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Definitions

The Galois group, Gal(f ), of a polynomial f over a field F is the automorphism group of the
splitting field of f over F , a group of permutations of the roots of f .
The geometric Galois group of a polynomial f ∈ Q(t)[x], GeoGal(f ), is the Galois group of f
considered as a polynomial over C(t), Gal(f/C(t)).
Given a function field F/k(t), K = {z : z ∈ F | z is algebraic over k}, the algebraic closure of
k in F , is the full or exact constant field of F .

Compute the Galois group of a polynomial

Let f be a monic, integral, separable polynomial over F = Q,Fq(t), Q(t) or an extension
thereof:
1 Compute a splitting field Sf for f over a completion of F and the roots of f in Sf .
2 Find a group G ⊆ Sn which contains Gal(f )
3 While G has maximal subgroups which could contain Gal(f )

1 For each maximal subgroup H of G, compute a G-relative H-invariant polynomial IH .
2 For a cheap maximal subgroup H of G (Stauduhar)

1 Compute the precision m needed in the roots of f and the roots of f in Sf to precision m.
2 for the representatives τ ∈ G//H of cosets of H in G, evaluate IτH at the roots of f . Decide whether this is the image of an
element of F in Sf . If so Gal(f ) ⊆ τHτ−1 and restart the loop (3) with G = τHτ−1.

4 Gal(f ) is G

Galois groups of reducible polynomials

This algorithm can also be used for reducible polynomials — just change the starting group!
• Instead of being contained in Sn, the Galois group of a reducible polynomial is contained in
the direct product of the Galois groups of its irreducible factors.

• The more the splitting fields of the factors overlap the smaller the splitting field of the
reducible polynomial and the Galois group.

• If we can determine that the splitting fields of some factors do not overlap with all the others
we do not need to include the associated Galois groups in the starting group for the descent,
but compute the product of them with the result of the smaller descent afterwards.

• We can apply some knowledge of ramified and unramified extensions to consider how the
splitting fields of the irreducible factors interact.

Algorithm (Compute a Fixed Field of a subgroup ([3])

Given U ⊆ G = Gal(f ) compute the subfield of the splitting field of f fixed by U .
1 Compute a G-relative U-invariant polynomial I and the right transversal G//U .
2 Compute roots {ri}ni=1 to a useful precision.
3 Compute the polynomial g with roots {Iτ(r1, . . . , rn) : τ ∈ G//U}.
4 Map the coefficients of g back to the coefficient ring of f . The resulting polynomial
defines the fixed field of U .
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Overview
We consider 2 computations using Galois groups and Hilbert’s Irreducibility Theorem.
• In order to make Hilbert’s Irreducibility Theorem explicit [4], for P ∈ Q[t, x], let
G = Gal(P ) be the Galois group of P over Q(t) : for which c ∈ Q, with
Pc = P (c, x), does Gal(Pc) ∼= G and Pc factors the same way as P not occur?

• We describe an algorithm to compute geometric Galois groups of polynomials
f ∈ Q(t)[x]. This algorithm is available in Magma [1].

Making Hilbert’s Irreducibility Theorem Explicit
([4] Theorem 2.7)

Let P (t, x) ∈ Q[t, x], F(P ) be the multiset consisting of the degrees of the irreducible
factors of P and G = Gal(P ) be the Galois group of P over Q(t). LetMi be represen-
tatives of all classes of maximal subgroups of G with fixed fields Fi/Q(t) generated by
a root of fi(t, x). Suppose that c ∈ Q satisfies ∆(c)l(c)

∏r
i=1 disc(fi(c, x)) 6= 0. Then,

1 If F(Pc) 6= F(P ), then Gal(Pc) 6∼= G.
2 Gal(Pc) 6∼= G⇐⇒ there is an index i such that fi(c, x) has a root in Q.
We need to compute Galois groups over Q(t), including when P is reducible, and fixed
fields of subgroups of Gal(P ). We obtain the fi and then find suitable c using rational
points on the curves defined by fi.

Example over Q(t) ([4] Section 4.1)

> Qt<t> := FunctionField(Rationals()); P<x> := PolynomialRing(Qt);
> f := x^6 + t^6 - 1; G, r, S := GaloisGroup(f);
> for M in MaximalSubgroups(G) do
for> GaloisSubgroup(S, M‘subgroup); end for;
x^2 - 62208*t^30 + 311040*t^24 - 622080*t^18 + 622080*t^12

- 311040*t^6 + 62208, x^2 + 6*x + 9*t^6,
x^2 + 1728*t^12 - 3456*t^6 + 1728, x^3 + 12*x^2 + 48*x - 8*t^6 + 72
> HilbertIrreducibilityCurves(f);
{ -1, 1 }
It can be shown theoretically [4] that none of the curves defined by these polynomials have
a rational root when c 6= 0, 1,−1. Therefore, Gal(fc) ∼= G unless c = 0, 1,−1 and fc must
be irreducible when c 6= 0, 1,−1 and otherwise reducible.

Example of reducible polynomial over Q(t) (D. Krumm)

> k<t> := FunctionField(Rationals()); _<x> := PolynomialRing(k);
> Phi4 := x^12 + 6*t*x^10 + x^9 + (15*t^2 + 3*t)*x^8 + 4*t*x^7 +
> (20*t^3 + 12*t^2 + 1)*x^6 + (6*t^2 + 2*t)*x^5 + (15*t^4 +
> 18*t^3 + 3*t^2 + 4*t)*x^4 + (4*t^3 + 4*t^2 + 1)*x^3 + (6*t^5 +
> 12*t^4 + 6*t^3 + 5*t^2 + t)*x^2 + (t^4 + 2*t^3 + t^2 + 2*t)*x
> + t^6 + 3*t^5 + 3*t^4 + 3*t^3 + 2*t^2 + 1;
> ep4 := Polynomial([Evaluate(y, (4 - 3*t - t^3)/(4*t)) : y in
> Coefficients(Phi4)]);
> Ep4 := Polynomial([Evaluate(y, (t^2-1)/t) :
> y in Coefficients(ep4)]);
> #GaloisGroup(Phi4); #GaloisGroup(ep4); #GaloisGroup(Ep4);
384 128 64
Using the procedure in the first example we determine that Φ4 has a different factorization
type and Galois group when evaluated at something of the form (4 − 3v − v3)/4v. To
determine what Galois group Φ4 specialised at c has in these cases we need to compute
the Galois group of the reducible polynomial ep4, a product of a degree 8 and a degree 4
polynomial. Further we can apply the procedure above to ep4 which tells us that when v
has the form (s2 − 1)/s the Galois group and factorization type is different again.

Compute the Geometric Galois Group of f ∈ Q(t)[x]

1 Specialise t at small integers. Choose t = t1, t2 such that Gal(f (ti, x)) = Gal(f ) = G.
2 Compute H = Gal(f (t1, x)f (t2, x)).
3 For normal subgroups X of G having index less than that of H in G×G and order dividing
#G/c where c is the degree of the full constant field of Q(t)[x]/f ,

(a) Compute the defining polynomial of the field K ′ fixed by X .
(b) Check whether this is a polynomial over Q or whether this defines a constant field extension. If so X contains

GeoGal(f ) and K ⊇ K ′.
4 The subgroup X containing GeoGal(f ) with the largest index in G and smallest order
corresponds to the largest constant field extension in Γ, and is GeoGal(f ).

The Theory behind the Algorithm

• Since Q is a subfield of C, the geometric Galois group of f will be a subgroup of Gal(f ).
• Using inexact fields such as C runs into problems with precision, so we instead compute over the
largest algebraic extension of Q which contains the algebraic numbers we require : the algebraic
closure, K = Γ ∩ C, where Γ is the splitting field of f .

• Since Gal(f/K(t)) = Gal(f/C(t)), GeoGal(f ) = Gal(f/K(t)).
• The task is to determine K and which normal subgroup of Gal(f ) fixes K(t). We can narrow down
the possible subgroups to consider by deriving constraints on the index of GeoGal(f ) in Gal(f ). We
use a known divisor of the index and an upper bound on [K : Q] (which is equal to this index).

• Using Hilbert’s Irreducibility Theorem [7, 5] we have, for infinitely many ti ∈ Q,
G = Gal(f ) = Gal(Γ) = Gal(f (ti, x)) = Gal(Γi).

• Let X = GeoGal(f ) = Gal(Γ/K(t)). The fields and groups we are considering are :
Γ

K(t)

Q(t)

Γi

Ki

Q

X

G

where Ki is the residue field at t− ti, which is defined by f (ti, x), and we know K ⊆ Ki. So we are
looking for a normal subgroup X ⊆ G such that K(t) is the fixed field of X .

• Let H = Gal(f (t1, x)f (t2, x)). As computed by [8, 9] H ⊆ G×G. Since
[G×G : H ] = [Γ1 ∩ Γ2 : Q] and K ⊆ Γ1 ∩ Γ2, [G×G : H ] ≥ [K : Q].

• Since K will contain all the constants of Q(t)[x]/f ⊆ Γ the degree of this extension of Q must
divide [K : Q]. This narrows down the number of subgroups which are candidates for GeoGal(f ) to
those whose index is at most our bound and divisible by a field degree.

• The fixed field K(t) of the subgroup X ⊆ G is contained in C(t) so we can discount any subgroups
whose fixed fields are not isomorphic to rational function fields over algebraic extensions of Q.

Computations of geometric Galois groups have links to Inverse Galois Theory. See [6].

A Non-Trivial Example

Let f = x9 − 3x7 + (−6t− 6)x6 + 3x5 + (12t− 6)x4 + (12t2 − 84t + 11)x3

+ (−6t− 6)x2 + (−12t2 + 12t + 24)x− 8t3 − 24t2 − 24t− 6
be a polynomial over Q(t). This polynomial is a defining polynomial of (Q(t)[x]/〈x3−2〉)[y]/〈y3−2t−y〉
over Q(t). The Galois group of f is 9T8 of order 36. Specialising f at t = 1, 2 gives

f1 = x9 − 3x7 − 12x6 + 3x5 + 6x4 − 61x3 − 12x2 + 24x− 62,
f2 = x9 − 3x7 − 18x6 + 3x5 + 18x4 − 109x3 − 18x2 − 214

whose Galois groups are conjugate to 9T8. The Galois group of f1f2 is an intransitive group of order 216.
Therefore the index bound for GeoGal(f ) is 36× 36/216 = 6. The exact constant field of the splitting
field of f must contain the exact constant field of Q(t)[x]/f of degree 3 so the order of GeoGal(f )
must divide 36/3 = 12. There are 2 normal subgroups of Gal(f ) which satisfy this index and order
restriction, both isomorphic to S3 of order 6. Only one of the fixed fields has a defining polynomial over
Q : x6 + 78732. The other fixed field, defined by x6− 54x4 + 729x2 + 78732t2− 2916, is not isomorphic
to its exact constant field, Q. Therefore the first fixed field is the exact constant field of the splitting
field of f and the corresponding group, isomorphic to S3, is the geometric Galois group of f .


