complexity: exponential in g, polynomial in $\log q$.

No classical polynomial algorithm in both g and $\log p$, Average polynomial for reductions modulo p of a curve (*Harvey'14*).

Algorithms for point counting

Let C be a curve over \mathbb{F}_q with $q = p^n$.

p-adic methods

- elliptic curves: Satoh'99, Mestre'00
- hyp. curves: Kedlaya'01, Denef-Vercauteren'06, Lauder-Wan'06
- more general curves: Castryck-Denef-Vercauteren'06, Tuitman'17

Asymptotic complexity: polynomial in g, exponential in $\log p$.

ℓ -adic methods

Elliptic curves (*Schoof'85*) extended to Abelian varieties (*Pila'90*). Asymptotic complexity: exponential in g, polynomial in $\log q$.

No classical polynomial algorithm in both g and log p, Average polynomial for reductions modulo p of a curve (*Harvey'14*). Exponential algorithms are also efficient in practice (*Sutherland'09*).

Schoof's algorithm in genus < 2

Pila's algorithm is highly impractical (23-bit exponent for $\log q$).

Asymptotic complexities

Genus	Complexity	Authors
g=1	$\widetilde{O}(\log^4 q)$	Schoof-Elkies-Atkin (\sim 1990)
g=2	$\widetilde{O}(\log^8 q)$	Gaudry-Harley-Schost (2000)
g = 2 with RM	$\widetilde{O}(\log^5 q)$	Gaudry-Kohel-Smith (2011)

Schoof's algorithm in genus ≤ 2

Pila's algorithm is highly impractical (23-bit exponent for $\log q$).

Asymptotic complexities

Genus	Complexity
g=1	$\widetilde{O}(\log^4 q)$
g = 2	$\widetilde{O}(\log^8 q)$
= 2 with RM	$\widetilde{O}(\log^5 q)$

Authors Schoof-Elkies-Atkin (\sim 1990) Gaudry-Harley-Schost (2000) Gaudry-Kohel-Smith (2011)

Records

g

Genus 1: 16645-bit Jacobian using SEA (*Sutherland'10*). Genus 2: 256-bit cryptographic Jacobian (*Gaudry-Schost'12*). Genus 2 with RM: 1024-bit Jacobian (*Gaudry-Kohel-Smith'11*).

Schoof's algorithm in genus ≤ 2

Pila's algorithm is highly impractical (23-bit exponent for $\log q$).

Asymptotic complexities

Genus	Complexity
g=1	$\widetilde{O}(\log^4 q)$
g = 2	$\widetilde{O}(\log^8 q)$
= 2 with RM	$\widetilde{O}(\log^5 q)$

Authors Schoof-Elkies-Atkin (\sim 1990) Gaudry-Harley-Schost (2000) Gaudry-Kohel-Smith (2011)

Records

g

Genus 1: 16645-bit Jacobian using SEA (*Sutherland'10*). Genus 2: 256-bit cryptographic Jacobian (*Gaudry-Schost'12*). Genus 2 with RM: 1024-bit Jacobian (*Gaudry-Kohel-Smith'11*).

What about genus 3? With RM?

Schoof's algorithm in genus 3

What about genus 3? Asymptotic complexity? Practicality?

Main results

For C a genus-3 hyperelliptic curve with explicit RM, we give a Las Vegas algorithm to compute the local zeta function in $\tilde{O}(\log^6 q)$ bit ops. Without RM, the algorithm runs in $\tilde{O}(\log^{14} q)$ bit ops. Experiments: g = 3 and $p = 2^{64} - 59$, 192-bit RM-Jacobian.

Complexities

GenusComplexity
$$g = 1$$
 $\widetilde{O}(\log^4 q)$ $g = 2$ $\widetilde{O}(\log^8 q)$ $g = 2$ with RM $\widetilde{O}(\log^5 q)$ $g = 3$ $\widetilde{O}(\log^{14} q)$ $g = 3$ with RM $\widetilde{O}(\log^6 q)$

Authors Schoof-Elkies-Atkin Gaudry-Schost Gaudry-Kohel-Smith A.-Gaudry-Spaenlehauer A.-Gaudry-Spaenlehauer

Jacobians, real multiplication

Let $C: y^2 = f(x)$ be a hyperelliptic curve of genus g over \mathbb{F}_q .

Mumford form

Any $D \in \text{Jac } \mathcal{C}(\overline{\mathbb{F}}_q)$ can be represented as a sum of $w \leq g$ points. Unique representation of $D \in \text{Jac } \mathcal{C}(\mathbb{F}_q)$ by $\langle u, v \rangle$ in $\mathbb{F}_q[X]^2$ such that:

- deg u = w
- $u|v^2 f$

Jacobians, real multiplication

Let $\mathcal{C}: y^2 = f(x)$ be a hyperelliptic curve of genus g over \mathbb{F}_q .

Mumford form

Any $D \in \text{Jac } \mathcal{C}(\overline{\mathbb{F}}_q)$ can be represented as a sum of $w \leq g$ points. Unique representation of $D \in \text{Jac } \mathcal{C}(\mathbb{F}_q)$ by $\langle u, v \rangle$ in $\mathbb{F}_q[X]^2$ such that:

• deg
$$u = w$$

•
$$u|v^2 - f$$

Explicit real multiplication

We say that C has RM by an order $\mathbb{Z}[\eta]$ if $\mathbb{Z}[\eta] \hookrightarrow \text{End}(J)$ with $\mathbb{Q}(\eta)$ is a degree-g totally real field. Over finite fields all curves have RM by $\psi = \pi + \pi^{\vee}$. We ask for an explicit expression of $\eta(P - \infty) = \langle u, v \rangle$.

A prototype of Schoof's algorithm

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- (Hasse-Weil) bounds on coeffs of $\Lambda \Rightarrow$ compute Λ mod ℓ
- 2 number and size of ℓ bounded by $O(g \log q)$
- ℓ -torsion $J[\ell] = \{D \in J | \ell D = 0\} \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$
- action on Frobenius $\pi: (x, y) \mapsto (x^q, y^q)$ on $J[\ell]$ yields $\Lambda \mod \ell$

Algorithm a la Schoof

```
For sufficiently many primes \ell
Describe I_{\ell} the ideal of \ell-torsion
Compute \chi \mod \ell by testing char. eq. of \pi in I_{\ell}
Deduce \Lambda \mod \ell
Recover \Lambda by CRT
```

A prototype of Schoof's algorithm

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- **(**Hasse-Weil) bounds on coeffs of $\Lambda \Rightarrow$ compute Λ mod ℓ
- **2** number and size of ℓ bounded by $O(g \log q)$
- ℓ -torsion $J[\ell] = \{D \in J | \ell D = 0\} \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$
- action on Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$ on $J[\ell]$ yields Λ mod ℓ

Algorithm a la Schoof

```
For sufficiently many primes \ell
Describe I_{\ell} the ideal of \ell-torsion
Compute \chi \mod \ell by testing char. eq. of \pi in I_{\ell}
Deduce \Lambda \mod \ell
Recover \Lambda by CRT
```

A prototype of Schoof's algorithm

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- **(**Hasse-Weil) bounds on coeffs of $\Lambda \Rightarrow$ compute $\Lambda \mod \ell$
- **2** number and size of ℓ bounded by $O(g \log q)$
- ℓ -torsion $J[\ell] = \{D \in J | \ell D = 0\} \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$
- action on Frobenius $\pi: (x, y) \mapsto (x^q, y^q)$ on $J[\ell]$ yields $\Lambda \mod \ell$

Algorithm a la Schoof

```
For sufficiently many primes \ell

Describe I_{\ell} the ideal of \ell-torsion

Compute \chi \mod \ell by testing char. eq. of \pi in I_{\ell}

Deduce \Lambda \mod \ell

Recover \Lambda by CRT
```

Our plan

Describing the ℓ -torsion

- How to describe the ℓ -torsion ?
- Using RM to split $J[\ell]$ for g = 3.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.
- And in practice ?

Modelling the $\ell\text{-torsion}$

To model the ℓ -torsion, consider a divisor D, compute ℓD formally, Then write a system equivalent to $\ell D = 0$ in J, and "solve" it.

Modelling the $\ell\text{-torsion}$

To model the ℓ -torsion, consider a divisor D, compute ℓD formally, Then write a system equivalent to $\ell D = 0$ in J, and "solve" it.

Bad news

In genus 3, the ideal $J[\ell]$ has degree ℓ^6 .

The size of the torsion impacts the complexity of solving part.

Hard to go lower than quadratic in the degree, i.e. ℓ^{12} field ops.

 \Rightarrow Even $\ell = 5$ already seems out of reach...

Modelling the ℓ -torsion

To model the ℓ -torsion, consider a divisor D, compute ℓD formally, Then write a system equivalent to $\ell D = 0$ in J, and "solve" it.

Bad news

In genus 3, the ideal $J[\ell]$ has degree ℓ^6 .

The size of the torsion impacts the complexity of solving part.

Hard to go lower than quadratic in the degree, i.e. ℓ^{12} field ops.

 \Rightarrow Even $\ell = 5$ already seems out of reach...

Wishful thinking

Can we find curves with smaller ℓ -torsion? No. Can we split $J[\ell]$ into small (π -stable) subspaces? (i.e. does Λ factors modulo ℓ ?) For curves with explicit RM, it is possible.

Our plan

Describing the ℓ -torsion

- How to describe the ℓ-torsion ?
 → Write ℓD = 0 and solve this system.
- Using RM to split $J[\ell]$ for g = 3.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.

• And in practice ?

Our plan

Describing the ℓ -torsion

- How to describe the ℓ-torsion ?
 → Write ℓD = 0 and solve this system.
- Using RM to split $J[\ell]$ for g = 3.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.
- And in practice ?

Tuning Schoof's algorithm using RM

Let C be a genus-3 hyperelliptic curve with explicit RM by $\mathbb{Z}[\eta]$.

Replacing χ_{π}

Let $\psi = \pi + \pi^{\vee}$, $\psi \in \mathbb{Z}[\eta]$ so we write $\psi = \alpha + \beta \eta + \gamma \eta^2$. We write a system to express Λ from knowledge of η and (α, β, γ) . Replace $\chi_{\pi}(D) = 0 \mod J[\ell]$ by $\psi \pi(D) = \pi^2(D) + q^2 D$. Advantage: α, β, γ are in $O(\sqrt{q})$ vs Weil's bounds in $O(q^{3/2})$.

Tuning Schoof's algorithm using RM

Let C be a genus-3 hyperelliptic curve with explicit RM by $\mathbb{Z}[\eta]$.

Replacing χ_{π}

Let $\psi = \pi + \pi^{\vee}$, $\psi \in \mathbb{Z}[\eta]$ so we write $\psi = \alpha + \beta \eta + \gamma \eta^2$. We write a system to express Λ from knowledge of η and (α, β, γ) . Replace $\chi_{\pi}(D) = 0 \mod J[\ell]$ by $\psi \pi(D) = \pi^2(D) + q^2 D$. Advantage: α, β, γ are in $O(\sqrt{q})$ vs Weil's bounds in $O(q^{3/2})$.

Splitting $J[\ell]$

For some ℓ , decompose multiplication as $\ell = \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3$ in $\mathbb{Z}[\eta]$, Find $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ in \mathfrak{p}_i with $|a_i|$, $|b_i|$, $|c_i|$ in $O(\ell^{1/3})$. The action of π on all the $J[\epsilon_i]$ uniquely determines ψ hence Λ . Advantage: model Ker ϵ_i instead of $J[\ell]$, degree $O(\ell^2)$ vs ℓ^6 .

Our plan

Describing the $\ell\text{-torsion}$

- How to describe the ℓ-torsion ?
 → Write ℓD = 0 and solve this system.
- Using RM to split J[ℓ] for g = 3.
 → Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.

• And in practice ?

Our plan

Describing the ℓ -torsion

- How to describe the ℓ-torsion ?
 → Write ℓD = 0 and solve this system.
- Using RM to split $J[\ell]$ for g = 3.
 - \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.

• And in practice ?

Cantor's division polynomials (Cantor'94)

Problem

We have to compute ℓD or $\epsilon_i(D)$ to write our systems. Recall $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ with η known \Rightarrow scalar multiplication ?

Cantor's division polynomials (Cantor'94)

Problem

We have to compute ℓD or $\epsilon_i(D)$ to write our systems. Recall $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ with η known \Rightarrow scalar multiplication ?

For n > g and P = (x, y) a generic point on C, $n(P - \infty)$ equals

$$\left\langle X^g + \frac{d_{g-1}(x)}{d_g(x)} X^{g-1} + \dots + \frac{d_0(x)}{d_g(x)}, y\left(\frac{e_{g-1}(x)}{e_g(x)} X^{g-1} + \dots + \frac{e_0(x)}{e_g(x)}\right) \right\rangle$$

The d_i and e_i are called Cantor's *n*-division polynomials. In genus 1 and 2, it is know that their degrees are in $O(n^2)$.

Cantor's division polynomials (Cantor'94)

Problem

We have to compute ℓD or $\epsilon_i(D)$ to write our systems. Recall $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ with η known \Rightarrow scalar multiplication ?

For n > g and P = (x, y) a generic point on C, $n(P - \infty)$ equals

$$\left\langle X^g + \frac{d_{g-1}(x)}{d_g(x)} X^{g-1} + \dots + \frac{d_0(x)}{d_g(x)}, y\left(\frac{e_{g-1}(x)}{e_g(x)} X^{g-1} + \dots + \frac{e_0(x)}{e_g(x)}\right) \right\rangle$$

The d_i and e_i are called Cantor's *n*-division polynomials. In genus 1 and 2, it is know that their degrees are in $O(n^2)$.

Theorem (A.-Gaudry-Spaenlehauer)

In genus 3, Cantor's *n*-division polynomials have degrees in $O(n^2)$.

We need to solve the system $\epsilon_i(D) = 0$, let us write it.

We need to solve the system $\epsilon_i(D) = 0$, let us write it.

Our polynomial systems Write $\epsilon_i(P_1 - \infty) + \epsilon_i(P_2 - \infty) = -\epsilon_i(P_3 - \infty)$: $\tilde{d}_1(x_1, x_2, y)d_3(x_3) - \tilde{d}_3(x_1, x_2)d_1(x_3) = 0$, $\tilde{d}_2(x_1, x_2, y)d_3(x_3) - \tilde{d}_3(x_1, x_2)d_2(x_3) = 0$, $\tilde{d}_3(x_1, x_2, y)d_3(x_3) - \tilde{d}_3(x_1, x_2)d_3(x_3) = 0$.

We need to solve the system $\epsilon_i(D) = 0$, let us write it.

Our polynomial systems Write $\epsilon_i(P_1 - \infty) + \epsilon_i(P_2 - \infty) = -\epsilon_i(P_3 - \infty)$: $\tilde{d}_1(x_1, x_2, y)d_3(x_3) - \tilde{d}_3(x_1, x_2)d_1(x_3) = 0$, $\tilde{d}_2(x_1, x_2, y)d_3(x_3) - \tilde{d}_3(x_1, x_2)d_2(x_3) = 0$, $\tilde{d}_3(x_1, x_2, y)d_3(x_3) - \tilde{d}_3(x_1, x_2)d_3(x_3) = 0$.

Recall that $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ amounts to multiplication by $\ell^{1/3}$. Cantor's polynomials \Rightarrow degrees of the d_i 's and \tilde{d}_i 's are in $O(\ell^{2/3})$.

We need to solve the system $\epsilon_i(D) = 0$, let us write it.

Our polynomial systems Write $\epsilon_i(P_1 - \infty) + \epsilon_i(P_2 - \infty) = -\epsilon_i(P_3 - \infty)$: $\tilde{d}_1(x_1, x_2, y) d_3(x_3) - \tilde{d}_3(x_1, x_2) d_1(x_3) = 0$, $\tilde{d}_2(x_1, x_2, y) d_3(x_3) - \tilde{d}_3(x_1, x_2) d_2(x_3) = 0$, $\tilde{d}_3(x_1, x_2, y) d_3(x_3) - \tilde{d}_3(x_1, x_2) d_3(x_3) = 0$.

Recall that $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ amounts to multiplication by $\ell^{1/3}$. Cantor's polynomials \Rightarrow degrees of the d_i 's and \tilde{d}_i 's are in $O(\ell^{2/3})$. Remark: without splitting $J[\ell]$, degrees would be in $O(\ell^2)$.

Our plan

Describing the $\ell\text{-torsion}$

- How to describe the ℓ-torsion ?
 → Write ℓD = 0 and solve this system.
- Using RM to split $J[\ell]$ for g = 3.
 - \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
 - \rightarrow Cantor's $\mathit{n}\text{-division}$ polynomials.
- Solving the system.

• And in practice ?

Our plan

Describing the $\ell\text{-torsion}$

- How to describe the ℓ -torsion ?
 - \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for g = 3.
 - \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
 - \rightarrow Cantor's $\mathit{n}\text{-division}$ polynomials.
- Solving the system.

• And in practice ?

Solving the systems, in theory

Successive elimination by resultants

Input system is trivariate of degree d in each variable. Compute tri- then bi-variate resultants to get a triangular system. Final complexity in $\tilde{O}(d^6)$ field operations.

Solving the systems, in theory

Successive elimination by resultants

Input system is trivariate of degree d in each variable. Compute tri- then bi-variate resultants to get a triangular system. Final complexity in $\tilde{O}(d^6)$ field operations.

Complexities

For ℓ inert, $d = O(\ell^2)$ and $J[\ell]$ is computed in $\widetilde{O}(\ell^{12})$ field ops. For ℓ totally split, $d = O(\ell^{2/3})$, cost decreased to $\widetilde{O}(\ell^4)$ field ops. Overall complexities of $\widetilde{O}(\log^{14} q)$ in general and $\widetilde{O}(\log^6 q)$ with RM.

Our plan

Describing the $\ell\text{-torsion}$

- How to describe the ℓ -torsion ?
 - \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for g = 3.
 - \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
 - \rightarrow Cantor's $\mathit{n}\text{-division}$ polynomials.
- Solving the system.
 - \rightarrow Successive resultants.
- And in practice ?

Our plan

Describing the $\ell\text{-torsion}$

- How to describe the ℓ -torsion ?
 - \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for g = 3.
 - \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
 - \rightarrow Cantor's $\mathit{n}\text{-division}$ polynomials.
- Solving the system.
 - \rightarrow Successive resultants.
- And in practice ?

A genus-3 family with explicit RM

An RM family [Mestre'91, Tautz-Top-Verberkmoes'91] Family $C_t : y^2 = x^7 - 7x^5 + 14x^3 - 7x + t$ with $t \in \mathbb{F}_q$. \longrightarrow hyperelliptic curves of genus 3, with explicit RM.

A genus-3 family with explicit RM

An RM family [Mestre'91, Tautz-Top-Verberkmoes'91] Family $C_t : y^2 = x^7 - 7x^5 + 14x^3 - 7x + t$ with $t \in \mathbb{F}_q$. \longrightarrow hyperelliptic curves of genus 3, with explicit RM.

An explicit endomorphism [Kohel-Smith'06] Plus $\mathbb{Z}[n] \cong \mathbb{Z}[2 \cos(2\pi/7)] \subset \mathbb{Q}(2\pi)$ and *n* has explicit explicit endomorphism.

Plus, $\mathbb{Z}[\eta] \cong \mathbb{Z}[2\cos(2\pi/7)] \subset \mathbb{Q}(\zeta_7)$ and η has explicit expression: For P = (x, y) a generic point on C,

$$\eta(P-\infty) = \left\langle X^2 + \frac{11}{2}xX + x^2 - \frac{16}{9}, y \right\rangle.$$

A practical example

 $C: y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over \mathbb{F}_p with $p = 2^{64} - 59$.

Retrieving modular information

With general (non-RM related) techniques: Λ modulo $12 = 3 \times 4$. Smallest totally-split prime: Λ modulo $\ell = 13$.

Our plan

Describing the $\ell\text{-torsion}$

- How to describe the ℓ -torsion ?
 - \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for g = 3.
 - \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
 - \rightarrow Cantor's $\mathit{n}\text{-division}$ polynomials.
- Solving the system.
 - \rightarrow Successive resultants.
- And in practice ?
 - \rightarrow Gröbner bases and final collision search.

From theory to practice

Timing estimates for resultants

Evaluation/Interpolation: many not-so-small univariate resultants.

l	#res	Deg	Cost (NTL)	Cost (FLINT)
13	525M	16,000	1,850 days	735 days
29	12.8G	80,000	310,000 days	190,000 days

Recovering modular information (F4,FGLM in Magma)

mod ℓ^k	#var	degree bounds	time	memory
2	—	—	—	—
4 (inert ²)	6	15	1 min	negl.
3 (inert)	5	55	14 days	140 GB
$13 = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$	5	52	3×3 days	41 GB

A practical example

$$\mathcal{C}: y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$$
 over \mathbb{F}_p with $p = 2^{64} - 59$.

Retrieving modular information

With general (non-RM related) techniques: A modulo $12=3\times 4.$ Smallest totally-split prime: $\ell=13$

We deduce Λ modulo m = 156, still far from sufficient...

A practical example

$$\mathcal{C}: y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$$
 over \mathbb{F}_p with $p = 2^{64} - 59$.

Retrieving modular information

With general (non-RM related) techniques: A modulo $12=3\times 4.$ Smallest totally-split prime: $\ell=13$

We deduce Λ modulo m = 156, still far from sufficient...

Finishing the computation

Testing $\psi \pi(D) = \pi^2(D) + qD$ in J (not in $J[\ell]$), by collision search. [Matsuo-Chao-Tsujii'02,Gaudry-Schost'04,Galbraith-Ruprai'09]. Main drawback: exponential complexity in $O(q^{3/4}/m^{3/2})$ Advantages: memory efficient, massively run in parallel. In our experiments, it represents 105 CPU-days.

Conclusion

Complexities

	Genus 3 hyperelliptic	with RM
Object to model	ℓ -torsion $J[\ell]$	Ker ϵ_i where $\ell = \prod \epsilon_i$
Equation	$\ell D = 0$	$\epsilon_i(D) = 0$
Degrees	$O(\ell^2)$	$O(\ell^{2/3})$
Complexity	$\widetilde{O}\left((\log q)^{14} ight)$	$\widetilde{O}((\log q)^6)$

Conclusion

Complexities

	Genus 3 hyperelliptic	with RM
Object to model	ℓ -torsion $J[\ell]$	Ker ϵ_i where $\ell = \prod \epsilon_i$
Equation	$\ell D = 0$	$\epsilon_i(D) = 0$
Degrees	$O(\ell^2)$	$O(\ell^{2/3})$
Complexity	$\widetilde{O}\left((\log q)^{14} ight)$	$\widetilde{O}((\log q)^6)$

Experiments

We count points in a 192-bit hyperelliptic Jacobian with RM. Previously: 183-bit by Sutherland (generic group methods). Both are for particular cases, although RM is less likely.

Conclusion

Complexities

	Genus 3 hyperelliptic	with RM
Object to model	ℓ -torsion $J[\ell]$	Ker ϵ_i where $\ell = \prod \epsilon_i$
Equation	$\ell D = 0$	$\epsilon_i(D) = 0$
Degrees	$O(\ell^2)$	$O(\ell^{2/3})$
Complexity	$\widetilde{O}\left((\log q)^{14} ight)$	$\widetilde{O}((\log q)^6)$

Experiments

We count points in a 192-bit hyperelliptic Jacobian with RM. Previously: 183-bit by Sutherland (generic group methods). Both are for particular cases, although RM is less likely. Further: $\ell = 7$ (ramified), $\ell = 29$ (next totally split, hot topic)

Genus	Usual resultants	Villard's algorithm
g=2	$\widetilde{O}(\log^8 q)$	$\widetilde{O}((\log q)^{8-2/\omega})$
g = 2 with RM	$\widetilde{O}(\log^5 q)$	$\widetilde{O}((\log q)^{5-1/\omega})$
g = 3	$\widetilde{O}(\log^{14} q)$	$\widetilde{O}((\log q)^{14-4/\omega})$
g = 3 with RM	$\widetilde{O}(\log^6 q)$	$\widetilde{O}((\log q)^{6-4/(3\omega)})$

Genus	Usual resultants	Villard's algorithm
g=2	$\widetilde{O}(\log^8 q)$	$\widetilde{O}((\log q)^{8-2/\omega})$
g = 2 with RM	$\widetilde{O}(\log^5 q)$	$\widetilde{O}((\log q)^{5-1/\omega})$
g = 3	$\widetilde{O}(\log^{14} q)$	$\widetilde{O}((\log q)^{14-4/\omega})$
g = 3 with RM	$\widetilde{O}(\log^6 q)$	$\widetilde{O}((\log q)^{6-4/(3\omega)})$

- Modular equations ([Martindale et al., Milio]) hope for RM-SEA ?
- Non-hyperelliptic curves ?
- Hyperelliptic curves of greater genus ?

Genus	Usual resultants	Villard's algorithm
g=2	$\widetilde{O}(\log^8 q)$	$\widetilde{O}((\log q)^{8-2/\omega})$
g = 2 with RM	$\widetilde{O}(\log^5 q)$	$\widetilde{O}((\log q)^{5-1/\omega})$
g = 3	$\widetilde{O}(\log^{14} q)$	$\widetilde{O}((\log q)^{14-4/\omega})$
g = 3 with RM	$\widetilde{O}(\log^6 q)$	$\widetilde{O}((\log q)^{6-4/(3\omega)})$

- Modular equations ([Martindale et al., Milio]) hope for RM-SEA ? Large objects and ongoing research already in genus 2.
- Non-hyperelliptic curves ?
- Hyperelliptic curves of greater genus ?

Genus	Usual resultants	Villard's algorithm
g = 2	$\widetilde{O}(\log^8 q)$	$\widetilde{O}((\log q)^{8-2/\omega})$
g = 2 with RM	$\widetilde{O}(\log^5 q)$	$\widetilde{O}((\log q)^{5-1/\omega})$
g = 3	$\widetilde{O}(\log^{14} q)$	$\widetilde{O}((\log q)^{14-4/\omega})$
g = 3 with RM	$\widetilde{O}(\log^6 q)$	$\widetilde{O}((\log q)^{6-4/(3\omega)})$

- Modular equations ([Martindale et al., Milio]) hope for RM-SEA ? Large objects and ongoing research already in genus 2.
- Non-hyperelliptic curves ?
 Need analogues and bound for degrees of Cantor's polynomials.
- Hyperelliptic curves of greater genus ?

Genus	Usual resultants	Villard's algorithm
g=2	$\widetilde{O}(\log^8 q)$	$\widetilde{O}((\log q)^{8-2/\omega})$
g = 2 with RM	$\widetilde{O}(\log^5 q)$	$\widetilde{O}((\log q)^{5-1/\omega})$
g = 3	$\widetilde{O}(\log^{14} q)$	$\widetilde{O}((\log q)^{14-4/\omega})$
g = 3 with RM	$\widetilde{O}(\log^6 q)$	$\widetilde{O}((\log q)^{6-4/(3\omega)})$

- Modular equations ([Martindale et al., Milio]) hope for RM-SEA ? Large objects and ongoing research already in genus 2.
- Non-hyperelliptic curves ?
 Need analogues and bound for degrees of Cantor's polynomials.
- Hyperelliptic curves of greater genus ?
 Work in progress, hope for complexity in O_g(log⁸ q).

Thanks for your attention

