Counting points on genus-3 hyperelliptic curves with real multiplication

Simon Abelard

Joint work with P. Gaudry and P.-J. Spaenlehauer

July 18, 2018

What? Where?

Our favorite geometrical object:

Hyperelliptic curves $\mathcal C$ given by equation $Y^2=f(X).$ Polynomial $f \in \mathbb{F}_q[X]$ monic squarefree of degree $2g + 1$. The genus of the curve is the integer g .

Point counting

If $\mathcal C$ defined over $\mathbb F_q$, $P=(x,y)$ is rational if $(x,y)\in \left(\mathbb F_q\right)^2$. Let $\mathcal{C}(\mathbb{F}_{q^i}) = \left\{ (x,y) \in (\mathbb{F}_{q^i})^2 \, |y^2 = f(x) \right\} \cup \{ \infty \},$ Point counting over \mathbb{F}_q is computing the local ζ function of \mathcal{C} :

$$
\zeta(s) = \exp\left(\sum_k \#\mathcal{C}(\mathbb{F}_{q^k}) \frac{s^k}{k}\right) \stackrel{thm}{=} \frac{\mathsf{\Lambda}(s)}{(1-s)(1-qs)}
$$

With $\Lambda \in \mathbb{Z}[T]$ of degree 2g with bounded coefficients. In practice, we want the coeffs of the polynomial Λ , or simply $\Lambda(1)$.

Why counting points?

Cryptographic purposes (genus \leq 2)

Curves provide groups with no known subexponential algorithm for DLP. Size of group determines security level [Pohlig-Hellman].

In other algorithms

Primality proving with proven complexity [Adleman-Huang] Deterministic factorization in $\mathbb{F}_q[X]$? (ongoing [Kayal, Poonen])

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus ≥ 2 . L-functions associated: $L(s, C) = \sum_{p} A_{p}/p^{s}$ with $A_{p} = \#C(\mathbb{F}_{p})/\sqrt{p}$. Computing them relies on point-counting primitives.

Algorithms for point counting

Let C be a curve over \mathbb{F}_q with $q=p^n$.

p-adic methods

- elliptic curves: Satoh'99, Mestre'00
- hyp. curves: Kedlaya'01, Denef-Vercauteren'06, Lauder-Wan'06
- more general curves: Castryck-Denef-Vercauteren'06, Tuitman'17

Asymptotic complexity: polynomial in g , exponential in $\log p$.

`-adic methods

Elliptic curves (Schoof'85) extended to Abelian varieties (Pila'90). Asymptotic complexity: exponential in g , polynomial in $\log q$.

Algorithms for point counting

Let C be a curve over \mathbb{F}_q with $q=p^n$.

p-adic methods

- elliptic curves: Satoh'99, Mestre'00
- hyp. curves: Kedlaya'01, Denef-Vercauteren'06, Lauder-Wan'06
- more general curves: Castryck-Denef-Vercauteren'06, Tuitman'17

Asymptotic complexity: polynomial in g , exponential in $\log p$.

`-adic methods

Elliptic curves (Schoof'85) extended to Abelian varieties (Pila'90). Asymptotic complexity: exponential in g , polynomial in $log q$.

No classical polynomial algorithm in both g and log p , Average polynomial for reductions modulo p of a curve (Harvey'14).

Algorithms for point counting

Let C be a curve over \mathbb{F}_q with $q=p^n$.

p-adic methods

- elliptic curves: Satoh'99, Mestre'00
- hyp. curves: Kedlaya'01, Denef-Vercauteren'06, Lauder-Wan'06
- more general curves: Castryck-Denef-Vercauteren'06, Tuitman'17

Asymptotic complexity: polynomial in g , exponential in $\log p$.

`-adic methods

Elliptic curves (Schoof'85) extended to Abelian varieties (Pila'90). Asymptotic complexity: exponential in g , polynomial in $log q$.

No classical polynomial algorithm in both g and log p , Average polynomial for reductions modulo p of a curve (Harvey'14). Exponential algorithms are also efficient in practice (Sutherland'09).

Schoof's algorithm in genus ≤ 2

Pila's algorithm is highly impractical (23-bit exponent for $log q$).

Asymptotic complexities

Schoof's algorithm in genus ≤ 2

Pila's algorithm is highly impractical (23-bit exponent for $log q$).

Asymptotic complexities

Authors q) Schoof-Elkies-Atkin (∼ 1990) Gaudry-Harley-Schost (2000) Gaudry-Kohel-Smith (2011)

Records

Genus 1: 16645-bit Jacobian using SEA (Sutherland'10). Genus 2: 256-bit cryptographic Jacobian (Gaudry-Schost'12). Genus 2 with RM: 1024-bit Jacobian (Gaudry-Kohel-Smith'11).

Schoof's algorithm in genus ≤ 2

Pila's algorithm is highly impractical (23-bit exponent for $log q$).

Asymptotic complexities

Authors q) Schoof-Elkies-Atkin (∼ 1990) Gaudry-Harley-Schost (2000) Gaudry-Kohel-Smith (2011)

Records

Genus 1: 16645-bit Jacobian using SEA (Sutherland'10). Genus 2: 256-bit cryptographic Jacobian (Gaudry-Schost'12). Genus 2 with RM: 1024-bit Jacobian (Gaudry-Kohel-Smith'11).

What about genus 3? With RM?

Schoof's algorithm in genus 3

What about genus 3? Asymptotic complexity? Practicality?

Main results

For $\mathcal C$ a genus-3 hyperelliptic curve with explicit RM, we give a Las Vegas algorithm to compute the local zeta function in $\widetilde{O}(\log^6 q)$ bit ops. Without RM, the algorithm runs in $\widetilde{O}(\log^{14} q)$ bit ops. Experiments: $g = 3$ and $p = 2^{64} - 59$, 192-bit RM-Jacobian.

Complexities

Genus
\n
$$
g = 1
$$

\n $g = 2$
\n $g = 3$
\n $g = 3$
\n $g = 3$
\n $g = 3$
\n $\overline{O}(\log^4 q)$
\n $\overline{O}(\log^5 q)$
\n $\overline{O}(\log^{14} q)$
\n $\overline{O}(\log^{14} q)$
\n $\overline{O}(\log^6 q)$

Authors Schoof-Elkies-Atkin Gaudry-Schost q) Gaudry-Kohel-Smith A.-Gaudry-Spaenlehauer A.-Gaudry-Spaenlehauer

Jacobians, real multiplication

Let C : $y^2 = f(x)$ be a hyperelliptic curve of genus g over \mathbb{F}_q .

Mumford form

Any $D \in \text{Jac } C(\overline{\mathbb{F}}_q)$ can be represented as a sum of $w \leq g$ points. Unique representation of $D \in \text{Jac}\, \mathcal{C}(\mathbb{F}_q)$ by $\langle u, v \rangle$ in $\mathbb{F}_q[X]^2$ such that:

- \bullet deg $u = w$
- $|u|v^2 t$

Jacobians, real multiplication

Let C : $y^2 = f(x)$ be a hyperelliptic curve of genus g over \mathbb{F}_q .

Mumford form

Any $D \in \text{Jac } C(\overline{\mathbb{F}}_q)$ can be represented as a sum of $w \leq g$ points. Unique representation of $D \in \text{Jac}\, \mathcal{C}(\mathbb{F}_q)$ by $\langle u, v \rangle$ in $\mathbb{F}_q[X]^2$ such that:

• deg
$$
u = w
$$

$$
\bullet \ \ u|v^2 - f
$$

Explicit real multiplication

We say that C has RM by an order $\mathbb{Z}[\eta]$ if $\mathbb{Z}[\eta] \hookrightarrow \mathsf{End}(J)$ with $\mathbb{O}(n)$ is a degree-g totally real field. Over finite fields all curves have RM by $\psi = \pi + \pi^{\vee}.$ We ask for an explicit expression of $\eta(P - \infty) = \langle u, v \rangle$.

A prototype of Schoof's algorithm

Let C : $y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- **■** (Hasse-Weil) bounds on coeffs of $Λ$ \Rightarrow compute $Λ$ mod $ℓ$
- 2 number and size of ℓ bounded by $O(g \log q)$
- \bullet ℓ -torsion $J[\ell] = \{ D \in J | \ell D = 0 \} \simeq (\mathbb{Z} / \ell \mathbb{Z})^{2 \mathrm{g}}$
- Φ action on Frobenius $\pi : (x,y) \mapsto (x^q, y^q)$ on $J[\ell]$ yields Λ mod ℓ

Algorithm a la Schoof

```
For sufficiently many primes \ellDescribe l<sub>i</sub> the ideal of l-torsion
Compute χ mod \ell by testing char. eq. of \pi in I_{\ell}Deduce Λ mod \ellRecover Λ by CRT
```
A prototype of Schoof's algorithm

Let C : $y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- ¹ (Hasse-Weil) bounds on coeffs of Λ ⇒ compute Λ mod *`*
- 2 number and size of ℓ bounded by $O(g \log q)$
- \bullet ℓ -torsion $J[\ell] = \{ D \in J | \ell D = 0 \} \simeq (\mathbb{Z} / \ell \mathbb{Z})^{2 \mathrm{g}}$
- Φ action on Frobenius $\pi : (x,y) \mapsto (x^q,y^q)$ on $J[\ell]$ yields Λ mod ℓ

Algorithm a la Schoof

```
For sufficiently many primes `
Describe l<sub>e</sub> the ideal of l-torsion
Compute χ mod \ell by testing char. eq. of \pi in I_{\ell}Deduce Λ mod \ellRecover Λ by CRT
```
A prototype of Schoof's algorithm

Let C : $y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- **1** (Hasse-Weil) bounds on coeffs of $\Lambda \Rightarrow$ compute Λ mod ℓ
- 2 number and size of ℓ bounded by $O(g \log q)$
- \bullet ℓ -torsion $J[\ell] = \{ D \in J | \ell D = 0 \} \simeq (\mathbb{Z} / \ell \mathbb{Z})^{2 \mathrm{g}}$
- Φ action on Frobenius $\pi : (x,y) \mapsto (x^q, y^q)$ on $J[\ell]$ yields Λ mod ℓ

Algorithm a la Schoof

```
For sufficiently many primes `
Describe l<sub>i</sub> the ideal of l-torsion
Compute χ mod \ell by testing char. eq. of \pi in I_{\ell}Deduce Λ mod \ellRecover Λ by CRT
```
Our plan

Describing the ℓ -torsion

- **How to describe the** *l***-torsion?**
- Using RM to split $J[\ell]$ for $g = 3$.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.
- And in practice?

Modelling the *l*-torsion

To model the ℓ -torsion, consider a divisor D, compute ℓD formally, Then write a system equivalent to $\ell D = 0$ in J, and "solve" it.

Modelling the *l*-torsion

To model the ℓ -torsion, consider a divisor D, compute ℓD formally, Then write a system equivalent to $\ell D = 0$ in J, and "solve" it.

Bad news

In genus 3, the ideal $J[\ell]$ has degree $\ell^6.$

The size of the torsion impacts the complexity of solving part. Hard to go lower than quadratic in the degree, i.e. ℓ^{12} field ops.

 \Rightarrow Even $\ell = 5$ already seems out of reach...

Modelling the ℓ -torsion

To model the ℓ -torsion, consider a divisor D, compute ℓD formally, Then write a system equivalent to $\ell D = 0$ in J, and "solve" it.

Bad news

In genus 3, the ideal $J[\ell]$ has degree $\ell^6.$

The size of the torsion impacts the complexity of solving part. Hard to go lower than quadratic in the degree, i.e. ℓ^{12} field ops.

 \Rightarrow Even $\ell = 5$ already seems out of reach...

Wishful thinking

Can we find curves with smaller *`*-torsion? No. Can we split J[*`*] into small (*π*-stable) subspaces? (i.e. does Λ factors modulo *`*?) For curves with explicit RM, it is possible.

Our plan

Describing the *l*-torsion

- **•** How to describe the *l*-torsion? \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for $g = 3$.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.

• And in practice?

Our plan

Describing the *l*-torsion

- **•** How to describe the *l*-torsion? \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for $g = 3$.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.
- And in practice?

Tuning Schoof's algorithm using RM

Let C be a genus-3 hyperelliptic curve with explicit RM by $\mathbb{Z}[n]$.

Replacing *χ^π*

Let $\psi = \pi + \pi^{\vee}$, $\psi \in \mathbb{Z}[\eta]$ so we write $\psi = \alpha + \beta \eta + \gamma \eta^2$. We write a system to express Λ from knowledge of *η* and (*α, β, γ*). $\mathsf{Replace}\ \chi_\pi(D)=0\ \mathsf{mod}\ J[\ell]\ \mathsf{by}\ \psi\pi(D)=\pi^2(D)+q^2D.$ Advantage: α, β, γ are in $O(\sqrt{q})$ vs Weil's bounds in $O(q^{3/2})$.

Tuning Schoof's algorithm using RM

Let C be a genus-3 hyperelliptic curve with explicit RM by $\mathbb{Z}[n]$.

Replacing *χ^π*

Let $\psi = \pi + \pi^{\vee}$, $\psi \in \mathbb{Z}[\eta]$ so we write $\psi = \alpha + \beta \eta + \gamma \eta^2$. We write a system to express Λ from knowledge of *η* and (*α, β, γ*). $\mathsf{Replace}\ \chi_\pi(D)=0\ \mathsf{mod}\ J[\ell]\ \mathsf{by}\ \psi\pi(D)=\pi^2(D)+q^2D.$ Advantage: α, β, γ are in $O(\sqrt{q})$ vs Weil's bounds in $O(q^{3/2})$.

Splitting J[*`*]

For some ℓ , decompose multiplication as $\ell = \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3$ in $\mathbb{Z}[\eta]$, Find $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ in \mathfrak{p}_i with $|a_i|, |b_i|, |c_i|$ in $O(\ell^{1/3})$. The action of π on all the $J[\epsilon_i]$ uniquely determines ψ hence Λ. Advantage: model Ker $\, \epsilon_i \,$ instead of $J[\ell]$, degree $\, O(\ell^2)$ vs $\ell^6.$

Our plan

Describing the *l*-torsion

- **•** How to describe the *l*-torsion? \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for $g = 3$.
	- \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.

• And in practice?

Our plan

Describing the *l*-torsion

- **•** How to describe the *l*-torsion? \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for $g = 3$.
	- \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
- Solving the system.

• And in practice?

Cantor's division polynomials (Cantor'94)

Problem

We have to compute ℓD or $\epsilon_i(D)$ to write our systems. Recall $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ with η known \Rightarrow scalar multiplication ?

Cantor's division polynomials (Cantor'94)

Problem

We have to compute ℓD or $\epsilon_i(D)$ to write our systems. Recall $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ with η known \Rightarrow scalar multiplication ?

For $n > g$ and $P = (x, y)$ a generic point on C, $n(P - \infty)$ equals

$$
\left\langle X^g+\frac{d_{g-1}(x)}{d_g(x)}X^{g-1}+\cdots+\frac{d_0(x)}{d_g(x)},y\left(\frac{e_{g-1}(x)}{e_g(x)}X^{g-1}+\cdots+\frac{e_0(x)}{e_g(x)}\right)\right\rangle
$$

The d_i and e_i are called Cantor's *n*-division polynomials. In genus 1 and 2, it is know that their degrees are in $O(n^2)$.

Cantor's division polynomials (Cantor'94)

Problem

We have to compute ℓD or $\epsilon_i(D)$ to write our systems. Recall $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ with η known \Rightarrow scalar multiplication ?

For $n > g$ and $P = (x, y)$ a generic point on C, $n(P - \infty)$ equals

$$
\left\langle X^g+\frac{d_{g-1}(x)}{d_g(x)}X^{g-1}+\cdots+\frac{d_0(x)}{d_g(x)},y\left(\frac{e_{g-1}(x)}{e_g(x)}X^{g-1}+\cdots+\frac{e_0(x)}{e_g(x)}\right)\right\rangle
$$

The d_i and e_i are called Cantor's *n*-division polynomials. In genus 1 and 2, it is know that their degrees are in $O(n^2)$.

Theorem (A.-Gaudry-Spaenlehauer)

In genus 3, Cantor's *n*-division polynomials have degrees in $O(n^2)$.

We need to solve the system $\epsilon_i(D) = 0$, let us write it.

We need to solve the system $\epsilon_i(D) = 0$, let us write it.

Our polynomial systems Write $\epsilon_i(P_1 - \infty) + \epsilon_i(P_2 - \infty) = -\epsilon_i(P_3 - \infty)$: $\tilde{d}_1(x_1, x_2, y) d_3(x_3) - \tilde{d}_3(x_1, x_2) d_1(x_3) = 0,$ $\tilde{d}_{2}(x_{1},x_{2},y)d_{3}(x_{3})-\tilde{d}_{3}(x_{1},x_{2})d_{2}(x_{3})=0,$ $\tilde{d}_3(x_1, x_2, y) d_3(x_3) - \tilde{d}_3(x_1, x_2) d_3(x_3) = 0.$

We need to solve the system $\epsilon_i(D) = 0$, let us write it.

Our polynomial systems Write $\epsilon_i(P_1 - \infty) + \epsilon_i(P_2 - \infty) = -\epsilon_i(P_3 - \infty)$: $\tilde{d}_1(x_1, x_2, y) d_3(x_3) - \tilde{d}_3(x_1, x_2) d_1(x_3) = 0,$ $\tilde{d}_{2}(x_{1},x_{2},y)d_{3}(x_{3})-\tilde{d}_{3}(x_{1},x_{2})d_{2}(x_{3})=0,$ $\tilde{d}_3(x_1, x_2, y) d_3(x_3) - \tilde{d}_3(x_1, x_2) d_3(x_3) = 0.$

Recall that $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ amounts to multiplication by $\ell^{1/3}.$ Cantor's polynomials \Rightarrow degrees of the d_i 's and \tilde{d}_i 's are in $O(\ell^{2/3})$.

We need to solve the system $\epsilon_i(D) = 0$, let us write it.

Our polynomial systems Write $\epsilon_i(P_1 - \infty) + \epsilon_i(P_2 - \infty) = -\epsilon_i(P_3 - \infty)$: $\tilde{d}_1(x_1, x_2, y) d_3(x_3) - \tilde{d}_3(x_1, x_2) d_1(x_3) = 0,$ $\tilde{d}_{2}(x_{1},x_{2},y)d_{3}(x_{3})-\tilde{d}_{3}(x_{1},x_{2})d_{2}(x_{3})=0,$ $\tilde{d}_3(x_1, x_2, y) d_3(x_3) - \tilde{d}_3(x_1, x_2) d_3(x_3) = 0.$

Recall that $\epsilon_i = a_i + b_i \eta + c_i \eta^2$ amounts to multiplication by $\ell^{1/3}.$ Cantor's polynomials \Rightarrow degrees of the d_i 's and \tilde{d}_i 's are in $O(\ell^{2/3})$. Remark: without splitting $J[\ell]$, degrees would be in $O(\ell^2)$.

Our plan

Describing the *l*-torsion

- **•** How to describe the *l*-torsion? \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for $g = 3$.
	- \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
	- \rightarrow Cantor's *n*-division polynomials.
- Solving the system.

• And in practice?

Our plan

Describing the *l*-torsion

- **•** How to describe the *l*-torsion? \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for $g = 3$.
	- \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
	- \rightarrow Cantor's *n*-division polynomials.
- Solving the system.

• And in practice?

Solving the systems, in theory

Successive elimination by resultants

Input system is trivariate of degree d in each variable. Compute tri- then bi-variate resultants to get a triangular system. Final complexity in $O(d^6)$ field operations.

Solving the systems, in theory

Successive elimination by resultants

Input system is trivariate of degree d in each variable. Compute tri- then bi-variate resultants to get a triangular system. Final complexity in $O(d^6)$ field operations.

Complexities

For ℓ inert, $d = O(\ell^2)$ and $J[\ell]$ is computed in $O(\ell^{12})$ field ops. For ℓ totally split, $d = \mathcal{Q}(\ell^{2/3})$, cost decreased to $\mathcal{Q}(\ell^4)$ field ops. Overall complexities of $\widetilde{O}(\log^{14}q)$ in general and $\widetilde{O}(\log^6q)$ with RM.

Our plan

Describing the *l*-torsion

- **•** How to describe the *l*-torsion? \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for $g = 3$.
	- \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
	- \rightarrow Cantor's *n*-division polynomials.
- Solving the system.
	- \rightarrow Successive resultants.
- And in practice?

Our plan

Describing the *l*-torsion

- **•** How to describe the *l*-torsion? \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for $g = 3$.
	- \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
	- \rightarrow Cantor's *n*-division polynomials.
- Solving the system.
	- \rightarrow Successive resultants.
- And in practice?

A genus-3 family with explicit RM

An RM family [Mestre'91,Tautz-Top-Verberkmoes'91]

Family C_t : $y^2 = x^7 - 7x^5 + 14x^3 - 7x + t$ with $t \in \mathbb{F}_q$.

 \rightarrow hyperelliptic curves of genus 3, with explicit RM.

A genus-3 family with explicit RM

An RM family [Mestre'91,Tautz-Top-Verberkmoes'91] Family C_t : $y^2 = x^7 - 7x^5 + 14x^3 - 7x + t$ with $t \in \mathbb{F}_q$. \rightarrow hyperelliptic curves of genus 3, with explicit RM.

An explicit endomorphism [Kohel-Smith'06]

Plus, $\mathbb{Z}[\eta] \cong \mathbb{Z}[2\cos(2\pi/7)] \subset \mathbb{Q}(\zeta_7)$ and η has explicit expression: For $P = (x, y)$ a generic point on C,

$$
\eta(P - \infty) = \left\langle X^2 + \frac{11}{2}xX + x^2 - \frac{16}{9}, y \right\rangle.
$$

A practical example

 $C: y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over \mathbb{F}_p with $p = 2^{64} - 59$.

Retrieving modular information

With general (non-RM related) techniques: Λ modulo $12 = 3 \times 4$. Smallest totally-split prime: Λ modulo $\ell = 13$.

Our plan

Describing the ℓ -torsion

- **•** How to describe the *l*-torsion? \rightarrow Write $\ell D = 0$ and solve this system.
- Using RM to split $J[\ell]$ for $g = 3$.
	- \rightarrow Split it in the RM case.

Handling the system

- Writing and bounding degrees of input system.
	- \rightarrow Cantor's *n*-division polynomials.
- Solving the system.
	- \rightarrow Successive resultants.
- And in practice?
	- \rightarrow Gröbner bases and final collision search.

From theory to practice

Timing estimates for resultants

Evaluation/Interpolation: many not-so-small univariate resultants.

Recovering modular information (F4,FGLM in Magma)

A practical example

$\mathcal{C}: y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over \mathbb{F}_p with $p = 2^{64} - 59$.

Retrieving modular information

With general (non-RM related) techniques: Λ modulo $12 = 3 \times 4$. Smallest totally-split prime: $\ell = 13$

We deduce Λ modulo $m = 156$. still far from sufficient...

A practical example

$$
C: y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42
$$
 over \mathbb{F}_p with $p = 2^{64} - 59$.

Retrieving modular information

With general (non-RM related) techniques: Λ modulo $12 = 3 \times 4$. Smallest totally-split prime: $\ell = 13$

We deduce Λ modulo $m = 156$, still far from sufficient...

Finishing the computation

Testing $\psi\pi(D)=\pi^2(D)+qD$ in J (not in $J[\ell])$, by collision search. [Matsuo-Chao-Tsujii'02,Gaudry-Schost'04,Galbraith-Ruprai'09]. Main drawback: exponential complexity in $O(q^{3/4}/m^{3/2})$ Advantages: memory efficient, massively run in parallel. In our experiments, it represents 105 CPU-days.

Conclusion

Complexities

Conclusion

Complexities

Experiments

We count points in a 192-bit hyperelliptic Jacobian with RM. Previously: 183-bit by Sutherland (generic group methods). Both are for particular cases, although RM is less likely.

Conclusion

Complexities

Experiments

We count points in a 192-bit hyperelliptic Jacobian with RM. Previously: 183-bit by Sutherland (generic group methods). Both are for particular cases, although RM is less likely. Further: $\ell = 7$ (ramified), $\ell = 29$ (next totally split, hot topic)

- Modular equations ([Martindale et al., Milio]) hope for RM-SEA ?
- Non-hyperelliptic curves?
- Hyperelliptic curves of greater genus?

- Modular equations ([Martindale et al., Milio]) hope for RM-SEA ? Large objects and ongoing research already in genus 2.
- Non-hyperelliptic curves?
- Hyperelliptic curves of greater genus?

- Modular equations ([Martindale et al., Milio]) hope for RM-SEA ? Large objects and ongoing research already in genus 2.
- Non-hyperelliptic curves? Need analogues and bound for degrees of Cantor's polynomials.
- Hyperelliptic curves of greater genus?

- Modular equations ([Martindale et al., Milio]) hope for RM-SEA ? Large objects and ongoing research already in genus 2.
- Non-hyperelliptic curves? Need analogues and bound for degrees of Cantor's polynomials.
- Hyperelliptic curves of greater genus? Work in progress, hope for complexity in $O_g(\log^8 q)$.

Thanks for your attention

