Euclidean Methods for Cubic and Quartic Jacobi Symbols

Eric Bach 1 Bryce Sandlund 2

¹University of Wisconsin-Madison ²University of Waterloo

Previous Work

Binomial congruences and feasibility tests

Power Residues

- The multiplicative group of the finite field \mathbf{Z}_p is cyclic.
- Let gcd(p,q) = 1. If $x^r \equiv q$ is solvable mod p, we say that q is an r-th power residue mod p.
- The quadratic case (r=2).
- Jacobi symbol (q|p): tells you if q is a quadratic residue mod p or not.
- Quadratic reciprocity (Gauss): When p, q are odd primes, (q|p) and (p|q) are related.
- Jacobi symbol can be computed rapidly using the Euclidean algorithm:

$$u = qv + 2^k r, \qquad r \text{ odd.}$$

Cubic and Quartic Residues

- Reciprocity laws for 3rd and 4th powers explored by Gauss, Jacobi and their followers.
- Eisenstein (1844): first "code" for quartic Jacobi symbol, based on Euclidean algorithm. Cubic version only written down much later (Williams/Holte 1977).
- Bit complexity for n-bit "Euclidean" gcd algorithms in $\mathbf{Z}[\rho], \, \mathbf{Z}[i]$:
- O(nM(n)) for least-remainder alg in $\mathbf{Z}[i]$ (Caviness/Collins 1976)
- $O(n^2)$ for alg in $\mathbf{Z}[i]$ that approximates least remainders (Collins 1992).
- Earlier, approximate remainders used in more intricate $O(n^2)$ procedures to compute gcd ideals in quadratic fields (Kaltofen/Rolletschek 1989).
- These upper bounds extend to "Euclidean" Jacobi symbol algs (folklore).

What We Did

Bounds for the bit complexity of some cubic/quartic Jacobi symbol algorithms that use long division.

A Bit Complexity Upper Bound

- Complete self-contained proof of $O(n^2)$ bit complexity for Williams-Holte using approximate least remainders.
- We extend alg to handle inputs that aren't relatively prime.
- Similar treatment for $\mathbf{Z}[i]$.

Upper Bounds are Tight

- \bullet Linear recurrence to define a sequence of "bad" input pairs, similar to Fibonacci numbers for Euclidean alg in ${\bf Z}.$
- Williams/Holte alg uses $\Omega(nM(n))$ bops, using any reasonable norm formula.
- Even if division is free, Williams/Holte needs $\Omega(n^2)$ bops, just to write down remainders.

What's the Best Power Residue Test?

- Contrary to belief, the "best" cubic and quartic residue tests need not involve reciprocity.
- For testing if $x^r \equiv a \mod p$ (r = 3, 4), the Jacobi symbol alg uses a prime ideal factor of p in $\mathbf{Z}[\rho]$ (or $\mathbf{Z}[i]$).
- To thus factor p, you must compute $\sqrt{-3}$ (or $\sqrt{-1}$) mod p. Fastest known methods use exponentiation, which is O(nM(n)).
- 19th century soln: look up p in precomputed tables of quadratic forms.
- Today's soln: For one test, use Euler's criterion. For many tests (same p), use reciprocity.

Algorithms with Quotient Constraints

• Eisenstein (1844) computed Jacobi symbol in **Z** using even quotients:

$$u = qv + r,$$
 $q \text{ even},$ $|r| < |v|.$

- Bit complexity is worst-case exponential (Shallit 1990).
- Smith (1859) gave similar alg for $\mathbf{Z}[i]$, based on

$$u = qv + r$$
, q divisible by $1 + i$, $|r| < |v|$

• Claimed, but did not prove, his division step is feasible.

Our Results on These

- Smith-style division is feasible and efficient.
- Smith's quartic symbol algorithm is also exponential, since

$$(4k+1) = 2(4k-3) - (4k-7).$$

• We extended it to cubic Jacobi symbols, using

$$u = qv + r,$$
 q divisible by $1 - \rho,$ $|r| < |v|$ in $\mathbf{Z}[\rho].$

- Harder to analyze. We resorted to the "tools of ignorance."
- Tried all inputs with $0 \le |\text{coefficients}| \le 10$.
- Maintained "record values" for iteration counts.
- For $u = (3k + 2)\rho$, $v = 1 + (3k + 3)\rho$, # of iterations is 4k + 3.
- Cubic algorithm has a cycle of 4 repeated quotients

$$-2-\rho$$
, $-1-2\rho$, $2+\rho$, $-2-\rho$.

(Verified by symbolic execution.)

• So *n*-bit inputs can force $\Omega(2^{n/2})$ iterations.

Open Questions

- Find exact worst case for least-remainder cubic and quartic Jacobi symbol algs.
- Study the "dynamics" of the constrained-quotient algorithms.
- Smith's quartic alg has a quotient cycle of length 1.
- Is 4 the shortest cycle length for the cubic algorithm?

To Learn More

For the full paper, go to:

https://arxiv.org/abs/1807.07719

References

- B. F. Caviness and G. E. Collins, Proc. ACM Symp. Symb. Alg. Comp., 1976.
- G. E. Collins, J. Symb. Comp., 1992.
- G. Eisenstein, J. reine angew. Math., 1844. (4 papers.)
- E. Kaltofen and H. Rolletschek, Math. Comp., 1989.
- H. J. S. Smith, Report on the Theory of Numbers (I), 1859.
- J. O. Shallit, J. Symb. Comp., 1990.
- H. C. Williams and R. C. Holte, Math. Comp., 1977.

Acknowledgement

This research was supported in part by NSF: CCF-1420750.

Contact Information

- Eric Bach: bach@cs.wisc.edu
- Bryce Sandlund: bcsandlund@uwaterloo.ca

