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Definitions and History
Let M(n) be the function that counts the number of distinct numbers in an n×n multiplication table; that
is,

M(n) = |{ij : 1 ≤ i ≤ j ≤ n}|.
The asymptotic study of M(n) was initiated by Erdös (in Hebrew) [3]. He improved his own result (in
Russian) [4] and Tenenbaum [7] further clarified (in French). The best currently known result is due to
Ford (in English) [5]. He proved

M(n) � n2

(lnn)c(ln lnn)3/2
where c = 1− 1 + ln ln 2

ln 2
= 0.086071 . . . .

Erdös, Tenenbaum, and Ford
Brent and Pomerance used algorithms of Bach [1] and Kalai [6] to provide Monte Carlo estimates of this
function [2].

Brent, Pomerance, Bach, and Kalai

Exact Evaluation - Naive Algorithm
Algorithm 1: Computing M(n)

1 Initialize a bit vector A of length n2 + 1 to 0.
2 for 1 ≤ i ≤ n do
3 for i ≤ j ≤ n do
4 Set A[ij] = 1

5 return Hamming weight of A
This algorithm is very similar to a standard sieve of Eratosthenes. One may processA in segments. Brent

implemented a segmented version and evaluated M(2k − 1) for k = 1, 2, . . . , 25.
Using this algorithm, evaluation is O(n2) in time and tabulation is O(n3) in time. The space requirement

is O(n2).

Exact Evaluation - Incremental Algorithm
Assume we know M(n − 1). Consider the n products added when going from the (n − 1) × (n − 1)
multiplication table to the n×n multiplication table: mn for 1 ≤ m ≤ n. Some number of these products
D(n) are new distinct products and the remainder δ(n) of them were already in the (n− 1)× (n− 1) table.
So,

M(n) =M(n− 1) +D(n) =M(n− 1) + (n− δ(n)).

Computing δ(n)
Assume we know the divisors of n. Let n = gh and let m = ij. When can we express mn as a product of
two numbers less than n? Then ih× jg will work iff ih < n and jg < n iff i < g and j < h.

To compute δ(n), we need to count unique products ij with 0 < i < g and 0 < j < n/g for each
divisor of n. The implementation does not duplicate work arising from overlapping rectangles of different
divisors.
Algorithm 2: Computing δ(n)
Input : D = [[d0 = 1, n], . . . , [d`−1, n/d`−1]] contains the ordered divisors of n where d`−1 is the

largest divisor in [1,
√
n].

1 Initialize counters i = 1 and k = 1 and a bit vector A of length n to 0.
2 for i < D[`− 1][0] do
3 if i == D[k][0] then
4 Increment k

5 for i ≤ j < D[k][1] do
6 Set A[ij] = 1

7 return Hamming weight of A
This uses O(n) space.

Computing δ(42)
We can see the three rectangles corresponding to the divisor pairs 2 · 21, 3 · 14, and 6 · 7. The grey area
corresponds to the products Algorithm 2 constructs.

Computing δ(63)
We can see two rectangles corresponding to the divisor pairs 3 · 21 and 7 · 9. The grey area corresponds to
the products Algorithm 2 constructs.

Computing δ(361)
We can see the one rectangle corresponding to the divisor pairs 19 · 19. Note, δ(361) =M(18).

Run-Time Analysis
There are two straightforward bounds on the run-time of Algorithm 2.

•O(n lnn): Note that the products constructed are less than n and so lie under a hyperbola. This bound
over counts by counting numbers which should not be counted.

•O(nτ (n)): Let τ (n) count the number of divisors of n. Then one rectangle (of area less than n) is con-
structed for each divisor of n. This over counts because area that lies in the intersections of rectangles
is counted more than once.

Each of these bounds may be used to get a run-time for tabulating M(n) as O(n2 lnn). We can do better.
Let τ (n; y, z) be the number of divisors d of n which satisfy y < d ≤ z and

τ+(n) = |{k ∈ Z : τ (n, 2k, 2k+1) ≥ 1}|.

Theorem. Algorithm 2 computes δ(n) in time O(nτ+(n)).

Proof. Let the area be A. For each k, consider all the divisors of n in the interval (2k, 2k+1]. They all have
the same bottom left corner, namely, the origin, and shapes range from 2k×n/2k to 2k+1×n/2k+1. Hence
they are all enclosed by a rectangle of shape 2k+1× n/2k which has area 2n. Thus we get an upper bound
A ≤ 2nτ+(n).

Theorem. Algorithm 2 tabulates M(n) in time

O

(
n2(lnn)1−c

(ln lnn)3/2

)
where c = 1− 1 + ln ln 2

ln 2
= 0.086071 . . . .

Proof. Compute M(n) by evaluating δ(k) for 1 ≤ k ≤ n. The run-time is

O

∑
k≤n

kτ+(k)

 = O

n2
1

n

∑
k≤n

τ+(k)

 = O

(
n2(lnn)1−c

(ln lnn)3/2

)
.

Corollary 5 of [5] gives the last equality.

Results
k M(2k − 1)

26 830751566970326

27 3288580294256952

28 13023772682665848

29 51598848881797343

Algorithm 2 was independently implemented by David Purdum (C++) and Richard Brent (C).
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