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Objective
•What is the largest t such that all univariate t-nomials have
well-separated roots in C and Cp?

•Use knowledge of root separation, and recent fast algorithms for
counting in Z/prZ, to count roots in Qp faster.

Detecting roots in Qp for univariate polynomials is NP-hard (with
respect to the sparse input size)[1]; the minimal number of variables
making real root detection NP-hard is also unknown. So it is natural
to restrict to study fine-grained complexity: univariate t-nomials. For
example, deciding if a trinomial has a root in R (resp. Qp) is proven
to be in P [2] (resp. NP [1]).
Asymptotically sharp root separation bounds for sparse polynomials
remain unknown to this day. For a field K, let

σK(f ) = min ‖x1 − x2‖K ,
where x1, x2 are distinct roots of f in K. A classical result due to
Mahler [4] states that log σ−1

C (f ) can be exponential in the sparse
size of f (denoted by s):

log σ−1
C (f ) = O(d log d + d logH) = O(exp(s)),

where d is the degree and H denotes the height of the coefficients.
We discuss root separation for trinomials and tetranomials over C and
Cp. A natural consequence of our results is faster root counting for
trinomials over Qp.

Trinomials
The picture illustrates how complex roots of random real Gaussian
trinomials of exponents [0, 51, 72] are evenly spaced on two circles.

Koiran improved Mahler’s bound for trinomial over K = C,R [3]:
log σ−1

K (f ) = O(s3).
We prove a p-adic analogue of his results.

Root Spacing for Trinomials
Theorem 1. (Zhu) Let f (x) := a+ bxβ + cxγ ∈ Z[x] be square-
free with abc 6= 0, 0 < β < γ, and set s := log |a|+log |b|+log |c|+
log β + log γ. For any prime p, we embed f in Zp[x]. Then

log σ−1
Cp

(f ) = O(ps4
p/(log p)4),

where sp = min(s, log p).

Tetranomials
However, when f is a tetranomial, log−1

C (f ), log−1
Cp

(f ) can be expo-
nential in the sparse size of f , as shown by the following family of
examples:
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for s > 2 and 2 < d an even integer bounded from above by exp(s).
Theorem 2. (Zhu)
• Over C take ε = 1/2: there exist x1, x2 distinct C roots of f
such that

|x1 − x2| < 2−Ω(ds) = 2−Ω(2s).

• Over Cp take ε = p: there exist x1, x2 distinct Cp roots of f such
that

‖x1 − x2‖p ≤ p−Ω(ds) = p−Ω(2s).

Root Counting

• p-adic Newton polygon of f (x) := a0 + a1x + · · · + adx
d is

Newtp(f ) := Conv({(i, ordp(ai)) : i ∈ {0, 1, · · · , d}}).
• f is regular with respect to p, if p does not divide the difference of
exponents, and for any lower edge E of Newtp(f ), there are no
points of the form (i, ordp(ai)) on E other than the two endpoints.

• Counting roots in Qp can be reduced to counting roots in Z/prZ,
where r = O(log−1 σCp

(f )).

Root Counting for Trinomials
Theorem 3. (Zhu) Let f (x) ∈ Z[x] be a square-free, regular
trinomial. For any prime p, we embed f ∈ Zp[x]. Then the number
of roots of f in Qp can be computed in time polynomial in s+ log p.

• Example: Let p = 30109. Then the number of roots of the
regular trinomial f = 3313x7495 + 26224x13 − 3010913 · 293 in Qp

can be computed as follows:

This is a regular polynomial, and thus by our algorithm, it suffices
to compute the number of roots respectively of

g1 = x13 − 9083 mod 30109, and
g2 = x7482 + 14040 mod 30109

As −9083 is a 13-th root modulo 30109, whereas 14040 is not a
7482-th root, the number of roots of f is equal to that of g1, which is
13.

• Conjecture: We can count the number of Qp roots in polynomial
time for any trinomial.

• Theorem 4. (Zhu) For any trinomial f = a+bxβ+cxγ ∈ Zp[x]
with p - (γ−β), counting Qp roots can be done in time polynomial
in the sparse size of f .
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