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> Cryptography requires average-case hardness: systems must be
infeasible to break for random keys & outputs (w/ very high prob).
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A Brief History of Lattice Cryptography

1978~

1996~—

1996

2002-

‘Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, ...

Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

Worst-case to average-case reductions for lattice problems.
[Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,. . . ]

Random instances are provably at least as hard as
all instances of some lattice problems, via poly-time reduction.

Not so inefficient (though this is changing).

NTRU efficient ring-based encryption: ad-hoc design, but
unbroken for suitable parameters. [HoffsteinPipherSilverman'9s,...]

Ring-based crypto with worst-case hardness from ideal lattices.
[Micciancio’'02,LyubashevskyPeikertRegev'10,. . . ]
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pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal Z = gR.
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@ Some ad-hoc ideal-based cryptosystems (e.g., [SV'10,GGH'13,CGS'14])
share this KEYGEN:
sk = ‘Short' g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal Z = gR.

® Many systems use Learning With Errors over Rings [LyuPeiReg'10]:
a1 < R/qR , by =s-a1+e € R/qR

errors ¢; € R
as < R/qR , by=s-as+es € R/qR

are ‘small’
relative to q

For appropriate rings and error distributions,

worst-case approx-SVP

o0 ey Aotz [Bisttes o /2 <quant search R-LWE < decision R-LWE

(Note: no explicit ideals in Ring-LWE problem, only in reductions.)



Agenda

@ Finding short generators (when they exist) of principal ideals

® Bounds for generators of arbitrary principal ideals

© Implications for cryptography and open problems
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Part 1:

Finding Short Generators
(when they exist)
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Key Recovery

» Recall ad-hoc KEYGEN:

sk = ‘Short’ g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal Z = gR.

(Decryption works given any sufficiently short v € Z, e.g., g - X*.)

Secret-key recovery in two steps:

Principal Ideal Problem

@ Given a Z-basis B of a principal ideal Z, find some generator h of Z.

Short Generator Problem
® Given an arbitrary generator h of Z, find a sufficiently short generator.
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How to Perform the Steps

@® Principal Ideal Problem (PIP) has a:
* classical subexponential 200"*)_time algorithm [BF'14,B'14]
* quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]

@® Short Generator Problem (SGP):
* Can be seen as a Closest Vector Problem in the log-unit lattice of R...
* . ..but is actually Bounded Distance Decoding for KEYGEN's instances.

* Was claimed to be easy in two-power cyclotomic rings [CamGroShe'14]
and experimentally confirmed in relevant dimensions [Shank'15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt'16]

» SGP can be solved in classical polynomial time* on KEYGEN's random
instances for any prime-power cyclotomic ring R = Z[Cpk].

(*assuming b < poly(dim))
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Let K = Q[X]/f(X) be a number field of degree n, and let o;: K — C be
its n complex embeddings. The canonical embedding is the ring homom.

o: K —»C"
x> (o1(x), ..., on(x)).
The logarithmic embedding is
Log: K* - R"
x = (logloi(x)|, ..., log|on(x)]).
It is a group homomorphism from (K>, x) to (R™, +).

Example: Two-Power Cyclotomics
> K = @[X]/(X” +1) for n = 2.

> 0;(X) = w? 1, where w = exp(mv/—1/n) €
» Log(X7) =0 for all j.




Example: Embedding o(Z[v/2]) — R?

> z-axis: o1(a+ bv/2) = a+bV2
> y-axis: oo(a +bV2) = a — by/2
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Example: Embedding o(Z[v/2]) — R?

‘\‘ E \ > z-axis: o1(a+ bv/2) = a+bV2
[ [V > y-axis: oo(a +bV2) = a — by/2
“ “ » component-wise multiplication

> Symmetries induced by
. i — * multiplication by —1, V2
TIVT = * conjugation /2 —v/2

A . B Orthogonal lattice axes
\[[///// B Units (algebraic norm 1)

(] y “Isonorms”
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Example: Logarithmic Embedding Log Z[v/2]

A ={e} N “_is a rank-1 lattice A C R?, orthogonal to 1
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Example: Logarithmic Embedding Log Z[v/2]

{e} N are finite # of shifted copies (cosets) of A

o
N\ .
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Example: Logarithmic Embedding Log Z[v/2]

Some {e} N may be empty (e.g., no elements of norm 3)
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Let R* denote the mult. group of units of R, and A = Log R* C R™.

Dirichlet Unit Theorem
P> The kernel of Log is the cyclic subgroup of roots of unity in R*, and

> A C R" is a lattice of rank  + ¢ — 1, orthogonal to 1

(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements g, h € R generate the same ideal if and only if g = h - u for some
unit w € R*, i.e.,

Logg = Logh + Logu € Logh + A.
» By KEYGEN, we know that Logh + A has a ‘short’ g = Logg.

» Our goal is to ‘decode’ such g, yielding g (up to roots of unity).
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Decoding A = Log Z[/2]*

Decoding cosets h + A into various fundamental domains of A.
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Round-Off Decoding
The simplest lattice-decoding algorithm:
RouND(B, h) for a basis B of A and h € R”

> Return B - frac(B~! - h), where frac: R" — [—-1, 1)".

Behavior is characterized by the ‘offset’ and the dual basis BY = B~.

Suppose h = g +u for some u € A. If (b/,g) € [3, ) for all j, then

Rounp(B,h) = g.

14 /20



Recovering a Short Generator: Proof Outline

@ Obtain a “good” basis B of the log-unit lattice A = Log R*.
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* For K = Q((n), m = p*, a standard (almost!-)basis of A is given by

1—(J
bj:Logﬁ, 1<j<m/2, ged(j,m) = 1.

@ Prove that B is “"good,” i.e,, all [|[bY|| are small.

© Prove that g = Log g from KEYGEN is sufficiently small, so that

<b}’,g) e [—%, %) and round-off decoding yields g.

Technical Steps
> Bound [|bY|| = O(1/y/m) using Gauss sums and Dirichlet L-series.

> Bound [(bY,g)| < 3 via subexponential random variables.

lit generates a sublattice of finite index R ™, which is conjectured to be small.
15/20
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Bounds for Generators
of Arbitrary Principal Ideals
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How (a)typical are such principal ideals?

» Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[(,,] of prime-power conductor m:

Upper Bound [CDPR'16]

Given any generator of a principal ideal Z (e.g., via quantum PIP
algorithm), we can efficiently solve 20(vVmlogm)_approx SVP on Z.

.

Lower Bound [CDPR’16]

For “most” principal ideals, their shortest generators are only 282(v/m/ logm)
SVP approximations. (Assuming bt = 200™))

v
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algorithm), we can efficiently solve 20(Vmlogm)_ap5rox-SVP on Z.

(Cf. average case from KEYGEN, where we solve SVP exactly.)

» For principal ideal hR, the generators have log-embeddings Log h + A.

» Make £ norm of Log g € Logh + A small to get a short-ish generator.
(Note: (Logg,1) =logN(Z) for all generators g.)

» A simple randomized round-off algorithm using the “good”
(almost-)basis B of A yields

ILog gllo, < O(v/mlogm) + ; log N(Z).

> Therefore, g < 20WWmloem) . N(T)1/n < 20(vmlogm) .\ (T).

18 /20
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Proof QOutline: Lower Bound

For “most” principal ideals, their shortest generators are only 2°(v7/logm)
SVP approximations. (Assuming ht = 20(m) )

So returning a generator yields 22(vm) syp approx, in the worst case.
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So returning a generator yields 22(vm) syp approx, in the worst case.

» For any g = Log g € span(A), some coordinate is > s = ||g||;/(2n),
50 [lg]l = exp(s).

» Therefore, we care about the ¢; covering radius:

A) = max min .
m(A) hespan(A) geh+A”gH1

In the worst case, a shortest generator approximates SVP to only a
exp(Q(p1(A)/n)) factor.
> Bound 1 (A) > Q(m??/logm) using volume argument.
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@ Extend to non-principal ideals.  [CramerDucasWesolowski'16, preprint]

® Extend to proposed non-cyclotomic number fields, e.g.,
R=7[X]/(XP— X —1). [Bernstein'14]
Seems sufficient to find a ‘good’ full-rank set in A = Log R*.

It's easy to find several ‘good’ units; full rank is unclear.

® Circumvent the 20(vm) s\p approx barrier for generators.

Find a short generator of a cleverly chosen ideal Z.77?

@ Apply or extend any of these techniques against NTRU/Ring-LWE.

Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

Thanks!
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