
Finding Short Generators of Ideals,
and Implications for Cryptography

Chris Peikert
University of Michigan

ANTS XII
29 August 2016

Based on work with Ronald Cramer, Léo Ducas, and Oded Regev

1 / 20

Lattice-Based Cryptography

I High-dimensional lattices in Rn appear to offer (quantumly) hard
problems that are useful for cryptography.

E.g., the approximate Shortest Vector Problem:

b1
b2

λ1
v

I Cryptography requires average-case hardness: systems must be
infeasible to break for random keys & outputs (w/ very high prob).

2 / 20

Lattice-Based Cryptography

I High-dimensional lattices in Rn appear to offer (quantumly) hard
problems that are useful for cryptography.

E.g., the approximate Shortest Vector Problem:

b1
b2

λ1
v

I Cryptography requires average-case hardness: systems must be
infeasible to break for random keys & outputs (w/ very high prob).

2 / 20

A Brief History of Lattice Cryptography

1978– ‘Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, . . .

7 Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996– Worst-case to average-case reductions for lattice problems.
[Ajtai’96,AjtaiDwork’97,(Micciancio)Regev’03-’05,. . .]

4 Random instances are provably at least as hard as
all instances of some lattice problems, via poly-time reduction.

7 Not so inefficient (though this is changing).

1996 NTRU efficient ring-based encryption: ad-hoc design, but
unbroken for suitable parameters. [HoffsteinPipherSilverman’98,. . .]

2002– Ring-based crypto with worst-case hardness from ideal lattices.
[Micciancio’02,LyubashevskyPeikertRegev’10,. . .]

3 / 20

A Brief History of Lattice Cryptography

1978– ‘Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, . . .

7 Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996– Worst-case to average-case reductions for lattice problems.
[Ajtai’96,AjtaiDwork’97,(Micciancio)Regev’03-’05,. . .]

4 Random instances are provably at least as hard as
all instances of some lattice problems, via poly-time reduction.

7 Not so inefficient (though this is changing).

1996 NTRU efficient ring-based encryption: ad-hoc design, but
unbroken for suitable parameters. [HoffsteinPipherSilverman’98,. . .]

2002– Ring-based crypto with worst-case hardness from ideal lattices.
[Micciancio’02,LyubashevskyPeikertRegev’10,. . .]

3 / 20

A Brief History of Lattice Cryptography

1978– ‘Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, . . .

7 Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996– Worst-case to average-case reductions for lattice problems.
[Ajtai’96,AjtaiDwork’97,(Micciancio)Regev’03-’05,. . .]

4 Random instances are provably at least as hard as
all instances of some lattice problems, via poly-time reduction.

7 Not so inefficient (though this is changing).

1996 NTRU efficient ring-based encryption: ad-hoc design, but
unbroken for suitable parameters. [HoffsteinPipherSilverman’98,. . .]

2002– Ring-based crypto with worst-case hardness from ideal lattices.
[Micciancio’02,LyubashevskyPeikertRegev’10,. . .]

3 / 20

A Brief History of Lattice Cryptography

1978– ‘Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, . . .

7 Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996– Worst-case to average-case reductions for lattice problems.
[Ajtai’96,AjtaiDwork’97,(Micciancio)Regev’03-’05,. . .]

4 Random instances are provably at least as hard as
all instances of some lattice problems, via poly-time reduction.

7 Not so inefficient (though this is changing).

1996 NTRU efficient ring-based encryption: ad-hoc design, but
unbroken for suitable parameters. [HoffsteinPipherSilverman’98,. . .]

2002– Ring-based crypto with worst-case hardness from ideal lattices.
[Micciancio’02,LyubashevskyPeikertRegev’10,. . .]

3 / 20

A Brief History of Lattice Cryptography

1978– ‘Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, . . .

7 Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996– Worst-case to average-case reductions for lattice problems.
[Ajtai’96,AjtaiDwork’97,(Micciancio)Regev’03-’05,. . .]

4 Random instances are provably at least as hard as
all instances of some lattice problems, via poly-time reduction.

7 Not so inefficient (though this is changing).

1996 NTRU efficient ring-based encryption: ad-hoc design, but
unbroken for suitable parameters. [HoffsteinPipherSilverman’98,. . .]

2002– Ring-based crypto with worst-case hardness from ideal lattices.
[Micciancio’02,LyubashevskyPeikertRegev’10,. . .]

3 / 20

A Brief History of Lattice Cryptography

1978– ‘Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, . . .

7 Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996– Worst-case to average-case reductions for lattice problems.
[Ajtai’96,AjtaiDwork’97,(Micciancio)Regev’03-’05,. . .]

4 Random instances are provably at least as hard as
all instances of some lattice problems, via poly-time reduction.

7 Not so inefficient (though this is changing).

1996 NTRU efficient ring-based encryption: ad-hoc design, but
unbroken for suitable parameters. [HoffsteinPipherSilverman’98,. . .]

2002– Ring-based crypto with worst-case hardness from ideal lattices.
[Micciancio’02,LyubashevskyPeikertRegev’10,. . .]

3 / 20

A Brief History of Lattice Cryptography

1978– ‘Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, . . .

7 Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996– Worst-case to average-case reductions for lattice problems.
[Ajtai’96,AjtaiDwork’97,(Micciancio)Regev’03-’05,. . .]

4 Random instances are provably at least as hard as
all instances of some lattice problems, via poly-time reduction.

7 Not so inefficient (though this is changing).

1996 NTRU efficient ring-based encryption: ad-hoc design, but
unbroken for suitable parameters. [HoffsteinPipherSilverman’98,. . .]

2002– Ring-based crypto with worst-case hardness from ideal lattices.
[Micciancio’02,LyubashevskyPeikertRegev’10,. . .]

3 / 20

Ideal Lattice Cryptography

1 Some ad-hoc ideal-based cryptosystems (e.g., [SV’10,GGH’13,CGS’14])
share this KeyGen:

sk = ‘Short’ g in some known ring R, often R = Z[ζ2k].

pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal I = gR.

2 Many systems use Learning With Errors over Rings [LyuPeiReg’10]:

a1 ← R/qR , b1 = s · a1 + e1 ∈ R/qR
a2 ← R/qR , b2 = s · a2 + e2 ∈ R/qR

...

errors ei ∈ R
are ‘small’

relative to q

For appropriate rings and error distributions,

worst-case approx-SVP
on any ideal lattice in R

≤quant search R-LWE ≤ decision R-LWE

(Note: no explicit ideals in Ring-LWE problem, only in reductions.)

4 / 20

Ideal Lattice Cryptography

1 Some ad-hoc ideal-based cryptosystems (e.g., [SV’10,GGH’13,CGS’14])
share this KeyGen:

sk = ‘Short’ g in some known ring R, often R = Z[ζ2k].

pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal I = gR.

2 Many systems use Learning With Errors over Rings [LyuPeiReg’10]:

a1 ← R/qR , b1 = s · a1 + e1 ∈ R/qR
a2 ← R/qR , b2 = s · a2 + e2 ∈ R/qR

...

errors ei ∈ R
are ‘small’

relative to q

For appropriate rings and error distributions,

worst-case approx-SVP
on any ideal lattice in R

≤quant search R-LWE ≤ decision R-LWE

(Note: no explicit ideals in Ring-LWE problem, only in reductions.)

4 / 20

Ideal Lattice Cryptography

1 Some ad-hoc ideal-based cryptosystems (e.g., [SV’10,GGH’13,CGS’14])
share this KeyGen:

sk = ‘Short’ g in some known ring R, often R = Z[ζ2k].

pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal I = gR.

2 Many systems use Learning With Errors over Rings [LyuPeiReg’10]:

a1 ← R/qR , b1 = s · a1 + e1 ∈ R/qR
a2 ← R/qR , b2 = s · a2 + e2 ∈ R/qR

...

errors ei ∈ R
are ‘small’

relative to q

For appropriate rings and error distributions,

worst-case approx-SVP
on any ideal lattice in R

≤quant search R-LWE ≤ decision R-LWE

(Note: no explicit ideals in Ring-LWE problem, only in reductions.)

4 / 20

Ideal Lattice Cryptography

1 Some ad-hoc ideal-based cryptosystems (e.g., [SV’10,GGH’13,CGS’14])
share this KeyGen:

sk = ‘Short’ g in some known ring R, often R = Z[ζ2k].

pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal I = gR.

2 Many systems use Learning With Errors over Rings [LyuPeiReg’10]:

a1 ← R/qR , b1 = s · a1 + e1 ∈ R/qR
a2 ← R/qR , b2 = s · a2 + e2 ∈ R/qR

...

errors ei ∈ R
are ‘small’

relative to q

For appropriate rings and error distributions,

worst-case approx-SVP
on any ideal lattice in R

≤quant search R-LWE ≤ decision R-LWE

(Note: no explicit ideals in Ring-LWE problem, only in reductions.)

4 / 20

Agenda

1 Finding short generators (when they exist) of principal ideals

2 Bounds for generators of arbitrary principal ideals

3 Implications for cryptography and open problems

5 / 20

Part 1:

Finding Short Generators
(when they exist)

6 / 20

Key Recovery

I Recall ad-hoc KeyGen:

sk = ‘Short’ g in some known ring R, often R = Z[ζ2k].

pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal I = gR.

(Decryption works given any sufficiently short v ∈ I, e.g., g ·Xi.)

Secret-key recovery in two steps:

Principal Ideal Problem

1 Given a Z-basis B of a principal ideal I, find some generator h of I.

Short Generator Problem

2 Given an arbitrary generator h of I, find a sufficiently short generator.

7 / 20

Key Recovery

I Recall ad-hoc KeyGen:

sk = ‘Short’ g in some known ring R, often R = Z[ζ2k].

pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal I = gR.

(Decryption works given any sufficiently short v ∈ I, e.g., g ·Xi.)

Secret-key recovery in two steps:

Principal Ideal Problem

1 Given a Z-basis B of a principal ideal I, find some generator h of I.

Short Generator Problem

2 Given an arbitrary generator h of I, find a sufficiently short generator.

7 / 20

Key Recovery

I Recall ad-hoc KeyGen:

sk = ‘Short’ g in some known ring R, often R = Z[ζ2k].

pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal I = gR.

(Decryption works given any sufficiently short v ∈ I, e.g., g ·Xi.)

Secret-key recovery in two steps:

Principal Ideal Problem

1 Given a Z-basis B of a principal ideal I, find some generator h of I.

Short Generator Problem

2 Given an arbitrary generator h of I, find a sufficiently short generator.

7 / 20

Key Recovery

I Recall ad-hoc KeyGen:

sk = ‘Short’ g in some known ring R, often R = Z[ζ2k].

pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal I = gR.

(Decryption works given any sufficiently short v ∈ I, e.g., g ·Xi.)

Secret-key recovery in two steps:

Principal Ideal Problem

1 Given a Z-basis B of a principal ideal I, find some generator h of I.

Short Generator Problem

2 Given an arbitrary generator h of I, find a sufficiently short generator.

7 / 20

Key Recovery

I Recall ad-hoc KeyGen:

sk = ‘Short’ g in some known ring R, often R = Z[ζ2k].

pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal I = gR.

(Decryption works given any sufficiently short v ∈ I, e.g., g ·Xi.)

Secret-key recovery in two steps:

Principal Ideal Problem

1 Given a Z-basis B of a principal ideal I, find some generator h of I.

Short Generator Problem

2 Given an arbitrary generator h of I, find a sufficiently short generator.

7 / 20

How to Perform the Steps

1 Principal Ideal Problem (PIP) has a:

F classical subexponential 2Õ(n2/3)-time algorithm [BF’14,B’14]

F quantum polynomial-time algorithm [EHKS’14,CGS’14,BS’14]

2 Short Generator Problem (SGP):
F Can be seen as a Closest Vector Problem in the log-unit lattice of R. . .

F . . . but is actually Bounded Distance Decoding for KeyGen’s instances.

F Was claimed to be easy in two-power cyclotomic rings [CamGroShe’14]

and experimentally confirmed in relevant dimensions [Shank’15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt’16]

I SGP can be solved in classical polynomial time∗ on KeyGen’s random
instances for any prime-power cyclotomic ring R = Z[ζpk].

(∗assuming h+ ≤ poly(dim))

8 / 20

How to Perform the Steps

1 Principal Ideal Problem (PIP) has a:

F classical subexponential 2Õ(n2/3)-time algorithm [BF’14,B’14]

F quantum polynomial-time algorithm [EHKS’14,CGS’14,BS’14]

2 Short Generator Problem (SGP):
F Can be seen as a Closest Vector Problem in the log-unit lattice of R. . .

F . . . but is actually Bounded Distance Decoding for KeyGen’s instances.

F Was claimed to be easy in two-power cyclotomic rings [CamGroShe’14]

and experimentally confirmed in relevant dimensions [Shank’15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt’16]

I SGP can be solved in classical polynomial time∗ on KeyGen’s random
instances for any prime-power cyclotomic ring R = Z[ζpk].

(∗assuming h+ ≤ poly(dim))

8 / 20

How to Perform the Steps

1 Principal Ideal Problem (PIP) has a:

F classical subexponential 2Õ(n2/3)-time algorithm [BF’14,B’14]

F quantum polynomial-time algorithm [EHKS’14,CGS’14,BS’14]

2 Short Generator Problem (SGP):
F Can be seen as a Closest Vector Problem in the log-unit lattice of R. . .

F . . . but is actually Bounded Distance Decoding for KeyGen’s instances.

F Was claimed to be easy in two-power cyclotomic rings [CamGroShe’14]

and experimentally confirmed in relevant dimensions [Shank’15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt’16]

I SGP can be solved in classical polynomial time∗ on KeyGen’s random
instances for any prime-power cyclotomic ring R = Z[ζpk].

(∗assuming h+ ≤ poly(dim))

8 / 20

How to Perform the Steps

1 Principal Ideal Problem (PIP) has a:

F classical subexponential 2Õ(n2/3)-time algorithm [BF’14,B’14]

F quantum polynomial-time algorithm [EHKS’14,CGS’14,BS’14]

2 Short Generator Problem (SGP):
F Can be seen as a Closest Vector Problem in the log-unit lattice of R. . .

F . . . but is actually Bounded Distance Decoding for KeyGen’s instances.

F Was claimed to be easy in two-power cyclotomic rings [CamGroShe’14]

and experimentally confirmed in relevant dimensions [Shank’15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt’16]

I SGP can be solved in classical polynomial time∗ on KeyGen’s random
instances for any prime-power cyclotomic ring R = Z[ζpk].

(∗assuming h+ ≤ poly(dim))

8 / 20

How to Perform the Steps

1 Principal Ideal Problem (PIP) has a:

F classical subexponential 2Õ(n2/3)-time algorithm [BF’14,B’14]

F quantum polynomial-time algorithm [EHKS’14,CGS’14,BS’14]

2 Short Generator Problem (SGP):
F Can be seen as a Closest Vector Problem in the log-unit lattice of R. . .

F . . . but is actually Bounded Distance Decoding for KeyGen’s instances.

F Was claimed to be easy in two-power cyclotomic rings [CamGroShe’14]

and experimentally confirmed in relevant dimensions [Shank’15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt’16]

I SGP can be solved in classical polynomial time∗ on KeyGen’s random
instances for any prime-power cyclotomic ring R = Z[ζpk].

(∗assuming h+ ≤ poly(dim))

8 / 20

How to Perform the Steps

1 Principal Ideal Problem (PIP) has a:

F classical subexponential 2Õ(n2/3)-time algorithm [BF’14,B’14]

F quantum polynomial-time algorithm [EHKS’14,CGS’14,BS’14]

2 Short Generator Problem (SGP):
F Can be seen as a Closest Vector Problem in the log-unit lattice of R. . .

F . . . but is actually Bounded Distance Decoding for KeyGen’s instances.

F Was claimed to be easy in two-power cyclotomic rings [CamGroShe’14]

and experimentally confirmed in relevant dimensions [Shank’15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt’16]

I SGP can be solved in classical polynomial time∗ on KeyGen’s random
instances for any prime-power cyclotomic ring R = Z[ζpk].

(∗assuming h+ ≤ poly(dim))

8 / 20

(Logarithmic) Embedding

Let K ∼= Q[X]/f(X) be a number field of degree n, and let σi : K → C be
its n complex embeddings. The canonical embedding is the ring homom.

σ : K → Cn

x 7→ (σ1(x) , . . . , σn(x)).

The logarithmic embedding is

Log : K× → Rn

x 7→ (log |σ1(x)| , . . . , log |σn(x)|).

It is a group homomorphism from (K×,×) to (Rn,+).

Example: Two-Power Cyclotomics

I K ∼= Q[X]/(Xn + 1) for n = 2k.

I σi(X) = ω2i−1, where ω = exp(π
√
−1/n) ∈ C.

I Log(Xj) = 0 for all j.

9 / 20

(Logarithmic) Embedding

Let K ∼= Q[X]/f(X) be a number field of degree n, and let σi : K → C be
its n complex embeddings. The canonical embedding is the ring homom.

σ : K → Cn

x 7→ (σ1(x) , . . . , σn(x)).

The logarithmic embedding is

Log : K× → Rn

x 7→ (log |σ1(x)| , . . . , log |σn(x)|).

It is a group homomorphism from (K×,×) to (Rn,+).

Example: Two-Power Cyclotomics

I K ∼= Q[X]/(Xn + 1) for n = 2k.

I σi(X) = ω2i−1, where ω = exp(π
√
−1/n) ∈ C.

I Log(Xj) = 0 for all j.

9 / 20

(Logarithmic) Embedding

Let K ∼= Q[X]/f(X) be a number field of degree n, and let σi : K → C be
its n complex embeddings. The canonical embedding is the ring homom.

σ : K → Cn

x 7→ (σ1(x) , . . . , σn(x)).

The logarithmic embedding is

Log : K× → Rn

x 7→ (log |σ1(x)| , . . . , log |σn(x)|).

It is a group homomorphism from (K×,×) to (Rn,+).

Example: Two-Power Cyclotomics

I K ∼= Q[X]/(Xn + 1) for n = 2k.

I σi(X) = ω2i−1, where ω = exp(π
√
−1/n) ∈ C.

I Log(Xj) = 0 for all j.

9 / 20

Example: Embedding σ(Z[
√

2])→ R2

1

1

−1

0

1

2

√
2

1 +
√

2

I x-axis: σ1(a+ b
√

2) = a+ b
√

2

I y-axis: σ2(a+ b
√

2) = a− b
√

2

I component-wise multiplication

I Symmetries induced by
F multiplication by −1,

√
2

F conjugation
√

2 7→ −
√

2

� Orthogonal lattice axes

� Units (algebraic norm 1)

� “Isonorms”

10 / 20

Example: Embedding σ(Z[
√

2])→ R2

1

1

−1

0

1

2

√
2

1 +
√

2

I x-axis: σ1(a+ b
√

2) = a+ b
√

2

I y-axis: σ2(a+ b
√

2) = a− b
√

2

I component-wise multiplication

I Symmetries induced by
F multiplication by −1,

√
2

F conjugation
√

2 7→ −
√

2

� Orthogonal lattice axes

� Units (algebraic norm 1)

� “Isonorms”

10 / 20

Example: Embedding σ(Z[
√

2])→ R2

1

1

−1

0

1

2

√
2

1 +
√

2

I x-axis: σ1(a+ b
√

2) = a+ b
√

2

I y-axis: σ2(a+ b
√

2) = a− b
√

2

I component-wise multiplication

I Symmetries induced by
F multiplication by −1,

√
2

F conjugation
√

2 7→ −
√

2

� Orthogonal lattice axes

� Units (algebraic norm 1)

� “Isonorms”

10 / 20

Example: Embedding σ(Z[
√

2])→ R2

1

1

−1

0

1

2

√
2

1 +
√

2

I x-axis: σ1(a+ b
√

2) = a+ b
√

2

I y-axis: σ2(a+ b
√

2) = a− b
√

2

I component-wise multiplication

I Symmetries induced by
F multiplication by −1,

√
2

F conjugation
√

2 7→ −
√

2

� Orthogonal lattice axes

� Units (algebraic norm 1)

� “Isonorms”

10 / 20

Example: Logarithmic Embedding LogZ[
√

2]

Λ ={•} ∩ � is a rank-1 lattice Λ ⊂ R2, orthogonal to 1

1

1

11 / 20

Example: Logarithmic Embedding LogZ[
√

2]

{•} ∩ � are finite # of shifted copies (cosets) of Λ

1

1

11 / 20

Example: Logarithmic Embedding LogZ[
√

2]

Some {•} ∩ � may be empty (e.g., no elements of norm 3)

1

1

11 / 20

Unit Group and the Log-Unit Lattice

Let R× denote the mult. group of units of R, and Λ = LogR× ⊂ Rn.

Dirichlet Unit Theorem

I The kernel of Log is the cyclic subgroup of roots of unity in R×, and

I Λ ⊂ Rn is a lattice of rank r + c− 1, orthogonal to 1
(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements g, h ∈ R generate the same ideal if and only if g = h · u for some
unit u ∈ R×, i.e.,

Log g = Log h+ Log u ∈ Log h+ Λ.

I By KeyGen, we know that Log h+ Λ has a ‘short’ g = Log g.

I Our goal is to ‘decode’ such g, yielding g (up to roots of unity).

12 / 20

Unit Group and the Log-Unit Lattice

Let R× denote the mult. group of units of R, and Λ = LogR× ⊂ Rn.

Dirichlet Unit Theorem

I The kernel of Log is the cyclic subgroup of roots of unity in R×, and

I Λ ⊂ Rn is a lattice of rank r + c− 1, orthogonal to 1
(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements g, h ∈ R generate the same ideal if and only if g = h · u for some
unit u ∈ R×, i.e.,

Log g = Log h+ Log u ∈ Log h+ Λ.

I By KeyGen, we know that Log h+ Λ has a ‘short’ g = Log g.

I Our goal is to ‘decode’ such g, yielding g (up to roots of unity).

12 / 20

Unit Group and the Log-Unit Lattice

Let R× denote the mult. group of units of R, and Λ = LogR× ⊂ Rn.

Dirichlet Unit Theorem

I The kernel of Log is the cyclic subgroup of roots of unity in R×, and

I Λ ⊂ Rn is a lattice of rank r + c− 1, orthogonal to 1
(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements g, h ∈ R generate the same ideal if and only if g = h · u for some
unit u ∈ R×, i.e.,

Log g = Log h+ Log u ∈ Log h+ Λ.

I By KeyGen, we know that Log h+ Λ has a ‘short’ g = Log g.

I Our goal is to ‘decode’ such g, yielding g (up to roots of unity).

12 / 20

Unit Group and the Log-Unit Lattice

Let R× denote the mult. group of units of R, and Λ = LogR× ⊂ Rn.

Dirichlet Unit Theorem

I The kernel of Log is the cyclic subgroup of roots of unity in R×, and

I Λ ⊂ Rn is a lattice of rank r + c− 1, orthogonal to 1
(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements g, h ∈ R generate the same ideal if and only if g = h · u for some
unit u ∈ R×, i.e.,

Log g = Log h+ Log u ∈ Log h+ Λ.

I By KeyGen, we know that Log h+ Λ has a ‘short’ g = Log g.

I Our goal is to ‘decode’ such g, yielding g (up to roots of unity).

12 / 20

Unit Group and the Log-Unit Lattice

Let R× denote the mult. group of units of R, and Λ = LogR× ⊂ Rn.

Dirichlet Unit Theorem

I The kernel of Log is the cyclic subgroup of roots of unity in R×, and

I Λ ⊂ Rn is a lattice of rank r + c− 1, orthogonal to 1
(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements g, h ∈ R generate the same ideal if and only if g = h · u for some
unit u ∈ R×, i.e.,

Log g = Log h+ Log u ∈ Log h+ Λ.

I By KeyGen, we know that Log h+ Λ has a ‘short’ g = Log g.

I Our goal is to ‘decode’ such g, yielding g (up to roots of unity).

12 / 20

Decoding Λ = LogZ[
√

2]×

Decoding cosets h + Λ into various fundamental domains of Λ.

1

1

13 / 20

Decoding Λ = LogZ[
√

2]×

Decoding cosets h + Λ into various fundamental domains of Λ.

1

1

13 / 20

Decoding Λ = LogZ[
√

2]×

Decoding cosets h + Λ into various fundamental domains of Λ.

1

1

13 / 20

Decoding Λ = LogZ[
√

2]×

Decoding cosets h + Λ into various fundamental domains of Λ.

1

1

13 / 20

Round-Off Decoding

The simplest lattice-decoding algorithm:

Round(B,h) for a basis B of Λ and h ∈ Rn

I Return B · frac(B−1 · h), where frac : Rn → [−1
2 ,

1
2)n.

b1

b2

g h

Behavior is characterized by the ‘offset’ and the dual basis B∨ = B−t.

Trivial Fact

Suppose h = g + u for some u ∈ Λ. If 〈b∨j ,g〉 ∈ [−1
2 ,

1
2) for all j, then

Round(B,h) = g.

14 / 20

Round-Off Decoding

The simplest lattice-decoding algorithm:

Round(B,h) for a basis B of Λ and h ∈ Rn

I Return B · frac(B−1 · h), where frac : Rn → [−1
2 ,

1
2)n.

b1

b2

g h

Behavior is characterized by the ‘offset’ and the dual basis B∨ = B−t.

Trivial Fact

Suppose h = g + u for some u ∈ Λ. If 〈b∨j ,g〉 ∈ [−1
2 ,

1
2) for all j, then

Round(B,h) = g.

14 / 20

Recovering a Short Generator: Proof Outline

1 Obtain a “good” basis B of the log-unit lattice Λ = LogR×.
F For K = Q(ζm), m = pk, a standard (almost1-)basis of Λ is given by

bj = Log
1− ζj

1− ζ
, 1 < j < m/2, gcd(j,m) = 1.

2 Prove that B is “good,” i.e., all ‖b∨j ‖ are small.

3 Prove that g = Log g from KeyGen is sufficiently small, so that
〈b∨j ,g〉 ∈ [−1

2 ,
1
2) and round-off decoding yields g.

Technical Steps

I Bound ‖b∨j ‖ = Õ(1/
√
m) using Gauss sums and Dirichlet L-series.

I Bound |〈b∨j ,g〉| � 1
2 via subexponential random variables.

1it generates a sublattice of finite index h+, which is conjectured to be small.
15 / 20

Recovering a Short Generator: Proof Outline

1 Obtain a “good” basis B of the log-unit lattice Λ = LogR×.
F For K = Q(ζm), m = pk, a standard (almost1-)basis of Λ is given by

bj = Log
1− ζj

1− ζ
, 1 < j < m/2, gcd(j,m) = 1.

2 Prove that B is “good,” i.e., all ‖b∨j ‖ are small.

3 Prove that g = Log g from KeyGen is sufficiently small, so that
〈b∨j ,g〉 ∈ [−1

2 ,
1
2) and round-off decoding yields g.

Technical Steps

I Bound ‖b∨j ‖ = Õ(1/
√
m) using Gauss sums and Dirichlet L-series.

I Bound |〈b∨j ,g〉| � 1
2 via subexponential random variables.

1it generates a sublattice of finite index h+, which is conjectured to be small.
15 / 20

Recovering a Short Generator: Proof Outline

1 Obtain a “good” basis B of the log-unit lattice Λ = LogR×.
F For K = Q(ζm), m = pk, a standard (almost1-)basis of Λ is given by

bj = Log
1− ζj

1− ζ
, 1 < j < m/2, gcd(j,m) = 1.

2 Prove that B is “good,” i.e., all ‖b∨j ‖ are small.

3 Prove that g = Log g from KeyGen is sufficiently small, so that
〈b∨j ,g〉 ∈ [−1

2 ,
1
2) and round-off decoding yields g.

Technical Steps

I Bound ‖b∨j ‖ = Õ(1/
√
m) using Gauss sums and Dirichlet L-series.

I Bound |〈b∨j ,g〉| � 1
2 via subexponential random variables.

1it generates a sublattice of finite index h+, which is conjectured to be small.
15 / 20

Recovering a Short Generator: Proof Outline

1 Obtain a “good” basis B of the log-unit lattice Λ = LogR×.
F For K = Q(ζm), m = pk, a standard (almost1-)basis of Λ is given by

bj = Log
1− ζj

1− ζ
, 1 < j < m/2, gcd(j,m) = 1.

2 Prove that B is “good,” i.e., all ‖b∨j ‖ are small.

3 Prove that g = Log g from KeyGen is sufficiently small, so that
〈b∨j ,g〉 ∈ [−1

2 ,
1
2) and round-off decoding yields g.

Technical Steps

I Bound ‖b∨j ‖ = Õ(1/
√
m) using Gauss sums and Dirichlet L-series.

I Bound |〈b∨j ,g〉| � 1
2 via subexponential random variables.

1it generates a sublattice of finite index h+, which is conjectured to be small.
15 / 20

Part 2:

Bounds for Generators
of Arbitrary Principal Ideals

16 / 20

Average Case Versus Worst Case

I Cryptanalysis of KeyGen exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + Λ).

How (a)typical are such principal ideals?

I Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[ζm] of prime-power conductor m:

Upper Bound [CDPR’16]

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx SVP on I.

Lower Bound [CDPR’16]

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

17 / 20

Average Case Versus Worst Case

I Cryptanalysis of KeyGen exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + Λ).

How (a)typical are such principal ideals?

I Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[ζm] of prime-power conductor m:

Upper Bound [CDPR’16]

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx SVP on I.

Lower Bound [CDPR’16]

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

17 / 20

Average Case Versus Worst Case

I Cryptanalysis of KeyGen exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + Λ).

How (a)typical are such principal ideals?

I Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[ζm] of prime-power conductor m:

Upper Bound [CDPR’16]

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx SVP on I.

Lower Bound [CDPR’16]

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

17 / 20

Average Case Versus Worst Case

I Cryptanalysis of KeyGen exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + Λ).

How (a)typical are such principal ideals?

I Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[ζm] of prime-power conductor m:

Upper Bound [CDPR’16]

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx SVP on I.

Lower Bound [CDPR’16]

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

17 / 20

Average Case Versus Worst Case

I Cryptanalysis of KeyGen exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + Λ).

How (a)typical are such principal ideals?

I Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[ζm] of prime-power conductor m:

Upper Bound [CDPR’16]

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx SVP on I.

Lower Bound [CDPR’16]

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

17 / 20

Average Case Versus Worst Case

I Cryptanalysis of KeyGen exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + Λ).

How (a)typical are such principal ideals?

I Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[ζm] of prime-power conductor m:

Upper Bound [CDPR’16]

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx SVP on I.

Lower Bound [CDPR’16]

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

17 / 20

Average Case Versus Worst Case

I Cryptanalysis of KeyGen exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + Λ).

How (a)typical are such principal ideals?

I Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[ζm] of prime-power conductor m:

Upper Bound [CDPR’16]

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx SVP on I.

Lower Bound [CDPR’16]

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

17 / 20

Proof Outline: Upper Bound

Theorem

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx-SVP on I.

(Cf. average case from KeyGen, where we solve SVP exactly.)

I For principal ideal hR, the generators have log-embeddings Log h+ Λ.

I Make `∞ norm of Log g ∈ Log h+ Λ small to get a short-ish generator.

(Note: 〈Log g,1〉 = log N(I) for all generators g.)

I A simple randomized round-off algorithm using the “good”
(almost-)basis B of Λ yields

‖Log g‖∞ ≤ O(
√
m logm) + 1

n log N(I).

I Therefore, ‖g‖ ≤ 2O(
√
m logm) ·N(I)1/n ≤ 2O(

√
m logm) · λ1(I).

18 / 20

Proof Outline: Upper Bound

Theorem

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx-SVP on I.

(Cf. average case from KeyGen, where we solve SVP exactly.)

I For principal ideal hR, the generators have log-embeddings Log h+ Λ.

I Make `∞ norm of Log g ∈ Log h+ Λ small to get a short-ish generator.

(Note: 〈Log g,1〉 = log N(I) for all generators g.)

I A simple randomized round-off algorithm using the “good”
(almost-)basis B of Λ yields

‖Log g‖∞ ≤ O(
√
m logm) + 1

n log N(I).

I Therefore, ‖g‖ ≤ 2O(
√
m logm) ·N(I)1/n ≤ 2O(

√
m logm) · λ1(I).

18 / 20

Proof Outline: Upper Bound

Theorem

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx-SVP on I.

(Cf. average case from KeyGen, where we solve SVP exactly.)

I For principal ideal hR, the generators have log-embeddings Log h+ Λ.

I Make `∞ norm of Log g ∈ Log h+ Λ small to get a short-ish generator.

(Note: 〈Log g,1〉 = log N(I) for all generators g.)

I A simple randomized round-off algorithm using the “good”
(almost-)basis B of Λ yields

‖Log g‖∞ ≤ O(
√
m logm) + 1

n log N(I).

I Therefore, ‖g‖ ≤ 2O(
√
m logm) ·N(I)1/n ≤ 2O(

√
m logm) · λ1(I).

18 / 20

Proof Outline: Upper Bound

Theorem

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx-SVP on I.

(Cf. average case from KeyGen, where we solve SVP exactly.)

I For principal ideal hR, the generators have log-embeddings Log h+ Λ.

I Make `∞ norm of Log g ∈ Log h+ Λ small to get a short-ish generator.

(Note: 〈Log g,1〉 = log N(I) for all generators g.)

I A simple randomized round-off algorithm using the “good”
(almost-)basis B of Λ yields

‖Log g‖∞ ≤ O(
√
m logm) + 1

n log N(I).

I Therefore, ‖g‖ ≤ 2O(
√
m logm) ·N(I)1/n ≤ 2O(

√
m logm) · λ1(I).

18 / 20

Proof Outline: Upper Bound

Theorem

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx-SVP on I.

(Cf. average case from KeyGen, where we solve SVP exactly.)

I For principal ideal hR, the generators have log-embeddings Log h+ Λ.

I Make `∞ norm of Log g ∈ Log h+ Λ small to get a short-ish generator.

(Note: 〈Log g,1〉 = log N(I) for all generators g.)

I A simple randomized round-off algorithm using the “good”
(almost-)basis B of Λ yields

‖Log g‖∞ ≤ O(
√
m logm) + 1

n log N(I).

I Therefore, ‖g‖ ≤ 2O(
√
m logm) ·N(I)1/n ≤ 2O(

√
m logm) · λ1(I).

18 / 20

Proof Outline: Upper Bound

Theorem

Given any generator of a principal ideal I (e.g., via quantum PIP
algorithm), we can efficiently solve 2O(

√
m logm)-approx-SVP on I.

(Cf. average case from KeyGen, where we solve SVP exactly.)

I For principal ideal hR, the generators have log-embeddings Log h+ Λ.

I Make `∞ norm of Log g ∈ Log h+ Λ small to get a short-ish generator.

(Note: 〈Log g,1〉 = log N(I) for all generators g.)

I A simple randomized round-off algorithm using the “good”
(almost-)basis B of Λ yields

‖Log g‖∞ ≤ O(
√
m logm) + 1

n log N(I).

I Therefore, ‖g‖ ≤ 2O(
√
m logm) ·N(I)1/n ≤ 2O(

√
m logm) · λ1(I).

18 / 20

Proof Outline: Lower Bound

Theorem

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

So returning a generator yields 2Ω̃(
√
m) SVP approx, in the worst case.

I For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ‖g‖1/(2n),
so ‖g‖ ≥ exp(s).

I Therefore, we care about the `1 covering radius:

µ1(Λ) := max
h∈span(Λ)

min
g∈h+Λ

‖g‖1.

In the worst case, a shortest generator approximates SVP to only a
exp(Ω(µ1(Λ)/n)) factor.

I Bound µ1(Λ) ≥ Ω(m3/2/ logm) using volume argument.

19 / 20

Proof Outline: Lower Bound

Theorem

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

So returning a generator yields 2Ω̃(
√
m) SVP approx, in the worst case.

I For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ‖g‖1/(2n),
so ‖g‖ ≥ exp(s).

I Therefore, we care about the `1 covering radius:

µ1(Λ) := max
h∈span(Λ)

min
g∈h+Λ

‖g‖1.

In the worst case, a shortest generator approximates SVP to only a
exp(Ω(µ1(Λ)/n)) factor.

I Bound µ1(Λ) ≥ Ω(m3/2/ logm) using volume argument.

19 / 20

Proof Outline: Lower Bound

Theorem

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

So returning a generator yields 2Ω̃(
√
m) SVP approx, in the worst case.

I For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ‖g‖1/(2n),
so ‖g‖ ≥ exp(s).

I Therefore, we care about the `1 covering radius:

µ1(Λ) := max
h∈span(Λ)

min
g∈h+Λ

‖g‖1.

In the worst case, a shortest generator approximates SVP to only a
exp(Ω(µ1(Λ)/n)) factor.

I Bound µ1(Λ) ≥ Ω(m3/2/ logm) using volume argument.

19 / 20

Proof Outline: Lower Bound

Theorem

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

So returning a generator yields 2Ω̃(
√
m) SVP approx, in the worst case.

I For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ‖g‖1/(2n),
so ‖g‖ ≥ exp(s).

I Therefore, we care about the `1 covering radius:

µ1(Λ) := max
h∈span(Λ)

min
g∈h+Λ

‖g‖1.

In the worst case, a shortest generator approximates SVP to only a
exp(Ω(µ1(Λ)/n)) factor.

I Bound µ1(Λ) ≥ Ω(m3/2/ logm) using volume argument.

19 / 20

Proof Outline: Lower Bound

Theorem

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

So returning a generator yields 2Ω̃(
√
m) SVP approx, in the worst case.

I For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ‖g‖1/(2n),
so ‖g‖ ≥ exp(s).

I Therefore, we care about the `1 covering radius:

µ1(Λ) := max
h∈span(Λ)

min
g∈h+Λ

‖g‖1.

In the worst case, a shortest generator approximates SVP to only a
exp(Ω(µ1(Λ)/n)) factor.

I Bound µ1(Λ) ≥ Ω(m3/2/ logm) using volume argument.

19 / 20

Proof Outline: Lower Bound

Theorem

For “most” principal ideals, their shortest generators are only 2Ω(
√
m/ logm)

SVP approximations. (Assuming h+ = 2O(m).)

So returning a generator yields 2Ω̃(
√
m) SVP approx, in the worst case.

I For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ‖g‖1/(2n),
so ‖g‖ ≥ exp(s).

I Therefore, we care about the `1 covering radius:

µ1(Λ) := max
h∈span(Λ)

min
g∈h+Λ

‖g‖1.

In the worst case, a shortest generator approximates SVP to only a
exp(Ω(µ1(Λ)/n)) factor.

I Bound µ1(Λ) ≥ Ω(m3/2/ logm) using volume argument.

19 / 20

Open Problems

1 Extend to non-principal ideals. [CramerDucasWesolowski’16, preprint]

2 Extend to proposed non-cyclotomic number fields, e.g.,
R = Z[X]/(Xp −X − 1). [Bernstein’14]

Seems sufficient to find a ‘good’ full-rank set in Λ = LogR×.

It’s easy to find several ‘good’ units; full rank is unclear.

3 Circumvent the 2Ω̃(
√
m) SVP approx barrier for generators.

Find a short generator of a cleverly chosen ideal IJ ?

4 Apply or extend any of these techniques against NTRU/Ring-LWE.

Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

Thanks!

20 / 20

Open Problems

1 Extend to non-principal ideals. [CramerDucasWesolowski’16, preprint]

2 Extend to proposed non-cyclotomic number fields, e.g.,
R = Z[X]/(Xp −X − 1). [Bernstein’14]

Seems sufficient to find a ‘good’ full-rank set in Λ = LogR×.

It’s easy to find several ‘good’ units; full rank is unclear.

3 Circumvent the 2Ω̃(
√
m) SVP approx barrier for generators.

Find a short generator of a cleverly chosen ideal IJ ?

4 Apply or extend any of these techniques against NTRU/Ring-LWE.

Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

Thanks!

20 / 20

Open Problems

1 Extend to non-principal ideals. [CramerDucasWesolowski’16, preprint]

2 Extend to proposed non-cyclotomic number fields, e.g.,
R = Z[X]/(Xp −X − 1). [Bernstein’14]

Seems sufficient to find a ‘good’ full-rank set in Λ = LogR×.

It’s easy to find several ‘good’ units; full rank is unclear.

3 Circumvent the 2Ω̃(
√
m) SVP approx barrier for generators.

Find a short generator of a cleverly chosen ideal IJ ?

4 Apply or extend any of these techniques against NTRU/Ring-LWE.

Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

Thanks!

20 / 20

Open Problems

1 Extend to non-principal ideals. [CramerDucasWesolowski’16, preprint]

2 Extend to proposed non-cyclotomic number fields, e.g.,
R = Z[X]/(Xp −X − 1). [Bernstein’14]

Seems sufficient to find a ‘good’ full-rank set in Λ = LogR×.

It’s easy to find several ‘good’ units; full rank is unclear.

3 Circumvent the 2Ω̃(
√
m) SVP approx barrier for generators.

Find a short generator of a cleverly chosen ideal IJ ?

4 Apply or extend any of these techniques against NTRU/Ring-LWE.

Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

Thanks!

20 / 20

Open Problems

1 Extend to non-principal ideals. [CramerDucasWesolowski’16, preprint]

2 Extend to proposed non-cyclotomic number fields, e.g.,
R = Z[X]/(Xp −X − 1). [Bernstein’14]

Seems sufficient to find a ‘good’ full-rank set in Λ = LogR×.

It’s easy to find several ‘good’ units; full rank is unclear.

3 Circumvent the 2Ω̃(
√
m) SVP approx barrier for generators.

Find a short generator of a cleverly chosen ideal IJ ?

4 Apply or extend any of these techniques against NTRU/Ring-LWE.

Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

Thanks!

20 / 20

