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Schinzel’s 
Conjecture

To generate prime numbers given 
a bit size, algorithms generate 
random numbers within given 
bounds and test for primality until a 
number is found. Theory predicts 
that the number of primality calls is 
proportional to the bit size.

Pseudocode:
while: “p” does not equal prime:

1. Generate random  number such 
     that “p” is “n” bits
2. if “p” is prime:

return “p”

    

Primorials have intrigued 
mathematicians for centuries 
because of their historical 
significance when used by Euler 
to prove that there are an infinite 
number of primes. Fascinated by 
this, we decided to look into their 
properties, and we discovered a 
way of  Generating prime 
numbers of a given bit size. This 
has important applications in 
many fields.. Prime numbers of a 
desired bit size , they are 
essential for making 
cryptography keys for secure 
data transmission in 
cryptosystems like the RSA.
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A primorial is defined as 
the product of the first n 
primes :

Generalized primorial 
primes are defined as 
prime numbers that are a 
prime away from a 
multiple of a primorial. 

Schinzel  predicts that:

if: 

or 

This  predicts that we will be 
able to find a prime near a 
primorial within a range  that is 
always one or a prime away 
from the primorial

PPAGP 
Algorithm

The PPAGP Algorithm generates 
primes of a given bit size by using 
Schinzel’s conjecture to find 
generalized primorial primes. It 
loops through   

Pseudocode:
1. Generate nth multiple of a 

primorial given the desired bit 
size with the form :

    2k   and call it “P”
2. while: “P” does not equal prime:

1. add the (nth +1) prime or 
1 if the number of the loop is 
1.
2. if “P” is prime:
 return “P”
else

 “n” = “n”+1
 

The PPAG algorithm  generates primes ~90% faster 
than the current current solution for this problem. 
Currently, it can be applied to key-exchange protocols 
that do not require randomness, like the 
Diffie-Hellman key exchange protocol. Moreover, 
future work could include looking for methods to  
randomize the algorithm, by looking at modifying the 
coefficient  2k .     

Computational Time 
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