JKL-ECM : An Implementation of ECM using Hessian Curves

Henriette Heer, Gary McGuire and Oisín Robinson

ANTS XII Kaiserslautern

August 2016

Overview

- Elliptic Curve Method (Sketch)
- Torsion Speedup
- The Jeon-Kim-Lee Families
- Edwards/Hessian Curves
- Small Parameters/Hessian Speedup
- Worst-Case Torsion Injection
- Classification
- Implementation/Results
- Conclusion

Elliptic Curve Method (Sketch)

- Say we want to factor $N = p \cdot c$, with p prime, c > 1 cofactor.
- Suppose we have an elliptic curve *E* in Weierstrass form.
- Suppose also that $\#E(\mathbb{F}_p)$ is *B*-smooth.
- Compute $[B!]P \equiv (X : Y : Z) \pmod{N}$, for $P \in E(\mathbb{Z}/N\mathbb{Z})$.
- Then, we can usually recover p = gcd(X, N).

Theorem ("Torsion Injection")

For an elliptic curve E over a number field K, with torsion subgroup $E(K)_{tors}$, with good reduction mod p, there exists an injective map

$$au: E(K)_{tors} \mapsto E(\mathbb{F}_p).$$

In particular, $\#E(K)_{tors}|\#E(\mathbb{F}_p)$.

Torsion for Elliptic Curves over $\ensuremath{\mathbb{Q}}$

Theorem (Mazur's Torsion Theorem, 1977)

For an elliptic curve E over \mathbb{Q} , $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following 15 groups:

$\mathbb{Z}/m\mathbb{Z}$	for $1 \leq m \leq 12, m \neq 11$,
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2m\mathbb{Z}$	for $1 \le m \le 4$.

Torsion for Elliptic Curves over $\mathbb{Q}(\sqrt{d})$

Theorem (Kamienny, Kenku, Momose, 1988) For an elliptic curve E over K, where K is a quadratic number field, $E(K)_{tors}$ is isomorphic to one of the following 26 groups:

$\mathbb{Z}/m\mathbb{Z}$	$\textit{for} \ 1 \leq m \leq 18, m \neq 17,$
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2m\mathbb{Z}$	for $1 \le m \le 6$,
$\mathbb{Z}/3\mathbb{Z}\oplus\mathbb{Z}/3m\mathbb{Z}$	for $m \in \{1, 2\},$
$\mathbb{Z}/4\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}.$	

Torsion for Elliptic Curves over K

- For higher degree number fields, fully classifying torsion is an open question.
- Partial results are known in some cases
- For example, for quartic number fields, Jeon, Kim and Lee gave infinite families of elliptic curves with E(K)_{tors} ≅ Z/4Z ⊕ Z/8Z or E(K)_{tors} ≅ Z/6Z ⊕ Z/6Z
- We use both of these families to improve ECM.

The Jeon-Kim-Lee Families

Theorem (Jeon,Kim,Lee, 2011) Let $K = \mathbb{Q}(\sqrt{-1}, \sqrt{t^4 - 6t^2 + 1})$, with $t \in \mathbb{Q}$ and $t \neq 0, \pm 1$, and let E be an elliptic curve defined by the equation

$$E: y^{2} + xy - \left(\nu^{2} - \frac{1}{16}\right)y = x^{3} - \left(\nu^{2} - \frac{1}{16}\right)x^{2}$$

where

$$\nu = \frac{t^4 - 6t^2 + 1}{4(t^2 + 1)^2}.$$

Then the torsion subgroup of E over K is equal to $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ for almost all t.

The Jeon-Kim-Lee Families

Theorem (Jeon, Kim, Lee, 2011)

Let $K = \mathbb{Q}(\sqrt{-3}, \sqrt{8t^4 + 1})$, with $t \in \mathbb{Q}$ and $t \neq 0, 1, -\frac{1}{2}$, and let E be an elliptic curve defined by the equation

$$E: y^2 = x^3 - 27\mu(\mu^3 + 8)x + 54(\mu^6 - 20\mu^3 - 8)$$

where

$$\mu = \frac{2t^3 + 1}{3t^2}.$$

Then the torsion subgroup of E over K is equal to $\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ for almost all t.

Edwards Curves

Any elliptic curve with a point of order 4 over a field K with 2 ≠ 0 can be represented in 'Edwards form' (for d ∈ K \ {0,1})

► The curves in the JKL Z/4Z ⊕ Z/8Z family have a point of order 4. Therefore they can be represented in Edwards form.

Hessian Curves

Any elliptic curve with a point of order 3 over a field K can be represented in 'twisted Hessian form'

$$ax^3 + y^3 + 1 = dxy$$

over \overline{K} , for $a, d \in K$ with $a(27a - d^3) \neq 0$.

▶ The curves in the JKL $\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ family have a natural representation in Hessian form

$$X^3 + Y^3 + Z^3 = 3\mu XYZ.$$

Easy to twist this.

Small Parameters

- Suppose P = (X : Y : Z) ∈ E(P²) such that X, Y, Z are small.
- The double-and-add operation will then be faster, since additions re-use P. This speeds up ECM - see ECM using Edwards Curves (2010).
- How do we find such curves?
- Bernstein et al carried out an exhaustive search.
- ▶ Since then, the JKL families were described (2011).
- We generated 100s of Z/4Z ⊕ Z/8Z curves and 1000s of Z/6Z ⊕ Z/6Z curves with positive rank using SAGE.
- The curves have small parameters, and base points with small X, Y, Z.

Hessian Speedup?

- Bernstein et al created EECM-MPFQ which uses Edwards curves.
- ► For its range of application it has unbeaten performance.
- It uses a combination of projective doubling and extended addition.
- Double + add cost (3M + 4S + 1a) + (9M + 1a).
- Hessian projective doubling costs (7M + 1S + 1d).
- Hessian projective addition costs (12M + 1a).
- But base point has small coordinates, so more like (6M + 6m + 1a).
- ▶ Double + add cost (7M + 1S + 1d) + (6M + 6m + 1a).

Hessian Curves for ECM

- So Hessian curves are also well-suited to ECM.
- Some questions arise involving the JKL families.
- Strictly, we only get full torsion injection if both quadratic irrationalities of the relevant number field exist in the finite field of interest.

Least Torsion Injection

Theorem (Case $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$, Heer-McGuire-R, 2016) Over \mathbb{Q} , the JKL curve E_{ν} has torsion subgroup $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$.

• Recall for the
$$E_{\nu}$$
 curves the quartic number field is $K = \mathbb{Q}(\sqrt{-1}, \sqrt{t^4 - 6t^2 + 1}).$

Theorem (Case $\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$, Heer-McGuire-R, 2016) Over \mathbb{Q} , the JKL curve E_{μ} has torsion subgroup $\mathbb{Z}/6\mathbb{Z}$.

• Recall for the E_{μ} curves the quartic number field is $K = \mathbb{Q}(\sqrt{-3}, \sqrt{8t^4 + 1}).$

Least Torsion Injection

Theorem $(E_{\mu}, \mathbb{Q}(\sqrt{-3}))$, Heer-McGuire-R, 2016) Consider the JKL curve E_{μ} over the quadratic number field $L = \mathbb{Q}(\sqrt{-3})$. Then

$$E_{\mu}(L)_{tors} = \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$$

• In particular, this is better than any torsion possible over \mathbb{Q} .

Theorem $(E_{\mu}, \mathbb{Q}(\sqrt{8t^3 + 1}))$, Heer-McGuire-R, 2016) The torsion subgroup of the JKL curve E_{μ} over the quadratic number field $L = \mathbb{Q}(\sqrt{8t^3 + 1})$ is

$$E_{\mu}(L)_{tors} = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$$

Classification

- We might wonder if there exists a family of Hessian Curves with torsion Z/2Z ⊕ Z/6Z over Q.
- However, we have

Theorem (Classification of Hessian Curves over \mathbb{Q} , Heer-McGuire-R, 2016)

If H is a Hessian curve, then

$$egin{aligned} & \mathcal{H}(\mathbb{Q})_{\textit{tors}} = egin{cases} \mathbb{Z}/6\mathbb{Z}, & \mathcal{H} = \mathcal{E}_{\mu} \ \textit{for} \ \mathcal{E}_{\mu} \ \textit{a} \ \mathit{JKL} \ \textit{curve} \ \mathbb{Z}/3\mathbb{Z}, & \textit{else}. \end{aligned}$$

Implementation

- ► EECM-MPFQ uses MPFQ to handle large integer arithmetic.
- MPFQ can work with integers up to 9 words of 64 bits, or about 174 digits
- ► In this range, EECM-MPFQ outperforms the competition.
- GMP-ECM uses Gnu-MP to handle large integer arithmetic.
- It handles integers of arbitrary size.
- JKL-ECM is also based on Gnu-MP, and handles integers of arbitrary size.
- ► However we did not use assembly/intrinsics etc.
- ► Thus, we do not outperform GMP-ECM in terms of speed.
- (Although it is close, and the gap narrows with larger inputs).

Implementation

- To have any chance of competing with GMP-ECM, we had to implement stage 2.
- ► We implemented stage 2 using the FFT continuation
- We programmed this using Kronecker Substitution for polynomial arithmetic.
- Also, we used Bernstein's 'scaled remainder tree' for multipoint evaluation.
- This was done from first principles.
- (Note: We rely on Gnu-MP's fast integer multiplication in the FFT range).

Results

- ▶ We tested our implementation on Fionn, a cluster at ICHEC.
- At the time of writing, the largest factor found was a 57 digit factor of 5²²⁸ + 3 ⋅ 197¹¹⁰. If n = x² + 3y² then ∀p|n, √-3 ∈ F_p.
- ▶ The stage 1 bound used was 110e6.
- ► The effective stage 2 bound used was about 1150e9.
- Since then, we found a 60 digit factor of $271^{128} + 3 \cdot 132^{50}$.
- ► For this, we used a stage 1 bound of 400e6.
- Curiously, we managed this despite having only 4,840 twisted Hessian curves to work with.
- The recommended number of curves for t55 is 17,884 and for t60 is 42,057.
- Curve effectiveness thus appears to play a part.

Results

Results

Conclusion

- ▶ We have presented JKL-ECM, a new implementation of ECM.
- ▶ It uses twisted Hessian curves from the JKL $\mathbb{Z}/6\mathbb{Z}\oplus\mathbb{Z}/6\mathbb{Z}$ family.
- ▶ It also has the option of using up to 700 curves from the JKL $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ family.
- We have also answered some theoretical questions that arise regarding Hessian curves.
- ► This includes a classification of Hessian curves over Q.
- ► We will make JKL-ECM available for download.