
A Primorial Approach for Generating Primes
Illinois Wesleyan Universtiy
David Lopez | Yash Thacker

Problem | Motivation

Current Solution

Primorials and
Generalized

Primorial Primes

Schinzel’s
Conjecture

To generate prime numbers given
a bit size, algorithms generate
random numbers within given
bounds and test for primality until a
number is found. Theory predicts
that the number of primality calls is
proportional to the bit size.

Pseudocode:
while: “p” does not equal prime:

1. Generate random number such
 that “p” is “n” bits
2. if “p” is prime:

return “p”

Primorials have intrigued
mathematicians for centuries
because of their historical
significance when used by Euler
to prove that there are an infinite
number of primes. Fascinated by
this, we decided to look into their
properties, and we discovered a
way of Generating prime
numbers of a given bit size. This
has important applications in
many fields.. Prime numbers of a
desired bit size , they are
essential for making
cryptography keys for secure
data transmission in
cryptosystems like the RSA.

1

A primorial is defined as
the product of the first n
primes :

Generalized primorial
primes are defined as
prime numbers that are a
prime away from a
multiple of a primorial.

Schinzel predicts that:

if:

or

This predicts that we will be
able to find a prime near a
primorial within a range that is
always one or a prime away
from the primorial

PPAGP
Algorithm

The PPAGP Algorithm generates
primes of a given bit size by using
Schinzel’s conjecture to find
generalized primorial primes. It
loops through

Pseudocode:
1. Generate nth multiple of a

primorial given the desired bit
size with the form :

 2k and call it “P”
2. while: “P” does not equal prime:

1. add the (nth +1) prime or
1 if the number of the loop is
1.
2. if “P” is prime:
 return “P”
else

 “n” = “n”+1

The PPAG algorithm generates primes ~90% faster
than the current current solution for this problem.
Currently, it can be applied to key-exchange protocols
that do not require randomness, like the
Diffie-Hellman key exchange protocol. Moreover,
future work could include looking for methods to
randomize the algorithm, by looking at modifying the
coefficient 2k .

Computational Time
Comparison

Conclusions

References:
Stephen P, Richards, A Number For Your Thoughts, 1982, p.
200.
S.W. Golomb Evidence of Fortunes conjecture.
Mathematics Magazine, Vol. 54, No. 4 (Sep., 1981), pp. 209-210.

Standard method:
PPAGP Algorithm:

