# Two Algorithms to Find Primes in Patterns\*



Jonathan P. Sorenson Computer Science and Software Engineering, Butler University Indianapolis, IN 46208 USA sorenson@butler.edu

Jonathan Webster Mathematics, Statistics, and Actuarial Science, Butler University Indianapolis, IN 46208 USA jewebste@butler.edu



# **Prime Patterns**

Mathematicians are interested in prime numbers, and how they can appear in patterns.

# Twin Primes and Prime k-Tuples

- $\bullet$  One example of a simple pattern is twin primes, which follow the pattern (p, p + 2).
- Zhang [20] recently showed that there exists a postive integer h where there are infinitely many primes in the pattern (p, p + h).
- $\bullet$  Generalizing this idea to more primes leads to **prime** k-tuples or **prime constellations**.

# **Sophie Germain Primes and Cunningham Chains**

Sophie Germain was interested in the pattern (p, 2p+1). Extending this idea leads to **Cunningham Chains**:

- Chains of the first kind: (p, 2p + 1, 4p + 3, ...)
- Chains of the **second kind**: (p, 2p 1, 4p 3, ...).



Sophie Germain aos 14 anos, por Auguste Eugene Leray. Sophie Germain

Yitang Zhang

#### **Prime Pattern Definition**

Let k > 0 be an integer. We define a **prime pattern** of size k as a list of linear polynomials over the integers with positive leading coefficients

$$(f_1(x),\ldots,f_k(x)).$$

### **Distribution of Primes in Patterns**

- The Hardy-Littlewood k-tuple conjecture [9] implies that each such pattern, with leading coefficient I, that is admissible, will be satisfied by primes infinitely often.
- Further, the conjecture implies that the number of primes  $\leq n$  in such a pattern of length k is roughly proportional to

$$\frac{n}{(\log n)^k}$$
.

- A pattern of size k is admissible if, for every prime  $p \leq k$ , there is an integer x such that p does not divide any of the  $f_i(x)$ .
- Dickson [4] conjectured that there are infinitely many primes satisfying admissible patterns with arbitrary positive leading coefficients.
- Halberstam and Richert [8, Theorem 2.4] proved the upper bound

$$O\left(\frac{n}{(\log n)^k}\right)$$

for the number of primes  $\leq n$  that satisfy a pattern of length k.



G. H. Hardy



John Edensor Littlewood

# The Algorithmic Problem

Given a pattern of length k,  $(f_1(x), \ldots, f_k(x))$ , and a bound n, find all positive integer values of x such that all the  $f_i(x)$  are prime, and  $\max\{f_i(x)\} \leq n$ .

#### **Previous Work**

#### • Algorithms:

Günter Löh [13] and Tony Forbes [5] published partial algorithm descriptions, and used their algorithms to find various primes in patterns.

# • Complexity:

As far as we are aware, no complexity analysis has been published.

All primes  $\leq n$  can be found, and the resulting list scanned for patterns. This takes time  $O(n/\log\log n)$ using  $\sqrt{n}$  space, or O(n) time using roughly  $n^{1/3}$  space [1, 6].

#### • Computational Results and Records:

Record computations can be found online here:

- -http://primerecords.dk, which is maintained by Jens Kruse Andersen.
- The Prime Pages at primes.utm.edu has some as well.
- The Online Encyclopedia of Integer Sequences, OEIS.org, has many entries related to primes in patterns, including A001359 (twin primes), A007530 (prime quadruplets), and A005602 and A109828 (Cunningham chains).

# **Our New Results**

#### Theorem 1.

Given a pattern of length k with positive leading coefficients, and a search bound n, there is an algorithm to list all integers x such that  $\max\{f_i(x)\} \le n$  and all the  $f_i(x)$  are prime. This algorithm uses at most

$$O\left(\frac{nk}{(\log\log n)^k}\right)$$

arithmetic operations (time) and  $O(k\sqrt{n})$  bits of space.

• This algorithm extends the Atkin-Bernstein prime sieve [1] with the space-saving wheel sieve [17, 18,



A. O. L. Atkin



Daniel J. Bernstein

#### Theorem 2.

Let c be a constant with 0 < c < 1/2. Given a pattern of length k > 6 with positive leading coefficients, and a search bound n, there is an algorithm to list all integers x such that  $\max\{f_i(x)\} \leq n$  and all the  $f_i(x)$  are prime. This algorithm uses at most

$$O\left(\frac{nk}{(\log\log n)^{k-1}}\right)$$

arithmetic operations (time) and

- Due to the much smaller space use, this is a very practical algorithm.
- If we assume a conjecture due to Bach and Heulsbergen [2], we can take k as small as 3.
- This version uses the Sieve of Eratosthenes in place of the Atkin-Bernstein sieve, and supplements with base-2 pseudoprime tests [16] and the pseudosquares prime test of Lukes, Patterson, and Williams [14].



#### Eratosthenes of Cyrene

[13] Günter Löh. Long chains of nearly doubled primes. Math. Comp., 53(188):751–759, 1989.

# References

[1] A. O. L. Atkin and D. J. Bernstein. Prime sieves using binary quadratic forms. *Mathematics of Computation*, 73:1023–1030,

[2] Eric Bach and Lorenz Huelsbergen. Statistical evidence for small generating sets. *Math. Comp.*, 61(203):69–82, 1993.

[3] Jack Chernick. On Fermat's simple theorem. Bull. Amer. Math. Soc., 45(4):269–274, 1939. [4] L. E. Dickson. A new extension of Dirichlet's theorem on prime numbers. *Messenger of mathematics*, 33:155–161, 1904.

- [5] Tony Forbes. Prime clusters and Cunningham chains. Math. Comp., 68(228):1739–1747, 1999.
- [6] William F. Galway. Dissecting a sieve to cut its need for space. In Algorithmic number theory (Leiden, 2000), volume 1838 of Lecture Notes in Comput. Sci., pages 297–312. Springer, Berlin, 2000.
- [7] Richard K. Guy. Unsolved problems in number theory. Problem Books in Mathematics. Springer-Verlag, New York, third
- [8] H. Halberstam and H.-E. Richert. Sieve Methods. Academic Press, 1974.
- [9] G. H. Hardy and J. E. Littlewood. Some problems of 'partitio numerorum'; iii: On the expression of a number as a sum of primes. Acta Mathematica, 44(1):1–70, Dec 1923. [10] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 5th edition, 1979. [11] W. Kahan. Pracniques: Further remarks on reducing truncation errors. *Commun. ACM*, 8(1):40–, January 1965. [12] Dominic Klyve. Explicit Bounds on Twin Primes and Brun's Constant. PhD in mathematics, Dartmouth College, Hanover
- [14] R. F. Lukes, C. D. Patterson, and H. C. Williams. Some results on pseudosquares. *Math. Comp.*, 65(213):361–372, S25–S27,
- [15] T. Nicely. Enumeration to 10<sup>14</sup> of the twin primes and Brun's constant. Virginia J. Sci., 46:195–204, 1996. [16] Carl Pomerance. On the distribution of pseudoprimes. *Math. Comp.*, 37(156):587–593, 1981.
- [17] Jonathan Sorenson and Jonathan Webster. Strong pseudoprimes to twelve prime bases. *Math. Comp.*, 86(304):985–1003,

Let  $\pi_2(X)$  count the twin prime pairs (p, p + 2) with p < X and  $S_2(X)$  be the sum of their reciprocals. Thomas Nicely computed these functions up to  $2 \cdot 10^{16}$  (See http://www.trnicely.net/#PI2X). We verified his computations and extended the results to  $X = 10^{17}$ .

 $\pi_2(x)$  is known higher than  $10^{17}$ , but the reciprocal sums are new.

**New Computational Results** 

**Twin Primes and Brun's Constant** 

| X                  | $\pi_2(x)$     | $S_2(X)$               |
|--------------------|----------------|------------------------|
| $1 \cdot 10^{16}$  | 10304195697298 | 1.83048442465833932906 |
| $2 \cdot 10^{16}$  | 19831847025792 | 1.83180806343237985727 |
| $3 \cdot 10^{16}$  | 29096690339843 | 1.83255992186282759050 |
| $4 \cdot 10^{16}$  | 38196843833352 | 1.83308370147757159450 |
| $5 \cdot 10^{16}$  | 47177404870103 | 1.83348457901336613822 |
| $6 \cdot 10^{16}$  | 56064358236032 | 1.83380868220200440399 |
| $7 \cdot 10^{16}$  | 64874581322443 | 1.83408033035537994465 |
| $8 \cdot 10^{16}$  | 73619911145552 | 1.83431390342560497644 |
| $9 \cdot 10^{16}$  | 82309090712061 | 1.83451860315233433306 |
| $10 \cdot 10^{16}$ | 90948839353159 | 1.83470066944140434160 |

In the last section of his PhD Thesis [12], Klyve describes how to use this information to derive bounds for Brun's constant



Thomas Nicely

# **Prime Quads**

A related sum involves the reciprocals of the prime tuple (p, p + 2, p + 6, p + 8). Let  $\pi_4(X)$  count these tuplets up to X, and let  $S_4(X)$  be the sum of their reciprocals. Thomas Nicely computed these functions up to  $2 \cdot 10^{16}$ . We extended this computation and partial results are in the table below. The first two lines are Thomas Nicely's own results, which we verified.

| X                  | $\pi_4(x)$   | $S_4(X)$               |
|--------------------|--------------|------------------------|
| $1 \cdot 10^{16}$  | 25379433651  | 0.87047769123404594005 |
| $2 \cdot 10^{16}$  | 46998268431  | 0.87048371094805250092 |
| $3 \cdot 10^{16}$  | 67439513530  | 0.87048703104321483993 |
| $4 \cdot 10^{16}$  | 87160212807  | 0.87048930200258802756 |
| $5 \cdot 10^{16}$  | 106365371168 | 0.87049101694672496876 |
| $6 \cdot 10^{16}$  | 125172360474 | 0.87049238890880442047 |
| $7 \cdot 10^{16}$  | 143655957845 | 0.87049352884516002359 |
| $8 \cdot 10^{16}$  | 161868188061 | 0.87049450175556017194 |
| $9 \cdot 10^{16}$  | 179847459283 | 0.87049534891720052192 |
| $10 \cdot 10^{16}$ | 197622677481 | 0.87049609811047504740 |

# **Cunningham Chains**

We have two computational results for Cunningham chains.

• We found the smallest chain of length 15 of the first kind, and it begins with the prime

 $p = 90616\ 21195\ 84658\ 42219.$ 

The next few chains of this length of the first kind are

1 13220 80067 50697 84839 1 13710 75635 40868 11919

1 23068 71734 48294 53339 1 40044 19781 72085 69169

• In 2008 Jaroslaw Wroblewski found a Cunningham Chain of length 17 of the first kind, starting with

p = 2759832934171386593519

and we were able to show that this is in fact the smallest such chain of that length.

[18] Jonathan P. Sorenson. The pseudosquares prime sieve. In Florian Hess, Sebastian Pauli, and Michael Pohst, editors, *Pro*ceedings of the 7th International Symposium on Algorithmic Number Theory (ANTS-VII), pages 193–207, Berlin, Germany, July 2006. Springer. LNCS 4076, ISBN 3-540-36075-1.

[19] Jonathan P. Sorenson. Sieving for pseudosquares and pseudocubes in parallel using doubly-focused enumeration and wheel datastructures. In Guillaume Hanrot, Francois Morain, and Emmanuel Thomé, editors, *Proceedings of the 9th International* Symposium on Algorithmic Number Theory (ANTS-IX), pages 331–339, Nancy, France, July 2010. Springer. LNCS 6197, ISBN 978-3-642-14517-9.

[20] Yitang Zhang. Bounded gaps between primes. Ann. of Math. (2), 179(3):1121–1174, 2014.