Finding Short Generators of ldeals,
and Implications for Cryptography

Chris Peikert
University of Michigan

ANTS XII
29 August 2016

Based on work with Ronald Cramer, Léo Ducas, and Oded Regev

Lattice-Based Cryptography

» High-dimensional lattices in R™ appear to offer (quantumly) hard
problems that are useful for cryptography.

E.g., the approximate Shortest Vector Problem:

Lattice-Based Cryptography

» High-dimensional lattices in R™ appear to offer (quantumly) hard
problems that are useful for cryptography.

E.g., the approximate Shortest Vector Problem:

> Cryptography requires average-case hardness: systems must be
infeasible to break for random keys & outputs (w/ very high prob).

)

A Brief History of Lattice Cryptography

1978- 'Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, ...

20

A Brief History of Lattice Cryptography
1978- 'Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, ...

X Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

A Brief History of Lattice Cryptography

1978— 'Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, ...

X Many broken or severely weakened due to ‘Achilles heels:’

random instances from the system are easier than intended.

1996— Worst-case to average-case reductions for lattice problems.

[Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,. . .]

20

A Brief History of Lattice Cryptography
1978— 'Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, ...

X Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996— Worst-case to average-case reductions for lattice problems.

[Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,. . .]

¢/ Random instances are provably at least as hard as

all instances of some lattice problems, via poly-time reduction.

20

A Brief History of Lattice Cryptography
1978— 'Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, ...

X Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996— Worst-case to average-case reductions for lattice problems.
[Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,. . .]

¢/ Random instances are provably at least as hard as

all instances of some lattice problems, via poly-time reduction.

X Not so inefficient (though this is changing).

20

A Brief History of Lattice Cryptography
1978— 'Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, ...

X Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

1996— Worst-case to average-case reductions for lattice problems.

[Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,. . .]

¢/ Random instances are provably at least as hard as

all instances of some lattice problems, via poly-time reduction.

X Not so inefficient (though this is changing).
1996 NTRU efficient ring-based encryption: ad-hoc design, but

unbroken for suitable parameters. [HoffsteinPipherSilverman'9s,...]

20

A Brief History of Lattice Cryptography

1978~

1996~—

1996

2002-

‘Ad-hoc’ constructions: Merkle-Hellman, GGH/NTRU
signatures, SV/Soliloquy, multilinear maps, ...

Many broken or severely weakened due to ‘Achilles heels:’
random instances from the system are easier than intended.

Worst-case to average-case reductions for lattice problems.
[Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,. . .]

Random instances are provably at least as hard as
all instances of some lattice problems, via poly-time reduction.

Not so inefficient (though this is changing).

NTRU efficient ring-based encryption: ad-hoc design, but
unbroken for suitable parameters. [HoffsteinPipherSilverman'9s,...]

Ring-based crypto with worst-case hardness from ideal lattices.
[Micciancio’'02,LyubashevskyPeikertRegev'10,. . .]

3/20

|deal Lattice Cryptography

@ Some ad-hoc ideal-based cryptosystems (e.g., [SV'10,GGH'13,CGS'14])
share this KEYGEN:

sk = ‘Short' g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal Z = gR.

20

|deal Lattice Cryptography

@ Some ad-hoc ideal-based cryptosystems (e.g., [SV'10,GGH'13,CGS'14])
share this KEYGEN:
sk = ‘Short' g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal Z = gR.

® Many systems use Learning With Errors over Rings [LyuPeiReg'10]:
a1 < R/qR , by =s-a1+e € R/qR

errors ¢; € R
as < R/qR , by=s-as+es € R/qR

are ‘small’
relative to q

|deal Lattice Cryptography

@ Some ad-hoc ideal-based cryptosystems (e.g., [SV'10,GGH'13,CGS'14])
share this KEYGEN:
sk = ‘Short' g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal Z = gR.

® Many systems use Learning With Errors over Rings [LyuPeiReg'10]:
ay < R/qR , by=s-a;+e € R/qR

errors ¢; € R
as < R/qR , by=s-as+es € R/qR

are ‘small’
relative to q

For appropriate rings and error distributions,

worst-case approx-SVP

on any ideal lattice in R <quant search R-LWE < decision R-LWE

|deal Lattice Cryptography

@ Some ad-hoc ideal-based cryptosystems (e.g., [SV'10,GGH'13,CGS'14])
share this KEYGEN:
sk = ‘Short' g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., HNF) of the principal ideal Z = gR.

® Many systems use Learning With Errors over Rings [LyuPeiReg'10]:
a1 < R/qR , by =s-a1+e € R/qR

errors ¢; € R
as < R/qR , by=s-as+es € R/qR

are ‘small’
relative to q

For appropriate rings and error distributions,

worst-case approx-SVP

o0 ey Aotz [Bisttes o /2 <quant search R-LWE < decision R-LWE

(Note: no explicit ideals in Ring-LWE problem, only in reductions.)

Agenda

@ Finding short generators (when they exist) of principal ideals

® Bounds for generators of arbitrary principal ideals

© Implications for cryptography and open problems

5/20

Part 1:

Finding Short Generators
(when they exist)

/20

Key Recovery

» Recall ad-hoc KEYGEN:

sk = ‘Short" g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal Z = gR.

20

Key Recovery

» Recall ad-hoc KEYGEN:

sk = ‘Short" g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal Z = gR.

(Decryption works given any sufficiently short v € Z, e.g., g - X*.)

Key Recovery

» Recall ad-hoc KEYGEN:

sk = ‘Short’ g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal Z = gR.

(Decryption works given any sufficiently short v € Z, e.g., g - X*.)

Secret-key recovery in two steps:

Key Recovery

» Recall ad-hoc KEYGEN:

sk = ‘Short’ g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal Z = gR.

(Decryption works given any sufficiently short v € Z, e.g., g - X*.)

Secret-key recovery in two steps:

Principal Ideal Problem

@ Given a Z-basis B of a principal ideal Z, find some generator h of Z.

Key Recovery

» Recall ad-hoc KEYGEN:

sk = ‘Short’ g in some known ring R, often R = Z[(yx].
pk = ‘Bad’ Z-basis (e.g., the HNF) of the principal ideal Z = gR.

(Decryption works given any sufficiently short v € Z, e.g., g - X*.)

Secret-key recovery in two steps:

Principal Ideal Problem

@ Given a Z-basis B of a principal ideal Z, find some generator h of Z.

Short Generator Problem
® Given an arbitrary generator h of Z, find a sufficiently short generator.

How to Perform the Steps

@® Principal Ideal Problem (PIP) has a:
* classical subexponential 20(0**)_time algorithm

* quantum polynomial-time algorithm

[BF'14,B'14]
[EHKS'14,CGS'14,BS'14]

How to Perform the Steps

@® Principal Ideal Problem (PIP) has a:
* classical subexponential 200"*)_time algorithm [BF'14,B'14]
* quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]

@® Short Generator Problem (SGP):

* Can be seen as a Closest Vector Problem in the log-unit lattice of R...

How to Perform the Steps

@® Principal Ideal Problem (PIP) has a:
* classical subexponential 200"*)_time algorithm [BF'14,B'14]
* quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]

@® Short Generator Problem (SGP):
* Can be seen as a Closest Vector Problem in the log-unit lattice of R...
* . ..but is actually Bounded Distance Decoding for KEYGEN's instances.

How to Perform the Steps

@® Principal Ideal Problem (PIP) has a:
* classical subexponential 200"*)_time algorithm [BF'14,B'14]
* quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]

@® Short Generator Problem (SGP):
* Can be seen as a Closest Vector Problem in the log-unit lattice of R...
* . ..but is actually Bounded Distance Decoding for KEYGEN's instances.

* Was claimed to be easy in two-power cyclotomic rings [CamGroShe'14]
and experimentally confirmed in relevant dimensions [Shank’'15]

How to Perform the Steps

@® Principal Ideal Problem (PIP) has a:
* classical subexponential 200"*)_time algorithm [BF'14,B'14]
* quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]

@® Short Generator Problem (SGP):
* Can be seen as a Closest Vector Problem in the log-unit lattice of R...
* . ..but is actually Bounded Distance Decoding for KEYGEN's instances.

* Was claimed to be easy in two-power cyclotomic rings [CamGroShe'14]
and experimentally confirmed in relevant dimensions [Shank'15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt'16]

» SGP can be solved in classical polynomial time* on KEYGEN's random
instances for any prime-power cyclotomic ring R = Z[Cpk].

How to Perform the Steps

@® Principal Ideal Problem (PIP) has a:
* classical subexponential 200"*)_time algorithm [BF'14,B'14]
* quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]

@® Short Generator Problem (SGP):
* Can be seen as a Closest Vector Problem in the log-unit lattice of R...
* . ..but is actually Bounded Distance Decoding for KEYGEN's instances.

* Was claimed to be easy in two-power cyclotomic rings [CamGroShe'14]
and experimentally confirmed in relevant dimensions [Shank'15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt'16]

» SGP can be solved in classical polynomial time* on KEYGEN's random
instances for any prime-power cyclotomic ring R = Z[Cpk].

(*assuming b < poly(dim))

(Logarithmic) Embedding

Let K = Q[X]/f(X) be a number field of degree n, and let o;: K — C be
its n complex embeddings. The canonical embedding is the ring homom.

o: K —-C"

x> (o1(x), ..., on(x)).

(Logarithmic) Embedding

Let K = Q[X]/f(X) be a number field of degree n, and let o;: K — C be
its n complex embeddings. The canonical embedding is the ring homom.

o: K —»C"
x> (o1(x), ..., on(x)).
The logarithmic embedding is
Log: K* — R"
x = (logloi(x)|, ..., log|on(x)]).
It is a group homomorphism from (K*, x) to (R™,+).

(Logarithmic) Embedding

Let K = Q[X]/f(X) be a number field of degree n, and let o;: K — C be
its n complex embeddings. The canonical embedding is the ring homom.

o: K —»C"
x> (o1(x), ..., on(x)).
The logarithmic embedding is
Log: K* - R"
x = (logloi(x)|, ..., log|on(x)]).
It is a group homomorphism from (K>, x) to (R™, +).

Example: Two-Power Cyclotomics
> K = @[X]/(X” +1) for n = 2.

> 0;(X) = w? 1, where w = exp(mv/—1/n) €
» Log(X7) =0 for all j.

Example: Embedding o(Z[v/2]) — R?

> z-axis: o1(a+ bv/2) = a+bV2
> y-axis: oo(a +bV2) = a — by/2

10/20

Example: Embedding o(Z[v/2]) — R?

> z-axis: o1(a+ bv/2) = a+bV2
> y-axis: oo(a +bV2) = a — by/2
» component-wise multiplication

10/20

Example: Embedding o(Z[v/2]) — R?

> z-axis: o1(a+ bv/2) = a+bV2
> y-axis: oo(a +bV2) = a — by/2
» component-wise multiplication

“ » Symmetries induced by
—t . * multiplication by —1, /2
142 . * conjugation V2 =2

10/20

Example: Embedding o(Z[v/2]) — R?

‘\‘ E \ > z-axis: o1(a+ bv/2) = a+bV2
[[V > y-axis: oo(a +bV2) = a — by/2
“ “ » component-wise multiplication

> Symmetries induced by
. i — * multiplication by —1, V2
TIVT = * conjugation /2 —v/2

A . B Orthogonal lattice axes
\[[///// B Units (algebraic norm 1)

(] y “Isonorms”

10/20

Example: Logarithmic Embedding Log Z[v/2]

A ={e} N “_is a rank-1 lattice A C R?, orthogonal to 1

11/20

Example: Logarithmic Embedding Log Z[v/2]

{e} N are finite # of shifted copies (cosets) of A

o
N\ .

11/20

Example: Logarithmic Embedding Log Z[v/2]

Some {e} N may be empty (e.g., no elements of norm 3)

11/20

Unit Group and the Log-Unit Lattice

Let R* denote the mult. group of units of R, and A = Log R* C R™.

12/20

Unit Group and the Log-Unit Lattice

Let R* denote the mult. group of units of R, and A = Log R* C R™.

Dirichlet Unit Theorem
P> The kernel of Log is the cyclic subgroup of roots of unity in R*, and

> A C R" is a lattice of rank + ¢ — 1, orthogonal to 1

(where K has r real embeddings and 2c complex embeddings)

12/20

Unit Group and the Log-Unit Lattice

Let R* denote the mult. group of units of R, and A = Log R* C R™.

Dirichlet Unit Theorem
P> The kernel of Log is the cyclic subgroup of roots of unity in R*, and

> A C R" is a lattice of rank + ¢ — 1, orthogonal to 1
(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements g, h € R generate the same ideal if and only if g = h - u for some
unit w € R*, i.e.,

Logg = Logh + Logu € Logh + A.

12/20

Unit Group and the Log-Unit Lattice

Let R* denote the mult. group of units of R, and A = Log R* C R™.

Dirichlet Unit Theorem
P> The kernel of Log is the cyclic subgroup of roots of unity in R*, and

> A C R" is a lattice of rank + ¢ — 1, orthogonal to 1
(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements g, h € R generate the same ideal if and only if g = h - u for some
unit w € R*, i.e.,

Logg = Logh + Logu € Logh + A.
» By KEYGEN, we know that Logh + A has a ‘short’ g = Logg.

12/20

Unit Group and the Log-Unit Lattice

Let R* denote the mult. group of units of R, and A = Log R* C R™.

Dirichlet Unit Theorem
P> The kernel of Log is the cyclic subgroup of roots of unity in R*, and

> A C R" is a lattice of rank + ¢ — 1, orthogonal to 1

(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements g, h € R generate the same ideal if and only if g = h - u for some
unit w € R*, i.e.,

Logg = Logh + Logu € Logh + A.
» By KEYGEN, we know that Logh + A has a ‘short’ g = Logg.

» Our goal is to ‘decode’ such g, yielding g (up to roots of unity).

12/20

Decoding A = Log Z[/2]*

Decoding cosets h + A into various fundamental domains of A.

13/20

Decoding A = Log Z[/2]*

Decoding cosets h + A into various fundamental domains of A.

13/20

Decoding A = Log Z[/2]*

Decoding cosets h + A into various fundamental domains of A.

13/20

Decoding A = Log Z[/2]*

Decoding cosets h + A into various fundamental domains of A.

13/20

Round-Off Decoding

The simplest lattice-decoding algorithm:
ROUND(B, h) for a basis B of A and h € R"

> Return B - frac(B~! - h), where frac: R" — [—-1, 1)".

14 /20

Round-Off Decoding
The simplest lattice-decoding algorithm:
RouND(B, h) for a basis B of A and h € R”

> Return B - frac(B~! - h), where frac: R" — [—-1, 1)".

Behavior is characterized by the ‘offset’ and the dual basis BY = B~.

Suppose h = g +u for some u € A. If (b/,g) € [3,) for all j, then

Rounp(B,h) = g.

14 /20

Recovering a Short Generator: Proof Outline

@ Obtain a “good” basis B of the log-unit lattice A = Log R*.
* For K = Q((n), m = p*, a standard (almost!-)basis of A is given by
1— (7

b; = Log ﬁ, 1<j<m/2, ged(j,m) = 1.

lit generates a sublattice of finite index AT, which is conjectured to be small.
15/20

Recovering a Short Generator: Proof Outline

@ Obtain a “good” basis B of the log-unit lattice A = Log R*.
* For K = Q((n), m = p*, a standard (almost!-)basis of A is given by

1—(J
bj:Logﬁ, 1<j<m/2, ged(j,m) = 1.

@ Prove that B is “"good,” i.e,, all [|[bY|| are small.

lit generates a sublattice of finite index R ™, which is conjectured to be small.
15/20

Recovering a Short Generator: Proof Outline

@ Obtain a “good” basis B of the log-unit lattice A = Log R*.
* For K = Q((n), m = p*, a standard (almost!-)basis of A is given by

1—(J
bj:Logﬁ, 1<j<m/2, ged(j,m) = 1.

@ Prove that B is “"good,” i.e,, all [|[bY|| are small.

© Prove that g = Log g from KEYGEN is sufficiently small, so that

<b}/,g> e [—%, %) and round-off decoding yields g.

lit generates a sublattice of finite index R ™, which is conjectured to be small.
15/20

Recovering a Short Generator: Proof Outline

@ Obtain a “good” basis B of the log-unit lattice A = Log R*.
* For K = Q((n), m = p*, a standard (almost!-)basis of A is given by

1—(J
bj:Logﬁ, 1<j<m/2, ged(j,m) = 1.

@ Prove that B is “"good,” i.e,, all [|[bY|| are small.

© Prove that g = Log g from KEYGEN is sufficiently small, so that

<b}’,g) e [—%, %) and round-off decoding yields g.

Technical Steps
> Bound [|bY|| = O(1/y/m) using Gauss sums and Dirichlet L-series.

> Bound [(bY,g)| < 3 via subexponential random variables.

lit generates a sublattice of finite index R ™, which is conjectured to be small.
15/20

Part 2:

Bounds for Generators
of Arbitrary Principal Ideals

16 /20

Average Case Versus Worst Case

» Cryptanalysis of KEYGEN exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + A).

17 /20

Average Case Versus Worst Case

» Cryptanalysis of KEYGEN exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + A).

How (a)typical are such principal ideals?

17 /20

Average Case Versus Worst Case

» Cryptanalysis of KEYGEN exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + A).

How (a)typical are such principal ideals?

» Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

17 /20

Average Case Versus Worst Case

» Cryptanalysis of KEYGEN exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + A).

How (a)typical are such principal ideals?

» Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

17 /20

Average Case Versus Worst Case

» Cryptanalysis of KEYGEN exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + A).

How (a)typical are such principal ideals?

» Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[(,,] of prime-power conductor m:

17 /20

Average Case Versus Worst Case

» Cryptanalysis of KEYGEN exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + A).

How (a)typical are such principal ideals?

» Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[(,,] of prime-power conductor m:

Upper Bound [CDPR'16]

Given any generator of a principal ideal Z (e.g., via quantum PIP
algorithm), we can efficiently solve 20(vVmlogm)_approx SVP on Z.

17/20

Average Case Versus Worst Case

» Cryptanalysis of KEYGEN exploited the promise that the public
principal ideal has a ‘quite short’ generator g (for BDD on g + A).

How (a)typical are such principal ideals?

» Recall that breaking Ring-LWE implies (quantumly) solving
approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings R = Z[(,,] of prime-power conductor m:

Upper Bound [CDPR'16]

Given any generator of a principal ideal Z (e.g., via quantum PIP
algorithm), we can efficiently solve 20(vVmlogm)_approx SVP on Z.

.

Lower Bound [CDPR’16]

For “most” principal ideals, their shortest generators are only 282(v/m/ logm)
SVP approximations. (Assuming bt = 200™))

v

17/20

Proof Outline: Upper Bound

Given any generator of a principal ideal Z (e.g., via quantum PIP
algorithm), we can efficiently solve 20(Vmlogm)_ap5rox-SVP on Z.

18 /20

Proof Outline: Upper Bound

Given any generator of a principal ideal Z (e.g., via quantum PIP
algorithm), we can efficiently solve 20(Vmlogm)_ap5rox-SVP on Z.

(Cf. average case from KEYGEN, where we solve SVP exactly.)

18 /20

Proof Outline: Upper Bound

Given any generator of a principal ideal Z (e.g., via quantum PIP
algorithm), we can efficiently solve 20(Vmlogm)_ap5rox-SVP on Z.

(Cf. average case from KEYGEN, where we solve SVP exactly.)

» For principal ideal hR, the generators have log-embeddings Log h + A.

18 /20

Proof Outline: Upper Bound

Given any generator of a principal ideal Z (e.g., via quantum PIP
algorithm), we can efficiently solve 20(Vmlogm)_ap5rox-SVP on Z.

(Cf. average case from KEYGEN, where we solve SVP exactly.)

» For principal ideal hR, the generators have log-embeddings Log h + A.

> Make /-, norm of Log g € Log h + A small to get a short-ish generator.
(Note: (Logg,1) =logN(Z) for all generators g.)

18 /20

Proof Outline: Upper Bound

Given any generator of a principal ideal Z (e.g., via quantum PIP
algorithm), we can efficiently solve 20(Vmlogm)_ap5rox-SVP on Z.

(Cf. average case from KEYGEN, where we solve SVP exactly.)

» For principal ideal hR, the generators have log-embeddings Log h + A.

» Make £ norm of Log g € Logh + A small to get a short-ish generator.
(Note: (Logg,1) =logN(Z) for all generators g.)

» A simple randomized round-off algorithm using the “good”
(almost-)basis B of A yields

ILog gllo, < O(v/mlogm) + ; log N(Z).

18 /20

Proof Outline: Upper Bound

Given any generator of a principal ideal Z (e.g., via quantum PIP
algorithm), we can efficiently solve 20(Vmlogm)_ap5rox-SVP on Z.

(Cf. average case from KEYGEN, where we solve SVP exactly.)

» For principal ideal hR, the generators have log-embeddings Log h + A.

» Make £ norm of Log g € Logh + A small to get a short-ish generator.
(Note: (Logg,1) =logN(Z) for all generators g.)

» A simple randomized round-off algorithm using the “good”
(almost-)basis B of A yields

ILog gllo, < O(v/mlogm) + ; log N(Z).

> Therefore, g < 20WWmloem) . N(T)1/n < 20(vmlogm) .\ (T).

18 /20

Proof QOutline: Lower Bound

For “most” principal ideals, their shortest generators are only 2°(v7/logm)
SVP approximations. (Assuming ht = 20(m))

19/20

Proof QOutline: Lower Bound

For “most” principal ideals, their shortest generators are only 2°(v7/logm)
SVP approximations. (Assuming ht = 20(m))

So returning a generator yields 22(vm) syp approx, in the worst case.

19/20

Proof QOutline: Lower Bound

For “most” principal ideals, their shortest generators are only 2°(v7/logm)
SVP approximations. (Assuming ht = 20(m))

So returning a generator yields 22(vm) syp approx, in the worst case.

» For any g = Log g € span(A), some coordinate is > s = ||g||;/(2n),
50 [lg]l = exp(s).

19/20

Proof QOutline: Lower Bound

For “most” principal ideals, their shortest generators are only 2°(v7/logm)
SVP approximations. (Assuming ht = 20(m))

So returning a generator yields 22(vm) syp approx, in the worst case.

» For any g = Log g € span(A), some coordinate is > s = ||g||;/(2n),
50 [lg]l = exp(s).

» Therefore, we care about the ¢; covering radius:

A) = max min .
m(A) hespan(A) geh+A”gH1

19/20

Proof QOutline: Lower Bound

For “most” principal ideals, their shortest generators are only 2°(v7/logm)
SVP approximations. (Assuming ht = 20(m))

So returning a generator yields 22(vm) syp approx, in the worst case.

» For any g = Log g € span(A), some coordinate is > s = ||g||;/(2n),
50 [lg]l = exp(s).

» Therefore, we care about the ¢; covering radius:

A) = max min .
m(A) hespan(A) geh+A”gH1

In the worst case, a shortest generator approximates SVP to only a
exp(Q(p1(A)/n)) factor.

19/20

Proof QOutline: Lower Bound

For “most” principal ideals, their shortest generators are only 2°(v7/logm)
SVP approximations. (Assuming ht = 20(m))

So returning a generator yields 22(vm) syp approx, in the worst case.

» For any g = Log g € span(A), some coordinate is > s = ||g||;/(2n),
50 [lg]l = exp(s).

» Therefore, we care about the ¢; covering radius:

A) = max min .
m(A) hespan(A) geh+A”gH1

In the worst case, a shortest generator approximates SVP to only a
exp(Q(p1(A)/n)) factor.
> Bound 1 (A) > Q(m??/logm) using volume argument.

19/20

Open Problems

@ Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]

20/20

Open Problems

@ Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]

® Extend to proposed non-cyclotomic number fields, e.g.,
R=7[X]/(XP— X —1). [Bernstein'14]
Seems sufficient to find a ‘good’ full-rank set in A = Log R*.

It's easy to find several ‘good’ units; full rank is unclear.

20/20

Open Problems

@ Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]
® Extend to proposed non-cyclotomic number fields, e.g.,
R=7[X]/(XP— X —1). [Bernstein'14]
Seems sufficient to find a ‘good’ full-rank set in A = Log R*.

It's easy to find several ‘good’ units; full rank is unclear.

® Circumvent the 20(vm) s\p approx barrier for generators.
Find a short generator of a cleverly chosen ideal Z.77?

20/20

Open Problems

@ Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]

® Extend to proposed non-cyclotomic number fields, e.g.,
R=7[X]/(XP— X —1). [Bernstein'14]
Seems sufficient to find a ‘good’ full-rank set in A = Log R*.

It's easy to find several ‘good’ units; full rank is unclear.

® Circumvent the 20(vm) s\p approx barrier for generators.

Find a short generator of a cleverly chosen ideal Z.77?

@ Apply or extend any of these techniques against NTRU/Ring-LWE.

Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

20/20

Open Problems

@ Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]

® Extend to proposed non-cyclotomic number fields, e.g.,
R=7[X]/(XP— X —1). [Bernstein'14]
Seems sufficient to find a ‘good’ full-rank set in A = Log R*.

It's easy to find several ‘good’ units; full rank is unclear.

® Circumvent the 20(vm) s\p approx barrier for generators.

Find a short generator of a cleverly chosen ideal Z.77?

@ Apply or extend any of these techniques against NTRU/Ring-LWE.

Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

Thanks!

20/20

