Factorization tests arising from counting modular forms and automorphic representations Miao Gu¹ and Greg Martin 1: University of British Columbia / Duke University

Background

- Let k be a positive even integer.
- A(k, N) is the number of non-isomorphic automorphic representations associated with the space of weight-k cusp forms on $\Gamma_0(N)$. Equivalently, it is the dimension of the space of weight-*k* newforms of level dividing N. (complicated) G(k, N) is the function from Gekeler's Theorem. (simple)
- B(k, N) is the dimension of the space of weight-k newforms on $\Gamma_0(N)$. (complicated)
- H(k, N) is a modified version of G(k, N). (simple)

Gekeler's Theorem (1995)

Using the Dirichlet characters χ_{-4} and χ_{-3} , define $G(k,N) = \frac{k-1}{12}N - \frac{1}{2} + c_2(k)\chi_{-4}(N) + c_3(k)\chi_{-3}(N).$ (Note: $c_2(k)$, χ_{-4} have period 4, and $c_3(k)$, χ_{-3} have period 3.) Theorem: If N is squarefree, then A(k, N) = G(k, N).

Spaces of Modular Forms

Let S(k, N) be the dimension of weight-*k* cusp forms on $\Gamma_0(N)$. By the Atkin–Lehner decomposition of spaces of cusp forms

$$S(k,N) = \sum_{d|N} A(k,d) \qquad A(k,N) = \sum_{d|N} B(k,d)$$

Dimension Formulas (Martin, 2005)

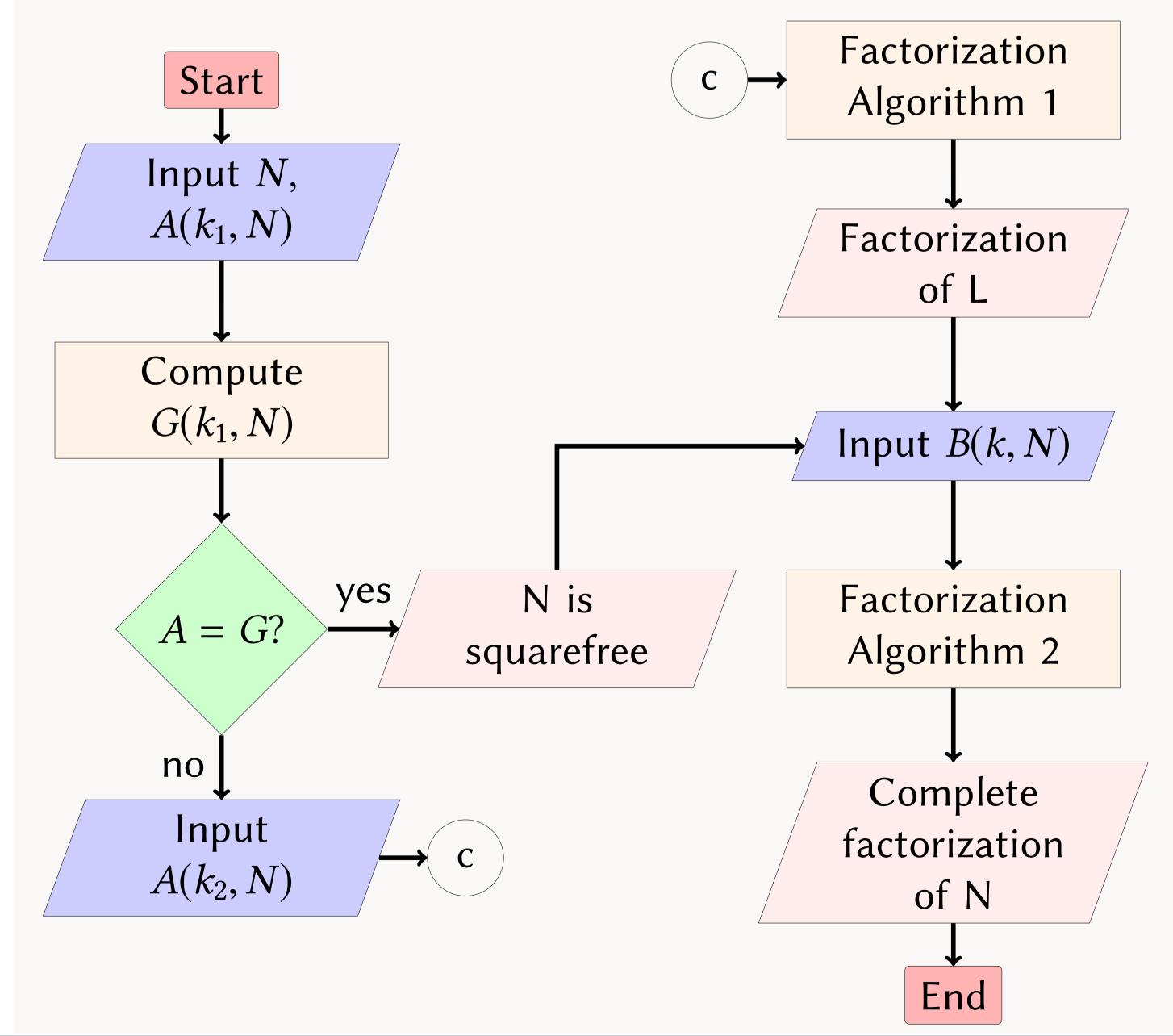
 $A(k, N) = \frac{k-1}{12} N s_0^*(N) - \frac{1}{2} v_\infty^*(N) + c_2(k) v_2^*(N) + c_3(k) v_3^*(N)$ $B(k, N) = \frac{k-1}{12} N s_0^{\#}(N) - \frac{1}{2} v_{\infty}^{\#}(N) + c_2(k) v_2^{\#}(N) + c_3(k) v_3^{\#}(N)$ where s_0^* , v_{∞}^* , v_2^* , v_3^* , $s_0^{\#}$, $v_{\infty}^{\#}$, $v_2^{\#}$ and $v_3^{\#}$ are multiplicative functions which require the factorization of N to compute. (Note: extra term needed when k = 2)

Main Theorems

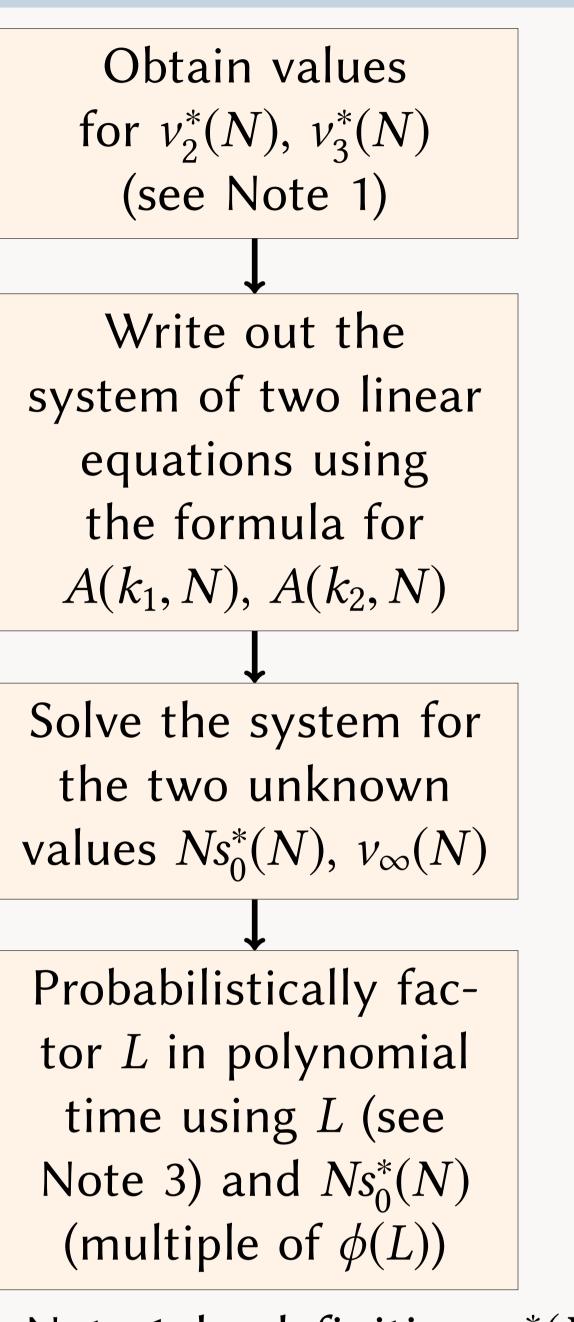
- The converse of Gekeler's Theorem is true with one small exception (k = 2, N = 9).
- If we have an oracle that quickly computes A(k, N), even for a single k (or a positive linear combination of several A(k, N), or even a sufficiently tight upper bound for A(k, N), we have a polynomial-time test for squarefreeness. Similarly, we have a polynomial-time test for primality if we can compute B(k, N) quickly.
- We can probabilistically obtain the complete factorization of the squarefull part of N if we have fast access to A(k, N) for two distinct weights k_1 and k_2 .
- If in addition we have fast access to B(k, N) for a single weight k, we can probabilistically obtain complete factorization of N.

Main Algorithm (k_1 , k_2 are distinct weights)

Write N = EL where *E* is squarefree, *L* is squarefull and (E, L) = 1.



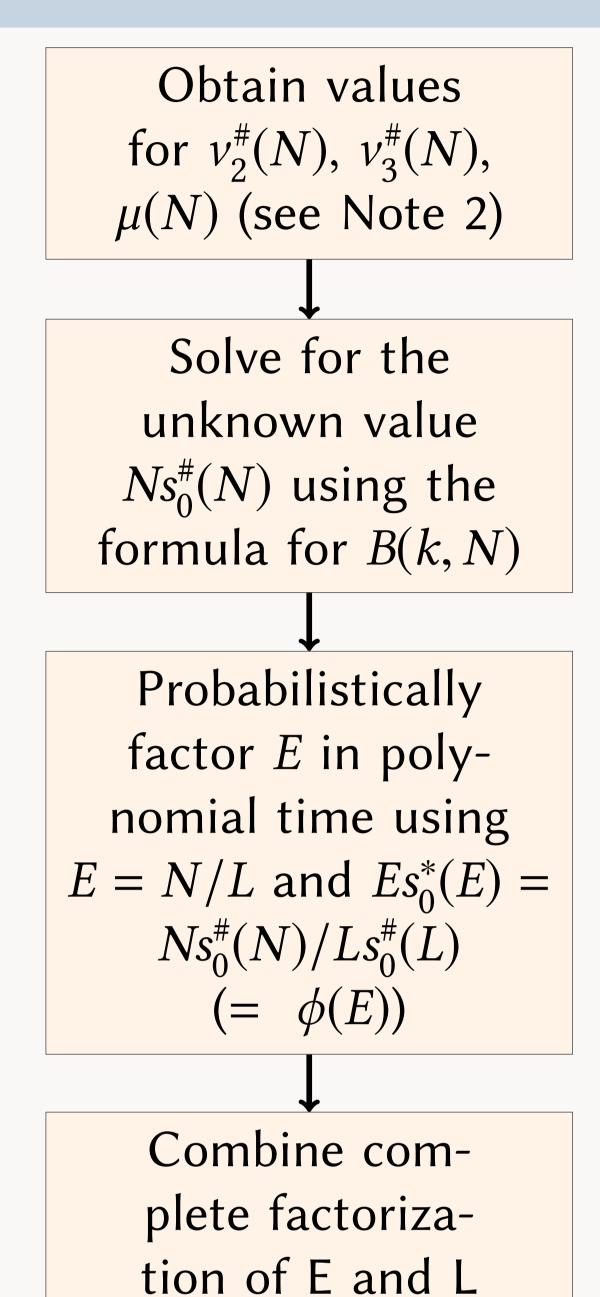
Factorization Algorithm 1 & 2



- figure out which from A(k, N).
- values, we can verify the right factorization.

Calculating Dimensions/Further Research

- Calculating S(k, N):
- classical (Riemann-Roch)
- Calculating A(k, N) and B(k, N):
- (Martin, 2005)
- B(k, N) without using the factorization of N



Note 1: by definition, $v_2^*(N), v_3^*(N) \in \{-1, 0, 1\}$, and we can

Note 2: the only possible values for $v_2^{\#}(N)$, $v_3^{\#}(N)$, and $\mu(N)$ are 0 or $\pm 2^m$ for $m \leq \omega(N)$. Trying all these (polynomially many)

Note 3: the denominator of $s_0^{\#}(N)$ is a nontrivial divisor of L; the value of *L* can be found by iterating this algorithm.

trace formula (Ross, 1992) recursively, starting with values of S(k, N) (traditional) • $A(k, N) = \mu(N) * S(k, N), B(k, N) = \mu(N) * \mu(N) * S(k, N)$

Further Research: finding ways to quickly obtain A(k, N) and