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The Sphere Packing Problem

What proportion of Rd can be covered with unit spheres?

Despite hundreds of years of study, the answer is only known in dimen-
sions 1, 2, 3, 8, 24. Many of these cases were solved only recently. Thomas
Hales and collaborators solved the problem in R3 via a famously massive
computational proof in 2005. The proof was finally verified using au-
tomated proof checking in 2014. [1] The solutions in dimensions 8 and
24, based on the LP method, were the 2016 result of conceptual break-
throughs by Maryna Viazovska and collaborators. [2, 3] In all other
dimensions, the problem is wide open. Progress has come in the form
denser sphere packings and better upper bounds.

This project shows that the LP method, currently the best approach for
providing upper bounds in dimensions 4 to 36, has already been pushed
close to its limit in dimensions 12, 16, 20, 28, and 32. It will take a different
approach or the discovery of denser packings to solve the sphere packing
problem in these dimensions.

Figure 1:Approximately 5800 oranges arranged in a face-centered cubic lattice, which
gives a maximal density sphere packing in dimension 3. Image from the 1967 art exhibit
Soul City (Pyramid of Oranges) by Roelof Louw.

Introduction to the LP Method

The LP method, developed by Cohn and Elkies in [4], uses linear pro-
gramming over spaces of functions to prove upper bounds on the density
of sphere packings. It is the source of the best known upper bounds for the
density of sphere packings in dimensions 4 through 36. The method was
used by Viazovska in 8-dimensions [2] and Viazovska and collaborators
in 24 dimensions [3] to prove that the densest possible sphere packings in
these dimensions are centered on the points of the E8 and Leech lattices.

High-level idea
of LP method:

F : Rd→ R such that F (x) ≤ 0 ∀|x| ≥ 1,
F̂ (t) ≥ 0 ∀ t ∈ Rd.

Upper bound on density of sphere packings in Rd.

linear function

The space of such functions is convex, so it possible to use linear pro-
gramming to search for sphere packing bounds computationally.

The LP Method in More Detail

Notation:
Given f : R→ R, let f̂ : R→ R defined by

f̂ (t) = 2π|t|1−
d
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be its d-dimensional radially symmetric Fourier transform.
If we define F : Rd → R and F̂ : Rd → R by F (x) = f (|x|) and
F̂ (t) = f̂ (|t|), then F̂ is the usual Fourier transform of F .
Say f is admissible if f and f̂ are both O((1 + |x|)−n−δ) for some δ > 0.

Theorem 1 (Cohn-Elkies [4]).
Suppose f : R→ R is an admissible function such that:

1. f (x) ≤ 0 for all |x| ≥ r, 3. f (0) > 0,
2. f̂ (t) ≥ 0 for all t ∈ R, 4. f̂ (0) > 0.

The density of a sphere packing in Rd is bounded above by
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Figure 2:A typical function f and f̂ for the LP method. Although this example is far
from optimal, the optimal function is known in dimensions, 1, 8, and 24.

Proof of Theorem 1 for Lattice Packings:
Let Λ be a lattice in Rd with shortest vector of length at least r and
with dual lattice Λ∨. Let F (x) = f (|x|). By our assumptions on f and
Poisson summation,

f (0) ≥
∑
x∈Λ
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|Λ|
∑
t∈Λ∨

F̂ (t) ≥ f̂ (0)
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density of sphere packing
centered at points of Λ.

)
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Key Inequality Obstructing LP Method

Notation:
For g ∈Mk(Γ0(N)) a modular form of weight k and level Γ0(N), let

g̃(z) = g|wN(z) = ik

Nk/2zk
g

(
− 1
Nz

)
be the dual of g under the full-level Atkin-Lehner involution.
Write the q-expansions of g and g̃ as

g(z) =
∞∑
n=0

anq
n, g̃(z) =

∞∑
n=0

bnq
n.

Theorem 2 (Cohn-T.).
Suppose g ∈Mk(Γ0(N)) is a modular form such that

1a. an = 0 for all 0 < n < m, 1b. an ≥ 0 for all m ≤ n,
2. bn ≥ 0 for all 0 ≤ n, 3. a0 > 0,

and that f satisfies the conditions of Theorem 1 with r =
√
m. Then,
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Key to the Proof:
Replace the Poisson summation in the proof of Theorem 1 with

∞∑
n=0

anf (
√
n) =

(
2√
N

)k ∞∑
n=0

bnf̂

(
2
√
n√
N

)
.

Main Result: New Obstructions to the LP
Method in Dimensions 12, 16, 20, 28, and 32

The LP method is a powerful tool for bounding densities of sphere
packings, but computational data suggests that the LP method does
not give optimal bounds, except in dimensions 1, 8, and 24. We
explain this gap by constructing explicit ‘positive’ modular forms
which obstruct the LP method. As Figure 3 shows, our obstructions
demonstrate that in dimensions which are multiples of 4, the current
LP bounds are nearly best-possible for the method.
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Figure 3:The upper curve is the best known linear programming bound. The lower
curve is the densest sphere packing currently known. Our new obstructions show
that the linear programming bound cannot be improved much.

A Procedure for Bounding the LP Method

To find obstructions to the LP method, fix N and m and compute mod-
ular forms maximizing b0/a0 subject to the hypotheses of Theorem 2.
Repeat for many different N and m to get the best bounds.
We assume that N is not divisible by 162, 92 or p2 for any prime p > 3
so that Mk(Γ0(N)) has an eigenbasis with q-expansions in Q[[q]].

Procedure:
1. Compute a basis for Mk(Γ0(N)) and duals to precision qT .
2. Use an LP solver to find g ∈Mk(Γ0(N)) maximizing b0 subject to:

1a. an = 0 for all 0 < n < m, 1b. an ≥ 0 for all m ≤ n ≤ T ,
2. bn ≥ 0 for all 0 ≤ n ≤ T , 3. a0 > 0,

3. Check that an, bn ≥ 0 for all n ∈ N as in the next section.
4.Output b0 if all an, bn are non-negative. If not, increase T and try

again. T ≈ 2 · dimMk(Γ0(N)) usually seems to work.

Remark: Most LP solvers output solutions that only approximately
satisfy the constraints, but we need exact solutions! Although solvers
that give exact solutions exist, informed guesswork and linear algebra is
usually a faster way to turn approximate solutions into exact solutions.
Ask me how I guess the forms!

Checking Positivity of q-Expansions

To check that a modular form g ∈Mk(Γ0(N)) obstructs the LP method,
we must verify that all of the coefficients of the q-expansion of g and g̃
are non-negative. We take the following five-step approach.
1.Write g = ge + gc, where ge is the Eisenstein part of g,

ge = e0 +
∞∑
n=1

enq
n ∈ Ek(N)

and gc is the cuspidal part of g,

gc =
∞∑
n=1

cnq
n ∈ Sk(N).

2. Express ge as a linear combination of Eisenstein series and use explicit
formulas to get a bound of the form

en ≥ A · σk−1(n) > Ank−1

for some constant A ∈ R.
3. Express gc as a linear combination of normalized eigenforms and use

Deligne’s Weil bounds to get a bound of the form
|cn| ≤ Bσ0(n)n(k−1)/2 ≤ Bnk/2.

for some constant B ∈ R.
4. Compare Ank−1 to Bnk/2 to find Q ∈ Z such that en + cn ≥ 0 for all
n ≥ Q.

5. Check that en + cn ≥ 0 for all 0 ≤ n < Q by explicit computation.

For More Information

• For a preprint or code, email ngtriant@mit.edu.
• This poster will be available at

http://www-math.mit.edu/~ngtriant/research.html

This material is based upon work supported by the MIT Mathematics Department, a
National Science Foundation Graduate Research Fellowship under Grant No. 1122374,
and Microsoft Research New England. Most of the work was completed while the author
was an intern at Microsoft Research New England.

http://www-math.mit.edu/~ngtriant/research.html

