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Prime Patterns
Mathematicians are interested in prime numbers, and how they can appear in patterns.

Twin Primes and Prime k-Tuples
•One example of a simple pattern is twin primes, which follow the pattern (p, p + 2).

• Zhang [20] recently showed that there exists a postive integer h where there are infinitely many primes
in the pattern (p, p + h).

•Generalizing this idea to more primes leads to prime k-tuples or prime constellations.

Sophie Germain Primes and Cunningham Chains
Sophie Germain was interested in the pattern (p, 2p+1). Extending this idea leads to Cunningham Chains:

• Chains of the first kind: (p, 2p + 1, 4p + 3, . . .)

• Chains of the second kind: (p, 2p− 1, 4p− 3, . . .).
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Prime Pattern Definition
Let k > 0 be an integer. We define a prime pattern of size k as a list of linear polynomials over the
integers with positive leading coefficients

(f1(x), . . . , fk(x)).

Distribution of Primes in Patterns
• The Hardy-Littlewood k-tuple conjecture [9] implies that each such pattern, with leading coefficient

1, that is admissible, will be satisfied by primes infinitely often.

• Further, the conjecture implies that the number of primes ≤ n in such a pattern of length k is roughly
proportional to

n

(log n)k
.

•A pattern of size k is admissible if, for every prime p ≤ k, there is an integer x such that p does not
divide any of the fi(x).

•Dickson [4] conjectured that there are infinitely many primes satisfying admissible patterns with arbitrary
positive leading coefficients.

•Halberstam and Richert [8, Theorem 2.4] proved the upper bound

O

(
n

(log n)k

)
for the number of primes ≤ n that satisfy a pattern of length k.
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The Algorithmic Problem
Given a pattern of length k, (f1(x), . . . , fk(x)), and a bound n, find all positive integer values of x such
that all the fi(x) are prime, and max{fi(x)} ≤ n.

Previous Work
•Algorithms:

Günter Löh [13] and Tony Forbes [5] published partial algorithm descriptions, and used their algorithms
to find various primes in patterns.
•Complexity:

As far as we are aware, no complexity analysis has been published.
All primes ≤ n can be found, and the resulting list scanned for patterns. This takes time O(n/ log log n)
using

√
n space, or O(n) time using roughly n1/3 space [1, 6].

•Computational Results and Records:
Record computations can be found online here:
– http://primerecords.dk, which is maintained by Jens Kruse Andersen.
– The Prime Pages at primes.utm.edu has some as well.
– The Online Encyclopedia of Integer Sequences, OEIS.org, has many entries related to primes in pat-

terns, including A001359 (twin primes), A007530 (prime quadruplets), and A005602 and A109828
(Cunningham chains).

Our New Results
Theorem 1.
Given a pattern of length k with positive leading coefficients, and a search bound n, there is an algorithm
to list all integers x such that max {fi(x)} ≤ n and all the fi(x) are prime. This algorithm uses at most

O

(
nk

(log log n)k

)
arithmetic operations (time) and O(k

√
n) bits of space.

• This algorithm extends the Atkin-Bernstein prime sieve [1] with the space-saving wheel sieve [17, 18,
19].
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Theorem 2.
Let c be a constant with 0 < c < 1/2. Given a pattern of length k > 6 with positive leading coefficients,
and a search bound n, there is an algorithm to list all integers x such that max {fi(x)} ≤ n and all the
fi(x) are prime. This algorithm uses at most

O

(
nk

(log log n)k−1

)
arithmetic operations (time) and O(nc) bits of space.

•Due to the much smaller space use, this is a very practical algorithm.
• If we assume a conjecture due to Bach and Heulsbergen [2], we can take k as small as 3.
• This version uses the Sieve of Eratosthenes in place of the Atkin-Bernstein sieve, and supplements with

base-2 pseudoprime tests [16] and the pseudosquares prime test of Lukes, Patterson, and Williams [14].

Eratosthenes of Cyrene

New Computational Results
Twin Primes and Brun’s Constant
Let π2(X) count the twin prime pairs (p, p + 2) with p < X and S2(X) be the sum of their reciprocals.
Thomas Nicely computed these functions up to 2 · 1016 (See http://www.trnicely.net/#PI2X).
We verified his computations and extended the results to X = 1017.
π2(x) is known higher than 1017, but the reciprocal sums are new.

X π2(x) S2(X)

1 · 1016 10304195697298 1.83048442465833932906
2 · 1016 19831847025792 1.83180806343237985727
3 · 1016 29096690339843 1.83255992186282759050
4 · 1016 38196843833352 1.83308370147757159450
5 · 1016 47177404870103 1.83348457901336613822
6 · 1016 56064358236032 1.83380868220200440399
7 · 1016 64874581322443 1.83408033035537994465
8 · 1016 73619911145552 1.83431390342560497644
9 · 1016 82309090712061 1.83451860315233433306
10 · 1016 90948839353159 1.83470066944140434160

In the last section of his PhD Thesis [12], Klyve describes how to use this information to derive bounds for
Brun’s constant.
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Prime Quads
A related sum involves the reciprocals of the prime tuple (p, p + 2, p + 6, p + 8). Let π4(X) count these
tuplets up to X , and let S4(X) be the sum of their reciprocals. Thomas Nicely computed these functions
up to 2 · 1016. We extended this computation and partial results are in the table below. The first two lines
are Thomas Nicely’s own results, which we verified.

X π4(x) S4(X)

1 · 1016 25379433651 0.87047769123404594005
2 · 1016 46998268431 0.87048371094805250092
3 · 1016 67439513530 0.87048703104321483993
4 · 1016 87160212807 0.87048930200258802756
5 · 1016 106365371168 0.87049101694672496876
6 · 1016 125172360474 0.87049238890880442047
7 · 1016 143655957845 0.87049352884516002359
8 · 1016 161868188061 0.87049450175556017194
9 · 1016 179847459283 0.87049534891720052192
10 · 1016 197622677481 0.87049609811047504740

Cunningham Chains
We have two computational results for Cunningham chains.

•We found the smallest chain of length 15 of the first kind, and it begins with the prime

p = 90616 21195 84658 42219.

The next few chains of this length of the first kind are

1 13220 80067 50697 84839
1 13710 75635 40868 11919
1 23068 71734 48294 53339
1 40044 19781 72085 69169

• In 2008 Jaroslaw Wroblewski found a Cunningham Chain of length 17 of the first kind, starting with

p = 27 59832 93417 13865 93519,

and we were able to show that this is in fact the smallest such chain of that length.
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