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Background

I Let k be a positive even integer.
I A(k,N ) is the number of non-isomorphic automorphic

representations associated with the space of weight-k cusp
forms on Γ0(N ). Equivalently, it is the dimension of the space
of weight-k newforms of level dividing N. (complicated)

I G(k,N ) is the function from Gekeler’s Theorem. (simple)

I B(k,N ) is the dimension of the space of weight-k newforms on
Γ0(N ). (complicated)

I H (k,N ) is a modified version of G(k,N ). (simple)

Gekeler’s Theorem (1995)

Using the Dirichlet characters χ−4 and χ−3, define

G(k,N ) = k − 1
12

N − 1
2
+ c2(k)χ−4(N ) + c3(k)χ−3(N ).

(Note: c2(k), χ−4 have period 4, and c3(k), χ−3 have period 3.)

Theorem: If N is squarefree, then A(k,N ) = G(k,N ).

Spaces of Modular Forms

Let S(k,N ) be the dimension of weight-k cusp forms on Γ0(N ).
By the Atkin–Lehner decomposition of spaces of cusp forms

S(k,N ) =
∑
d |N

A(k, d) A(k,N ) =
∑
d |N

B(k, d).

Dimension Formulas (Martin, 2005)

I A(k,N ) = k−1
12 Ns

∗
0(N ) − 1

2ν
∗
∞(N ) + c2(k)ν∗2(N ) + c3(k)ν∗3(N )

I B(k,N ) = k−1
12 Ns

#
0(N ) − 1

2ν
#
∞(N ) + c2(k)ν#2(N ) + c3(k)ν#3(N )

where s∗0, ν
∗
∞, ν∗2 , ν∗3 , s#0, ν

#
∞, ν#2 and ν#3 are multiplicative functions

which require the factorization of N to compute.

(Note: extra term needed when k = 2)

Main Theorems
I The converse of Gekeler’s Theorem is true with one small

exception (k = 2,N = 9).
I If we have an oracle that quickly computes A(k,N ), even for a

single k (or a positive linear combination of several A(k,N ), or
even a su�iciently tight upper bound for A(k,N )), we have a
polynomial-time test for squarefreeness.

I Similarly, we have a polynomial-time test for primality if we
can compute B(k,N ) quickly.

I We can probabilistically obtain the complete factorization of
the squarefull part of N if we have fast access to A(k,N ) for
two distinct weights k1 and k2.

I If in addition we have fast access to B(k,N ) for a single weight
k, we can probabilistically obtain complete factorization of N .

Main Algorithm (k1, k2 are distinct weights)

Write N = EL where E is squarefree, L is squarefull and
(E, L) = 1.
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Factorization Algorithm 1 & 2

Obtain values
for ν∗2(N ), ν∗3(N )

(see Note 1)

Write out the
system of two linear

equations using
the formula for
A(k1,N ), A(k2,N )

Solve the system for
the two unknown

values Ns∗0(N ), ν∞(N )

Probabilistically fac-
tor L in polynomial
time using L (see

Note 3) and Ns∗0(N )
(multiple of ϕ(L))

Obtain values
for ν#2(N ), ν#3(N ),
µ(N ) (see Note 2)

Solve for the
unknown value
Ns#0(N ) using the

formula for B(k,N )

Probabilistically
factor E in poly-

nomial time using
E = N/L and Es∗0(E) =

Ns#0(N )/Ls#0(L)
(= ϕ(E))

Combine com-
plete factoriza-
tion of E and L

I Note 1: by definition, ν∗2(N ),ν∗3(N ) ∈ {−1, 0, 1}, and we can
figure out which from A(k,N ).

I Note 2: the only possible values for ν#2(N ), ν#3(N ), and µ(N ) are
0 or ±2m for m ≤ ω(N ). Trying all these (polynomially many)
values, we can verify the right factorization.

I Note 3: the denominator of s#0(N ) is a nontrivial divisor of L;
the value of L can be found by iterating this algorithm.

Calculating Dimensions/Further Research

I Calculating S(k,N ):
• classical (Riemann-Roch) • trace formula (Ross, 1992)

I Calculating A(k,N ) and B(k,N ):
• recursively, starting with values of S(k,N ) (traditional)
• A(k,N ) = µ(N ) ∗ S(k,N ), B(k,N ) = µ(N ) ∗ µ(N ) ∗ S(k,N )

(Martin, 2005)
I Further Research: finding ways to quickly obtain A(k,N ) and

B(k,N ) without using the factorization of N
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