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Setup

Let A be an ordinary, simple abelian variety over Fq
of dimension 2 with Frobenius π. Write K = Q(π)
and let F be the maximal totally real subfield of K.

The Problem

The endomorphism ring End(A) is an order in
the quartic CM field K which contains Z[π, π].

1.Which order O ⊆ K is End(A)?

2.How do we uniquely identify this order?

Previous Work

•Bisson and Sutherland: A subexponential
algorithm to compute the endomorphism ring of
an ordinary elliptic curve.

•Bisson: A generalization of the elliptic curve
algorithm to abelian varieties of dimension 2
whose correctness requires various heuristic
assumptions.

•The algorithm presented here: A different
generalization of Bisson and Sutherland’s elliptic
curve algorithm, which avoids the previously
required heuristic assumptions.

Identifying Orders with Ideals of OF

•Denoting the conductor ideal of O by fO, there is a one-to-one correspondence (see Brooks, Jetchev and
Wesolowski):

Orders of K containing OF Ideals of OF

O f+(O) := fO ∩ OF
O(f+) := OF + f+OK f+

•Assume A has maximal RM, i.e. End(A) ⊇ OF . Then End(A) is identified by the ideal f+(End(A)).
This is the output of our algorithm.

• f+(End(A)) divides f+(OF [π]), so we compute f+(End(A)) by inspecting primes dividing f+(OF [π]).

Determining End(A): The Main Idea

•Probe the ideal class group Cl(End(A)) by computing the isogenies corresponding to various ideals.
•Compare Cl(End(A)) to Cl(O) for known “testing” orders O ⊆ K, and deduce the ideal f+(End(A))
which uniquely identifies the order End(A).

•This reduces computing End(A) to finding relations in various class groups Cl(O).

Ideal Class Group Action

The ideal class group Cl(O) acts freely on the set
of abelian varieties isogenous to A with endomor-
phism ring O. This action is induced by associ-
ating each ideal a to the isogeny φa with kernel
A[a] = ∩a∈aA[a].

a1 · · · ak is trivial in Cl(End(A))

A is fixed by the composition φak · · ·φa1
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Deciding if pk Divides f+(End(A))

•Given prime power pk ⊆ OF , construct two
special “testing” orders O1,O2 ⊆ K. If l ⊆ OF is
a prime which splits into principal ideals in O1,
but not in O2, then pk divides f+(End(A)) if and
only if l splits into principal ideals in End(A).

Primes over l
are principal

Primes over l
nonprincipal

Test behavior
with isogenies

K O1 O2 End(A)

F OF ⊇ l

• Key Proposition: There are infinitely many
such l ⊆ OF .

•By Chebotarev’s density theorem, proving
infinitely many such primes l exist reduces to
showing that the ring class field of O1 does not
contain the ring class field of O2.

Main Result (Springer, 2018)

Using the class group action, we obtain an algo-
rithm which is subexponential in log q, as follows.

Input: Ordinary, simple abelian variety A
of dimension 2 with maximal RM
satisfying certain technical conditions

Output: The ideal f+(End(A)) ⊆ OF which
uniquely identifies End(A).

Heuristic Assumptions

This algorithm is unconditionally correct, except
that we use a subexponential algorithm of Biasse
and Fieker for finding and checking relations in the
ideal class groups of various orders, which requires
some standard assumptions, including GRH, to be
provably correct. The running time is bounded un-
der heuristic assumptions analogous to those used
by Bisson and Sutherland in the elliptic curve case.

Restrictions

• In order to compute isogenies, we must assume A
is principally polarized, F has narrow class
number 1 and the conductor gap [OF : Z[π + π]]
is not even. See Cosset & Robert; Dudeanu et al.

•For simplicity, we assume K 6= Q(ζ5), hence
O∗K = O∗F . Adding this assumption implies that
the l-isogeny graphs described by Brooks, Jetchev
and Wesolowski are volcanoes.


