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Prime Patterns
Mathematicians are interested in prime numbers, and how they can appear 1n patterns.

Twin Primes and Prime £-Tuples
e One example of a simple pattern is twin primes, which follow the pattern (p, p + 2).

e Zhang [20] recently showed that there exists a postive integer A where there are infinitely many primes
in the pattern (p, p + h).

e Generalizing this 1dea to more primes leads to prime k-tuples or prime constellations.

Sophie Germain Primes and Cunningham Chains
Sophie Germain was interested in the pattern (p, 2p+1). Extending this idea leads to Cunningham Chains:

e Chains of the first kind: (p,2p + 1,4p+3,...)
e Chains of the second kind: (p,2p — 1,4p — 3,...).
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Prime Pattern Definition

Let £ > 0 be an integer. We define a prime pattern of size £ as a list of linear polynomials over the
integers with positive leading coefficients

(fi(@), ..., fu(z)).

Distribution of Primes in Patterns
e The Hardy-Littlewood k-tuple conjecture [9] implies that each such pattern, with leading coefficient
1, that 1s admissible, will be satisfied by primes infinitely often.

e Further, the conjecture implies that the number of primes < n in such a pattern of length k& is roughly

proportional to
n

(logn)

e A pattern of size k is admissible if, for every prime p < k, there is an integer x such that p does not
divide any of the f;(x).

e Dickson [4] conjectured that there are infinitely many primes satisfying admissible patterns with arbitrary
positive leading coefficients.

%

e Halberstam and Richert [8, Theorem 2.4] proved the upper bound

! <<1ogn n>k)

for the number of primes < n that satisfy a pattern of length £.
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Two Algorithms to Find Primes in Patterns®

The Algorithmic Problem

Given a pattern of length k, (f(z),..., fr(x)), and a bound n, find all positive integer values of = such
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k
that all the f;(z) are prime, and max{ f;(z)} < n.

Previous Work

e Algorithms:
Giinter Loh [13] and Tony Forbes [5] published partial algorithm descriptions, and used their algorithms
to find various primes 1n patterns.

e Complexity:
As far as we are aware, no complexity analysis has been published.
All primes < n can be found, and the resulting list scanned for patterns. This takes time O(n/ loglogn)
using /n space, or O(n) time using roughly nt/3 space [1, 6.

e Computational Results and Records:
Record computations can be found online here:
—http://primerecords.dk, which is maintained by Jens Kruse Andersen.
— The Prime Pages at primes .utm.edu has some as well.

— The Online Encyclopedia of Integer Sequences, OETS . org, has many entries related to primes in pat-
terns, including A0O01359 (twin primes), A007530 (prime quadruplets), and A005602 and A109828
(Cunningham chains).

Our New Results

Theorem 1.

Given a pattern of length £ with positive leading coefficients, and a search bound n, there is an algorithm
to list all integers x such that max { f;(x)} < n and all the f;(x) are prime. This algorithm uses at most

k
O " arithmetic operations (time) and O(k+/n) bits of space.
(loglogn)k

e This algorithm extends the Atkin-Bernstein prime sieve [1] with the space-saving wheel sieve [17, 18,
19].
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Theorem 2.

Let ¢ be a constant with 0 < ¢ < 1/2. Given a pattern of length &£ > 6 with positive leading coefficients,
and a search bound n, there is an algorithm to list all integers = such that max { f;(x)} < n and all the
fi(x) are prime. This algorithm uses at most

k
@, ( 0 1n ) kl) arithmetic operations (time) and O(n“) bits of space.
oglogn

e Due to the much smaller space use, this 1s a very practical algorithm.
e If we assume a conjecture due to Bach and Heulsbergen [2], we can take £ as small as 3.

e This version uses the Sieve of Eratosthenes in place of the Atkin-Bernstein sieve, and supplements with
base-2 pseudoprime tests [16] and the pseudosquares prime test of Lukes, Patterson, and Williams [14].

Eratosthenes of Cyrene

New Computational Results

Twin Primes and Brun’s Constant
Let mo(X) count the twin prime pairs (p,p + 2) with p < X and S9(X) be the sum of their reciprocals.
Thomas Nicely computed these functions up to 2 - 1010 (See http://www.trnicely.net/#PI2X).
We verified his computations and extended the results to X = 1047,

mo(x) is known higher than 107, but the reciprocal sums are new.

X T () So(X)
.1010110304195697298 | 1.83048442465833932906
.1010119831847025792 | 1.83180806343237985727
. 1010129096690339843  1.83255992186282759050
.1010138196843833352 | 1.83308370147757159450
.1010147177404870103 1.83348457901336613822
.1010156064358236032 | 1.83380868220200440399
. 1010 64874581322443 1.83408033035537994465
.1010173619911145552 1.83431390342560497644
.1010182309090712061  1.83451860315233433306
.1016190948839353159 | 1.83470066944140434160

In the last section of his PhD Thesis [12], Klyve describes how to use this information to derive bounds for
Brun’s constant.
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Thomas Nicely

Prime Quads

A related sum involves the reciprocals of the prime tuple (p,p + 2,p + 6,p + 8). Let my(X) count these
tuplets up to X, and let S4(X) be the sum of their reciprocals. Thomas Nicely computed these functions
up to 2 - 1010, We extended this computation and partial results are in the table below. The first two lines
are Thomas Nicely’s own results, which we verified.

X m4() S4(X)
. 10101 25379433651 |0.87047769123404594005
1010 46998268431 0.87048371094805250092
. 101°] 67439513530/0.87048703104321483993
.1010] 87160212807 |0.87048930200258802756
. 10101106365371168 0.87049101694672496876
-10101125172360474  0.87049238890880442047
. 10101 143655957845  0.87049352884516002359
.10101161868188061  0.87049450175556017194
. 10101179847459283 0.87049534891720052192
. 10101197622677481|0.87049609811047504740
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Cunningham Chains
We have two computational results for Cunningham chains.

e We found the smallest chain of length 15 of the first kind, and 1t begins with the prime
p = 90616 21195 84658 42219.

The next few chains of this length of the first kind are

1 13220 80067 50697 84839
1 13710 75635 40868 11919
1 23068 71734 48294 53339
1 40044 19781 72085 69169

e In 2008 Jaroslaw Wroblewski found a Cunningham Chain of length 17 of the first kind, starting with

p = 27 59832 93417 13865 93519,

and we were able to show that this 1s 1n fact the smallest such chain of that length.
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