

Introduction

Let p be an odd prime and consider the cyclotomic field K =smooth, projective Fermat curve of exponent p given by

$$x^p + y^p = z^p.$$

Fermat's Last Theorem: If $[x : y : z] \in X(\mathbb{Q})$ then xyz

The genus of X is $g = \frac{(p-1)(p-2)}{2}$. Let $U \subset X$ be the open affin let $Y \subset U$ denote the 2p points with xy = 0.

The group $\mu_p \times \mu_p$ acts on X and this action stabilizes U and the generators of $\mu_p \times \mu_p$ which act by $\epsilon_0(x,y) = (\zeta_p x, y)$ are Consider the group ring $\Lambda_1 = (\mathbb{Z}/p\mathbb{Z})[\mu_p \times \mu_p]$. Let $y_i =$ $\mid \mathbb{Z}/p\mathbb{Z}[y_0,y_1]/\langle y_0^p,y_1^p
angle.$

Klassen/Tzermias, Tzermias, Sall: For Fermat curv have complete description of degree $\leq p-1$ points.

Debarre/Klassen: For $(d \ge 8)$ all but finitely many points arise by intersecting X with rational line through rational po

The relative homology group $M = H_1(U, Y)$ has dimensio group $H_1(U)$ has dimension $(p-1)^2$. Its quotient $H_1(X)$ (p-1)(p-2). Let $\beta \in H_1(U,Y)$ be the path $\beta : [0,1]$ $t \mapsto (\sqrt[p]{t}, \sqrt[p]{1-t}).$

Anderson The relative homology group $H_1(U, Y)$ is a free with generator β .

Motivation

The motivation to study Galois cohomology arises from the b = [0:1:0] be a base point of X. Let $\pi_1(X)$ denote the éta of X. Consider the lower central series:

$$\pi_1(X) = [\pi]_1 \supseteq [\pi]_2 \supseteq \ldots \supseteq [\pi]_n \supseteq \ldots$$

Let G_K be the absolute Galois group of K. For a K-rational be a path in $X(\mathbb{C})$ from b to η . The generalized Kummer matrix

$$\kappa : \operatorname{Jac}(X)(K) \to \operatorname{H}^1(G_K, \pi_1(X))$$

is defined by $\kappa(\eta) = [\sigma \mapsto \gamma^{-1}\sigma(\gamma)]$ for $\sigma \in G_K$. Let $G_{K,S}$ of the maximal p-extension of K ramified only over $S = \{\nu\}$ The Fermat curve has good reduction away from p and κ $\operatorname{Jac}(X)(K) \to \operatorname{H}^1(G_{K,S}, H_1(X) \otimes \mathbb{Z}/p\mathbb{Z}).$

Using work of Schmidt and Wingberg, Ellenberg defines a ser $\operatorname{Jac}(X)(K)$. Let δ_2 denote the first of these obstructions; it Zarkhin. The map δ_2 also factors through $G_{K,S}$ and has the f

 $\delta_2 : \mathrm{H}^1(G_{K,S}, \mathrm{H}_1(X) \otimes \mathbb{Z}_p) \to \mathrm{H}^2(G_{K,S}, ([\pi]_2/[\pi]))$

RAY CLASS GROUP CALCULATIONS FOR FERMAT CURVES OVER CYCLOTOMIC FIELDS

Rachel Davis¹ and Rachel Pries²

- ² Colorado State University Department of Mathematics

$= \mathbb{Q}(\zeta_p)$. Let X be the	Ray class groups Let <i>L</i> be the splitting field of $1 - (1 - x^p)^p$. Let <i>E</i> , <i>p</i> -extension of <i>L</i> unramified outside \mathfrak{p} , a unique p consider $G = \operatorname{Gal}(E/K)$ instead of $G_{K,S}$.
x = 0.	Let $Q = \operatorname{Gal}(L/K)$ where Then Q is an elementary fying Vandiver's conjecture, the rank of Q is $r + 1$
ne given by $z \neq 0$ and	Then, letting $N = \operatorname{Gal}(E/L)$, there is a short example.
	$0 \to N \to G \to Q -$
and Y. Let ϵ_0 and ϵ_1 be and $\epsilon_1(x, y) = (x, \zeta_p y)$. $\epsilon_i - 1$, so that $\Lambda_1 =$	There is an element in $H^2(Q, N)$ which classifies t isomorphism class of the group G .
	Writing $d_2: \mathrm{H}^1(N, M)^Q \to \mathrm{H}^2(Q, M)$, then there
ve of degree $p = 5, 7,$	$0 \to \mathrm{H}^1(Q,M) \to \mathrm{H}^1(G,M) \to$
as of X of degree $d-1$ bint of X.	Set $p = 3$. We compute the rank of the maximum quotient of the ray class group $\operatorname{Cl}_{\mathfrak{p}^k}(L)$ with module the unique prime of L above p .
on p^2 . The homology has dimension $2g =$ $1] \rightarrow U(\mathbb{C})$ given by	The rank increases at modulus \mathbf{p}^k when k is one of the 12, 15, 18, 20, 21, 23, 24, 26, 27, 28 and then stabilized sponding Galois groups. Thus, $G = G_{10}$ has order
e Λ_1 -module of rank 1	Galois action The group Q acts on N_i . For example, here are computed using Magma for the action of σ and τ
e Kummer map. Let ale fundamental group al point η of X, let γ ap	$M_{\sigma,7} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } M_{\tau,7} =$
s be the Galois group } where $\nu = \langle 1 - \zeta_p \rangle$. k factors through κ :	To compute d_2 , we view $\phi \in \mathrm{H}^1(N, M)^Q$ as a Q -into M and consider 2-cocycle $\omega : Q \times Q \to N$. The $0 \leq i \leq r$ and $0 \leq j < k \leq r$. Here, we use $a_i = \omega(\sigma^2, \sigma), b_i = \omega(\tau^2, \tau), c = \omega(\tau^2, \tau)$ $a_7 = [0, 2, 0, 2, 1, 0, 2], b_7 = [0, 0, 0, 0, 0, 0, 2],$
eries of obstructions to t was also studied by form $]_3) \otimes \mathbb{Z}_p).$	Putting together information, yields presentations $G_3 = \text{Group}\langle s, t, n_1, n_2, n_3 s^9, t^3, n_1^3, n_2^3, n_3^3, (t, n_3, (s, n_2), (s, n_3), (n_1, n_2), (n_1, n_3), (n_2, n_3), s = \text{SmallGroup}(243, 1)$

University of Wisconsin-Madison Department of Mathematics

Invariant maps A map ϕ is Q-invariant if and only if, for every $\vec{n} \in N$, the maximal elementary abelian prime in L above p. It suffices to $A_{\phi}(\vec{n}^{\sigma}) = B_{\sigma} \cdot A_{\phi}(\vec{n}), \ A_{\phi}(\vec{n}^{\tau}) = B_{\tau} \cdot A_{\phi}(\vec{n}).$ To find the Q-invariant homomorphisms, we set tary abelian p-group. For p satis- $A_{\sigma,10} = M_{\sigma,10} \otimes I_9 - I_{10} \otimes B_{\sigma}^t, \ A_{\tau,10} = M_{\tau,10} \otimes I_9 - I_{10} \otimes B_{\tau}^t.$ act sequence Then ϕ is Q-invariant if and only if $A_{\phi} \in \text{Ker}(A_{\sigma,10}) \cap \text{Ker}(A_{\tau,10})$. $\rightarrow 0.$ • Then $\mathrm{H}^{1}(N, M)^{Q} = \mathrm{H}^{1}(N_{7}, M)^{Q}$ and $\dim_{\mathbb{F}_{p}}(\mathrm{H}^{1}(N_{7}, M)^{Q}) = 18.$ the extension and determines the • There is a basis ξ_1, \ldots, ξ_7 for N_7 (also the images of $\{\xi_1, \ldots, \xi_i\}$ in N_i are a basis for N_i for $1 \leq i \leq 7$, such that $H^1(N_7, M)^Q$ is spanned by the image of the 10-dimensional space $\operatorname{Hom}(N_2, M^Q)$ and is an exact sequence the 8 maps A_{11}, \ldots, A_{18} (all basis elements ξ_i not listed map to 0): $A_{11}: \xi_1 \mapsto y_1 \quad \xi_4 \mapsto y_0 y_1^2 + y_0^2 y_1^2 \ \xi_5 \mapsto y_0 y_1^2 \ \xi_7 \mapsto -y_0 y_1^2 - y_0^2 y_1^2$ $\operatorname{Ker}(d_2) \to 0.$ $A_{12}: \xi_1 \mapsto y_0 \quad \xi_4 \mapsto y_0^2 y_1 + y_0^2 y_1^2 \ \xi_5 \mapsto y_0^2 y_1 \ \xi_7 \mapsto -y_0 y_1^2 - y_0^2 y_1^2$ $\xi_5\mapsto y_0^2y_1^2\;\xi_7\mapsto -y_0^2y_1^2$ $A_{13}: \xi_1\mapsto y_0y_1\,\,\xi_4\mapsto y_0^2y_1^2$ mal elementary abelian 3-group $\xi_5\mapsto y_1^2 \quad \xi_7\mapsto y_1^2$ $A_{14}: \xi_3\mapsto y_1^2 \quad \xi_4\mapsto -y_1^2$ lus \mathbf{p}^k for $1 \leq k \leq 28$, where \mathbf{p} is $A_{15}:\xi_3\mapsto y_0y_1^2\;\xi_4\mapsto -y_0y_1^2$ $\xi_5\mapsto y_0y_1^2\;\xi_7\mapsto y_0y_1^2$ $\xi_5\mapsto y_0^2 \quad \xi_7\mapsto y_0^2$ $A_{16}: \xi_3 \mapsto y_0^2 \quad \xi_4 \mapsto -y_0^2$ $A_{17}:\xi_3\mapsto y_0^2y_1\;\xi_4\mapsto -y_0^2y_1$ $\xi_5\mapsto y_0^2y_1\;\xi_7\mapsto y_0^2y_1$ the following values m_1, \ldots, m_{10} : $A_{18}: \xi_3\mapsto y_0^2y_1^2\;\xi_4\mapsto -y_0^2y_1^2$ $\xi_5\mapsto y_0^2y_1^2\ \xi_7\mapsto y_0^2y_1^2$ zes. Let N_i and G_i be the corre- $\cdot 3^{12}$. **Theorem [DPSW]** The map $\phi \in \ker(d_2)$ if and only if there exist $m_0, \ldots, m_r \in [d_1, \dots, d_r]$ M such that $\phi(a_i) = -N_{\tau_i}m_i$ for $0 \leq i \leq r$ and $\phi(c_{i,k}) = (1-\tau_k)m_i - (1-\tau_i)m_k$ for $0 \leq j < k \leq r$. (the transposes of) the matrices **Theorem [D.-Pries]** The set $\{A_2, A_4, A_5, A_{10}, A_{13} + A_{18}\}$ is a basis for ker (d_2) on N_7 : when p = 3 and $M = H_1(U; Y)$. Thus, dimker $(d_2) = 5$ and dim $H^1(G, M) = 14$ in 1 0 0 1 2 1 2this case. $0\ 1\ 0\ 1\ 0\ 2\ 1$ $0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0$ Rank of N $0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0$ Gras and Maire suggested *p*-rationality results, which imply the following: $0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0$ $0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0$ **Proposition.** If p is a regular prime then there is a unique prime \mathfrak{p} of L above 0 0 0 0 0 0 1. $p and \operatorname{rk}_p(N) = 1 + d/2, where d = p^{\frac{p+1}{2}}(p-1).$ For p = 5, $d = \deg(L/\mathbb{Q}) = \frac{p-1}{2}p^{\frac{p+1}{2}} = 500$. Directly computing even just the class $\text{ivariant homomorphism } \phi: N \to$ number of L does not finish in a week. We know that $rk_pGal(E/L) = 1 + d/2 = 251$, hen ω is equivalent to $a_i, c_{j,k}$ for so $|\operatorname{Gal}(E/K)| = 5^{254}$. The hope is to be able to compute the quotient the action of Galois on local units to find the action of Q on N and ω . $(\sigma, \sigma) - \omega(\sigma, \tau)$ to find and $c_7 = [2, 1, 2, 0, 2, 1, 0].$ Acknowledgements This poster is based on joint work with Rachel Pries "Cohomology groups of Fermat curves via ray class fields of cyclotomic fields" (https://arxiv.org/abs/1806.08352) for the G_i . For example, and a joint project with Pries, Stojanoska (University of Illinois at Urbana- $(n_1), (t, n_2), (t, n_3), (s, n_1) = 0$ Champaign), and Wickelgren (Georgia Institute of Technology). Thank you to $s^{3} = n_{2}^{-1}, (s,t) = n_{1}^{-1}n_{2}n_{3}^{-1}$ 13).

the organizers of ANTS XIII.

