ROOT SEPARATION FOR SPARSE POLYNOMIALS

Yuyu Zhu

Department of Mathematics, Texas A&M University

OBJECTIVE

- What is the largest t such that all univariate t-nomials have well-separated roots in \mathbb{C} and \mathbb{C}_p ?
- Use knowledge of root separation, and recent fast algorithms for counting in $\mathbb{Z}/p^r\mathbb{Z}$, to count roots in \mathbb{Q}_p faster.

Detecting roots in \mathbb{Q}_p for univariate polynomials is **NP**-hard (with respect to the sparse input size)[1]; the minimal number of variables making real root detection **NP**-hard is also unknown. So it is natural to restrict to study fine-grained complexity: univariate t-nomials. For example, deciding if a trinomial has a root in \mathbb{R} (resp. \mathbb{Q}_p) is proven to be in **P** [2] (resp. **NP** [1]).

Asymptotically sharp root separation bounds for sparse polynomials remain unknown to this day. For a field K, let

$$\sigma_K(f) = \min \|x_1 - x_2\|_K,$$

where x_1, x_2 are distinct roots of f in K. A classical result due to Mahler [4] states that $\log \sigma_{\mathbb{C}}^{-1}(f)$ can be exponential in the **sparse** size of f (denoted by s):

$$\log \sigma_{\mathbb{C}}^{-1}(f) = O(d\log d + d\log H) = O(\exp(s)),$$

where d is the degree and H denotes the height of the coefficients. We discuss root separation for trinomials and tetranomials over \mathbb{C} and \mathbb{C}_p . A natural consequence of our results is faster root counting for trinomials over \mathbb{Q}_p .

TRINOMIALS

The picture illustrates how complex roots of random real Gaussian trinomials of exponents [0,51,72] are evenly spaced on two circles.

- Phases of the roots strongly cluster.
- Often, roots can be split into "small" norm and "big" norm.

Koiran improved Mahler's bound for trinomial over $K=\mathbb{C},\mathbb{R}$ [3]: $\log \sigma_K^{-1}(f)=O(s^3).$

We prove a p-adic analogue of his results.

ROOT SPACING FOR TRINOMIALS

Theorem 1. (Zhu) Let $f(x) := a + bx^{\beta} + cx^{\gamma} \in \mathbb{Z}[x]$ be square-free with $abc \neq 0$, $0 < \beta < \gamma$, and set $s := \log |a| + \log |b| + \log |c| + \log \beta + \log \gamma$. For any prime p, we embed f in $\mathbb{Z}_p[x]$. Then

$$\log \sigma_{\mathbb{C}_n}^{-1}(f) = O(ps_p^4/(\log p)^4),$$

where $s_p = \min(s, \log p)$.

TETRANOMIALS

However, when f is a tetranomial, $\log_{\mathbb{C}}^{-1}(f)$, $\log_{\mathbb{C}_p}^{-1}(f)$ can be **exponential** in the sparse size of f, as shown by the following family of examples:

$$f_{\varepsilon}(x) = x^d - \left(\frac{x}{\varepsilon^s} - \frac{1}{\varepsilon}\right)^2.$$

for s > 2 and 2 < d an even integer bounded from above by $\exp(s)$.

Theorem 2. (Zhu)

• Over $\mathbb C$ take $\varepsilon = 1/2$: there exist x_1, x_2 distinct $\mathbb C$ roots of f such that

$$|x_1 - x_2| < 2^{-\Omega(ds)} = 2^{-\Omega(2^s)}$$
.

• Over \mathbb{C}_p take $\varepsilon = p$: there exist x_1, x_2 distinct \mathbb{C}_p roots of f such that

$$||x_1 - x_2||_p \le p^{-\Omega(ds)} = p^{-\Omega(2^s)}.$$

ROOT COUNTING

- p-adic Newton polygon of $f(x) := a_0 + a_1x + \cdots + a_dx^d$ is Newt $_p(f) := \operatorname{Conv}(\{(i, \operatorname{ord}_p(a_i)) : i \in \{0, 1, \cdots, d\}\}).$
- f is **regular** with respect to p, if p does not divide the difference of exponents, and for any lower edge E of $\operatorname{Newt}_p(f)$, there are no points of the form $(i, \operatorname{ord}_p(a_i))$ on E other than the two endpoints.
- Counting roots in \mathbb{Q}_p can be reduced to counting roots in $\mathbb{Z}/p^r\mathbb{Z}$, where $r = O(\log^{-1} \sigma_{\mathbb{C}_p}(f))$.

ROOT COUNTING FOR TRINOMIALS

Theorem 3. (Zhu) Let $f(x) \in \mathbb{Z}[x]$ be a square-free, regular trinomial. For any prime p, we embed $f \in \mathbb{Z}_p[x]$. Then the number of roots of f in \mathbb{Q}_p can be computed in time polynomial in $s + \log p$.

Example: Let p = 30109. Then the number of roots of the **regular** trinomial $f = 3313x^{7495} + 26224x^{13} - 30109^{13} \cdot 293$ in \mathbb{Q}_p can be computed as follows:

This is a regular polynomial, and thus by our algorithm, it suffices to compute the number of roots respectively of

$$g_1 = x^{13} - 9083 \mod 30109$$
, and $g_2 = x^{7482} + 14040 \mod 30109$

As -9083 is a 13-th root modulo 30109, whereas 14040 is not a 7482-th root, the number of roots of f is equal to that of g_1 , which is 13.

• Conjecture: We can count the number of \mathbb{Q}_p roots in polynomial time for **any** trinomial.

Theorem 4. (Zhu) For any trinomial $f = a + bx^{\beta} + cx^{\gamma} \in \mathbb{Z}_p[x]$ with $p \nmid (\gamma - \beta)$, counting \mathbb{Q}_p roots can be done in time polynomial in the sparse size of f.

REFERENCES

- [1] Martín Avendano, Ashraf Ibrahim, J. Maurice Rojas, and Korben Rusek, *Faster p-adic feasibility for certain multivariate sparse polynomials*, Journal of Symbolic Computation **47** (2012), no. 4, 454–479.
- [2] Frédéric Bihan, J. Maurice Rojas, and Casey E. Stella, Faster real feasibility via circuit discriminants, Proceedings of ISSAC 2009, 2009.
- [3] Pascal Koiran, Root separation for trinomials, arXiv:1709.03294, December 2017.
- [4] Kurt Mahler, An inequality for the discriminant of a polynomial, The Michigan Mathematical Journal **11** (1964), no. 3, 257–262.

