Finding Short Generators of Ideals, and Implications for Cryptography

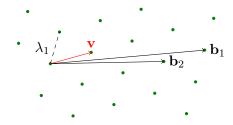
Chris Peikert University of Michigan

ANTS XII 29 August 2016

Based on work with Ronald Cramer, Léo Ducas, and Oded Regev

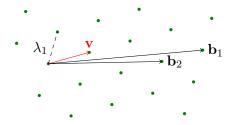
Lattice-Based Cryptography

- ► High-dimensional lattices in ℝⁿ appear to offer (quantumly) hard problems that are useful for cryptography.
 - E.g., the approximate Shortest Vector Problem:



Lattice-Based Cryptography

- ► High-dimensional lattices in ℝⁿ appear to offer (quantumly) hard problems that are useful for cryptography.
 - E.g., the approximate Shortest Vector Problem:



Cryptography requires average-case hardness: systems must be infeasible to break for random keys & outputs (w/ very high prob).

1978– 'Ad-hoc' constructions: Merkle-Hellman, GGH/NTRU signatures, SV/Soliloquy, multilinear maps, ...

- 1978– 'Ad-hoc' constructions: Merkle-Hellman, GGH/NTRU signatures, SV/Soliloquy, multilinear maps, ...
 - X Many broken or severely weakened due to 'Achilles heels:' random instances from the system are easier than intended.

- 1978– 'Ad-hoc' constructions: Merkle-Hellman, GGH/NTRU signatures, SV/Soliloquy, multilinear maps, ...
 - X Many broken or severely weakened due to 'Achilles heels:' random instances from the system are easier than intended.
- 1996– Worst-case to average-case reductions for lattice problems. [Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,...]

- 1978– 'Ad-hoc' constructions: Merkle-Hellman, GGH/NTRU signatures, SV/Soliloquy, multilinear maps, ...
 - X Many broken or severely weakened due to 'Achilles heels:' random instances from the system are easier than intended.
- 1996– Worst-case to average-case reductions for lattice problems. [Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,...]
 - Random instances are provably <u>at least as hard</u> as all instances of some lattice problems, via poly-time reduction.

- 1978– 'Ad-hoc' constructions: Merkle-Hellman, GGH/NTRU signatures, SV/Soliloquy, multilinear maps, ...
 - X Many broken or severely weakened due to 'Achilles heels:' random instances from the system are easier than intended.
- 1996– Worst-case to average-case reductions for lattice problems. [Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,...]
 - Random instances are provably <u>at least as hard</u> as all instances of some lattice problems, via poly-time reduction.
 - **X** Not so inefficient (though this is changing).

- 1978– 'Ad-hoc' constructions: Merkle-Hellman, GGH/NTRU signatures, SV/Soliloquy, multilinear maps, ...
 - X Many broken or severely weakened due to 'Achilles heels:' random instances from the system are easier than intended.
- 1996– Worst-case to average-case reductions for lattice problems. [Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,...]
 - Random instances are provably <u>at least as hard</u> as all instances of some lattice problems, via poly-time reduction.
 - **X** Not so inefficient (though this is changing).
 - 1996 NTRU efficient ring-based encryption: ad-hoc design, but unbroken for suitable parameters. [HoffsteinPipherSilverman'98,...]

- 1978– 'Ad-hoc' constructions: Merkle-Hellman, GGH/NTRU signatures, SV/Soliloquy, multilinear maps, ...
 - X Many broken or severely weakened due to 'Achilles heels:' random instances from the system are easier than intended.
- 1996– Worst-case to average-case reductions for lattice problems. [Ajtai'96,AjtaiDwork'97,(Micciancio)Regev'03-'05,...]
 - Random instances are provably <u>at least as hard</u> as all instances of some lattice problems, via poly-time reduction.
 - **X** Not so inefficient (though this is changing).
 - 1996 NTRU efficient ring-based encryption: ad-hoc design, but unbroken for suitable parameters. [HoffsteinPipherSilverman'98,...]
- 2002– Ring-based crypto with worst-case hardness from ideal lattices. [Micciancio'02,LyubashevskyPeikertRegev'10,...]

Some ad-hoc ideal-based cryptosystems (e.g., [SV'10,GGH'13,CGS'14]) share this KEYGEN:

sk ='Short' g in some known ring R, often $R = \mathbb{Z}[\zeta_{2^k}]$.

pk = 'Bad' \mathbb{Z} -basis (e.g., HNF) of the principal ideal $\mathcal{I} = gR$.

Some ad-hoc ideal-based cryptosystems (e.g., [SV'10,GGH'13,CGS'14]) share this KEYGEN:

 $\mathsf{sk} = \mathsf{'Short'} g$ in some known ring R, often $R = \mathbb{Z}[\zeta_{2^k}]$.

pk = 'Bad' Z-basis (e.g., HNF) of the principal ideal $\mathcal{I} = gR$.

2 Many systems use Learning With Errors over Rings [LyuPeiReg'10]:

 $\begin{array}{ll} a_1 \leftarrow R/qR &, \quad b_1 = s \cdot a_1 + e_1 \in R/qR \\ a_2 \leftarrow R/qR &, \quad b_2 = s \cdot a_2 + e_2 \in R/qR \\ \vdots & & \\ \end{array} \qquad \begin{array}{l} \text{errors } e_i \in R \\ \text{are 'small'} \\ \text{relative to } q \end{array}$

Some ad-hoc ideal-based cryptosystems (e.g., [SV'10,GGH'13,CGS'14]) share this KEYGEN:

 $\mathsf{sk} = \mathsf{'Short'} \ g$ in some known ring R, often $R = \mathbb{Z}[\zeta_{2^k}].$

 $\mathsf{pk} = \mathsf{'Bad'} \mathbb{Z}\mathsf{-basis} (\mathsf{e.g., HNF}) \text{ of the principal ideal } \mathcal{I} = gR.$

2 Many systems use Learning With Errors over Rings [LyuPeiReg'10]:

 $\begin{array}{ll} a_1 \leftarrow R/qR &, \quad b_1 = s \cdot a_1 + e_1 \in R/qR \\ a_2 \leftarrow R/qR &, \quad b_2 = s \cdot a_2 + e_2 \in R/qR \\ & \quad \text{are `small'} \\ & \quad \text{relative to } q \end{array}$

For appropriate rings and error distributions, worst-case approx-SVP on any ideal lattice in $R \leq_{quant} \text{ search } R\text{-LWE} \leq \text{decision } R\text{-LWE}$

Some ad-hoc ideal-based cryptosystems (e.g., [SV'10,GGH'13,CGS'14]) share this KEYGEN:

 $\mathsf{sk} = \mathsf{'Short'} g$ in some known ring R, often $R = \mathbb{Z}[\zeta_{2^k}]$.

 $\mathsf{pk} = \mathsf{'Bad'} \mathbb{Z}\mathsf{-basis} (\mathsf{e.g., HNF}) \text{ of the principal ideal } \mathcal{I} = gR.$

2 Many systems use Learning With Errors over Rings [LyuPeiReg'10]:

 $\begin{array}{ll} a_1 \leftarrow R/qR &, \quad b_1 = s \cdot a_1 + e_1 \in R/qR \\ a_2 \leftarrow R/qR &, \quad b_2 = s \cdot a_2 + e_2 \in R/qR \\ & \quad \text{are 'small'} \\ & \quad \text{relative to } q \end{array}$

For appropriate rings and error distributions,

worst-case approx-SVP on any ideal lattice in R \leq_{quant} search R-LWE \leq decision R-LWE

(Note: no explicit ideals in Ring-LWE problem, only in reductions.)

1 Finding short generators (when they exist) of principal ideals

2 Bounds for generators of arbitrary principal ideals

3 Implications for cryptography and open problems

Part 1: Finding Short Generators (when they exist)

Recall ad-hoc KEYGEN:

 $\mathsf{sk} = \mathsf{'Short'} g$ in some known ring R, often $R = \mathbb{Z}[\zeta_{2^k}]$.

pk = 'Bad' \mathbb{Z} -basis (e.g., the HNF) of the principal ideal $\mathcal{I} = gR$.

► Recall ad-hoc KEYGEN:

 $\mathsf{sk} = \mathsf{'Short'} g$ in some known ring R, often $R = \mathbb{Z}[\zeta_{2^k}]$.

pk = 'Bad' \mathbb{Z} -basis (e.g., the HNF) of the principal ideal $\mathcal{I} = gR$.

(Decryption works given any sufficiently short $v \in \mathcal{I}$, e.g., $g \cdot X^i$.)

Recall ad-hoc KEYGEN:

 $\mathsf{sk} = \mathsf{'Short'} g$ in some known ring R, often $R = \mathbb{Z}[\zeta_{2^k}]$.

 $pk = Bad' \mathbb{Z}$ -basis (e.g., the HNF) of the principal ideal $\mathcal{I} = gR$.

(Decryption works given any sufficiently short $v \in \mathcal{I}$, e.g., $g \cdot X^i$.) Secret-key recovery in two steps:

Recall ad-hoc KEYGEN:

 $\mathsf{sk} = \mathsf{'Short'} g$ in some known ring R, often $R = \mathbb{Z}[\zeta_{2^k}]$.

pk = 'Bad' \mathbb{Z} -basis (e.g., the HNF) of the principal ideal $\mathcal{I} = gR$.

(Decryption works given any sufficiently short $v \in \mathcal{I}$, e.g., $g \cdot X^i$.)

Secret-key recovery in two steps:

Principal Ideal Problem

1 Given a \mathbb{Z} -basis **B** of a principal ideal \mathcal{I} , find some generator h of \mathcal{I} .

Recall ad-hoc KEYGEN:

 $\mathsf{sk} = \mathsf{'Short'} g$ in some known ring R, often $R = \mathbb{Z}[\zeta_{2^k}]$.

pk = 'Bad' \mathbb{Z} -basis (e.g., the HNF) of the principal ideal $\mathcal{I} = gR$.

(Decryption works given any sufficiently short $v \in \mathcal{I}$, e.g., $g \cdot X^i$.) Secret-key recovery in two steps:

Principal Ideal Problem

1 Given a \mathbb{Z} -basis **B** of a principal ideal \mathcal{I} , find some generator h of \mathcal{I} .

Short Generator Problem

2 Given an arbitrary generator h of \mathcal{I} , find a sufficiently short generator.

- 1 Principal Ideal Problem (PIP) has a:
 - ★ classical subexponential $2^{\tilde{O}(n^{2/3})}$ -time algorithm [BF'14,B'14]
 - quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]

- 1 Principal Ideal Problem (PIP) has a:
 - ★ classical subexponential $2^{\tilde{O}(n^{2/3})}$ -time algorithm [BF'14,B'14]
 - quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]
- 2 Short Generator Problem (SGP):
 - * Can be seen as a Closest Vector Problem in the *log-unit* lattice of R...

- 1 Principal Ideal Problem (PIP) has a:
 - ★ classical subexponential $2^{\tilde{O}(n^{2/3})}$ -time algorithm [BF'14,B'14]
 - quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]
- 2 Short Generator Problem (SGP):
 - * Can be seen as a Closest Vector Problem in the *log-unit* lattice of R...
 - * ... but is actually Bounded Distance Decoding for KEYGEN's instances.

- 1 Principal Ideal Problem (PIP) has a:
 - ★ classical subexponential $2^{\tilde{O}(n^{2/3})}$ -time algorithm [BF'14,B'14]
 - quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]
- 2 Short Generator Problem (SGP):
 - * Can be seen as a Closest Vector Problem in the *log-unit* lattice of R...
 - \star ... but is actually Bounded Distance Decoding for KeyGen's instances.
 - Was claimed to be easy in two-power cyclotomic rings [CamGroShe'14] and experimentally confirmed in relevant dimensions [Shank'15]

- 1 Principal Ideal Problem (PIP) has a:
 - ★ classical subexponential $2^{\tilde{O}(n^{2/3})}$ -time algorithm [BF'14,B'14]
 - quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]
- 2 Short Generator Problem (SGP):
 - * Can be seen as a Closest Vector Problem in the *log-unit* lattice of R...
 - \star ... but is actually Bounded Distance Decoding for KEYGEN's instances.
 - Was claimed to be easy in two-power cyclotomic rings [CamGroShe'14] and experimentally confirmed in relevant dimensions [Shank'15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt'16]

SGP can be solved in classical polynomial time^{*} on KEYGEN's random instances for any prime-power cyclotomic ring R = Z[ζ_{pk}].

- 1 Principal Ideal Problem (PIP) has a:
 - ★ classical subexponential $2^{\tilde{O}(n^{2/3})}$ -time algorithm [BF'14,B'14]
 - quantum polynomial-time algorithm [EHKS'14,CGS'14,BS'14]
- 2 Short Generator Problem (SGP):
 - * Can be seen as a Closest Vector Problem in the *log-unit* lattice of R...
 - \star ... but is actually Bounded Distance Decoding for KEYGEN's instances.
 - Was claimed to be easy in two-power cyclotomic rings [CamGroShe'14] and experimentally confirmed in relevant dimensions [Shank'15]

Theorem 1 [CramerDucasPeikertRegev Eurocrypt'16]

SGP can be solved in classical polynomial time^{*} on KEYGEN's random instances for any prime-power cyclotomic ring R = Z[ζ_{pk}].

(*assuming $h^+ \leq poly(dim)$)

(Logarithmic) Embedding

Let $K \cong \mathbb{Q}[X]/f(X)$ be a number field of degree n, and let $\sigma_i \colon K \to \mathbb{C}$ be its n complex embeddings. The *canonical embedding* is the ring homom.

$$\sigma \colon K \to \mathbb{C}^n$$
$$x \mapsto (\sigma_1(x), \dots, \sigma_n(x)).$$

(Logarithmic) Embedding

Let $K \cong \mathbb{Q}[X]/f(X)$ be a number field of degree n, and let $\sigma_i \colon K \to \mathbb{C}$ be its n complex embeddings. The *canonical embedding* is the ring homom.

$$\sigma \colon K \to \mathbb{C}^n$$
$$x \mapsto (\sigma_1(x), \dots, \sigma_n(x)).$$

The *logarithmic embedding* is

Log:
$$K^{\times} \to \mathbb{R}^n$$

 $x \mapsto (\log |\sigma_1(x)|, \dots, \log |\sigma_n(x)|).$

It is a group homomorphism from (K^{\times}, \times) to $(\mathbb{R}^n, +)$.

(Logarithmic) Embedding

Let $K \cong \mathbb{Q}[X]/f(X)$ be a number field of degree n, and let $\sigma_i \colon K \to \mathbb{C}$ be its n complex embeddings. The *canonical embedding* is the ring homom.

$$\sigma \colon K \to \mathbb{C}^n$$
$$x \mapsto (\sigma_1(x), \dots, \sigma_n(x)).$$

The *logarithmic embedding* is

Log:
$$K^{\times} \to \mathbb{R}^n$$

 $x \mapsto (\log |\sigma_1(x)|, \dots, \log |\sigma_n(x)|).$

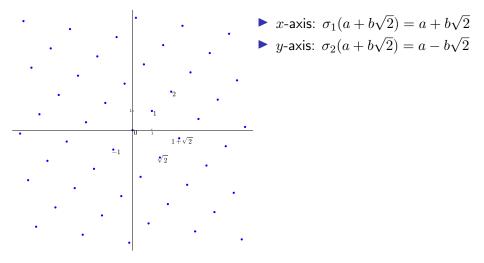
It is a group homomorphism from (K^{\times},\times) to $(\mathbb{R}^n,+).$

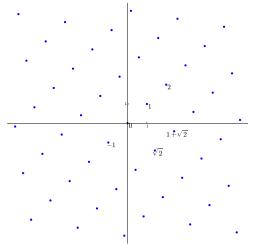
Example: Two-Power Cyclotomics

•
$$K \cong \mathbb{Q}[X]/(X^n+1)$$
 for $n = 2^k$

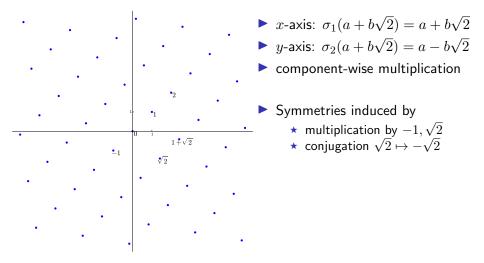
•
$$\sigma_i(X) = \omega^{2i-1}$$
, where $\omega = \exp(\pi \sqrt{-1}/n) \in \mathbb{C}$.

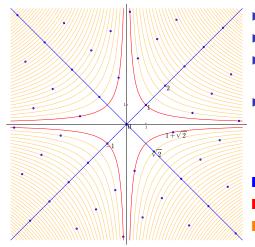
•
$$\operatorname{Log}(X^j) = \mathbf{0}$$
 for all j .





- *x*-axis: σ₁(a + b√2) = a + b√2
 y-axis: σ₂(a + b√2) = a b√2
- component-wise multiplication





x-axis: σ₁(a + b√2) = a + b√2
 y-axis: σ₂(a + b√2) = a - b√2
 component-wise multiplication

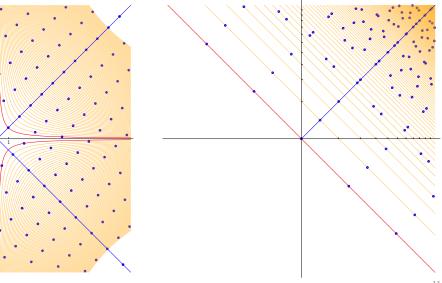
▶ Symmetries induced by
 ★ multiplication by -1, √2

* conjugation $\sqrt{2} \mapsto -\sqrt{2}$

Orthogonal lattice axes
Units (algebraic norm 1)
"Isonorms"

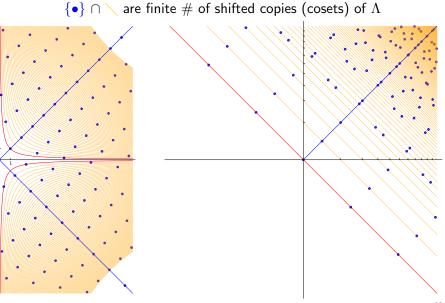
Example: Logarithmic Embedding $\operatorname{Log} \mathbb{Z}[\sqrt{2}]$

 $\Lambda = \{ ullet \} \cap igcap \$ is a rank-1 lattice $\Lambda \subset \mathbb{R}^2$, orthogonal to 1

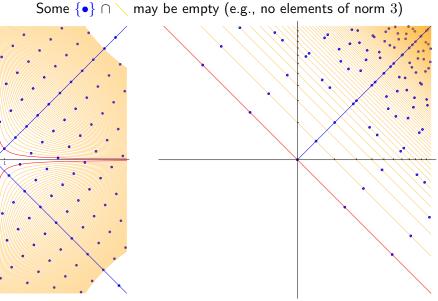


11 / 20

Example: Logarithmic Embedding $\operatorname{Log} \mathbb{Z}[\sqrt{2}]$



Example: Logarithmic Embedding $\operatorname{Log} \mathbb{Z}[\sqrt{2}]$



Let R^{\times} denote the mult. group of units of R, and $\Lambda = \operatorname{Log} R^{\times} \subset \mathbb{R}^n$.

Let R^{\times} denote the mult. group of units of R, and $\Lambda = \operatorname{Log} R^{\times} \subset \mathbb{R}^n$.

Dirichlet Unit Theorem

- ▶ The kernel of Log is the cyclic subgroup of roots of unity in R^{\times} , and
- $\Lambda \subset \mathbb{R}^n$ is a lattice of rank r + c 1, orthogonal to 1

(where K has r real embeddings and 2c complex embeddings)

Let R^{\times} denote the mult. group of units of R, and $\Lambda = \operatorname{Log} R^{\times} \subset \mathbb{R}^n$.

Dirichlet Unit Theorem

- The kernel of Log is the cyclic subgroup of roots of unity in R^{\times} , and
- $\Lambda \subset \mathbb{R}^n$ is a lattice of rank r + c 1, orthogonal to 1

(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements $g,h\in R$ generate the same ideal if and only if $g=h\cdot u$ for some unit $u\in R^\times$, i.e.,

$$\operatorname{Log} g = \operatorname{Log} h + \operatorname{Log} u \in \operatorname{Log} h + \Lambda.$$

Let R^{\times} denote the mult. group of units of R, and $\Lambda = \operatorname{Log} R^{\times} \subset \mathbb{R}^n$.

Dirichlet Unit Theorem

- The kernel of Log is the cyclic subgroup of roots of unity in R^{\times} , and
- $\Lambda \subset \mathbb{R}^n$ is a lattice of rank r + c 1, orthogonal to 1

(where K has r real embeddings and 2c complex embeddings)

Shortest Generators from Bounded Distance Decoding

Elements $g,h\in R$ generate the same ideal if and only if $g=h\cdot u$ for some unit $u\in R^\times$, i.e.,

$$\operatorname{Log} g = \operatorname{Log} h + \operatorname{Log} u \in \operatorname{Log} h + \Lambda.$$

• By KEYGEN, we know that $\text{Log } h + \Lambda$ has a 'short' $\mathbf{g} = \text{Log } g$.

Let R^{\times} denote the mult. group of units of R, and $\Lambda = \operatorname{Log} R^{\times} \subset \mathbb{R}^n$.

Dirichlet Unit Theorem

- The kernel of Log is the cyclic subgroup of roots of unity in R^{\times} , and
- $\Lambda \subset \mathbb{R}^n$ is a lattice of rank r + c 1, orthogonal to 1

(where K has r real embeddings and 2c complex embeddings)

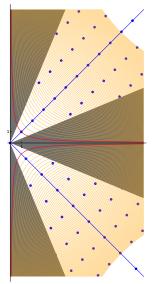
Shortest Generators from Bounded Distance Decoding

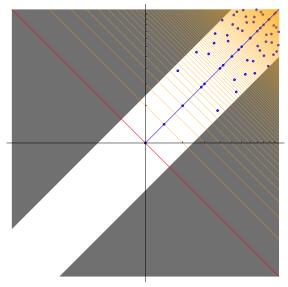
Elements $g,h\in R$ generate the same ideal if and only if $g=h\cdot u$ for some unit $u\in R^\times,$ i.e.,

$$\operatorname{Log} g = \operatorname{Log} h + \operatorname{Log} u \in \operatorname{Log} h + \Lambda.$$

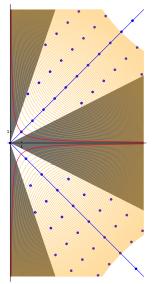
- By KEYGEN, we know that $\text{Log } h + \Lambda$ has a 'short' $\mathbf{g} = \text{Log } g$.
- Our goal is to 'decode' such g, yielding g (up to roots of unity).

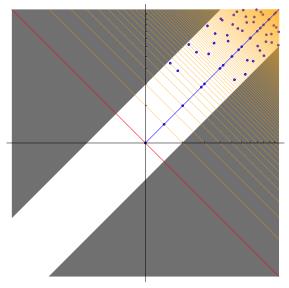
Decoding cosets $\mathbf{h} + \boldsymbol{\Lambda}$ into various fundamental domains of $\boldsymbol{\Lambda}.$



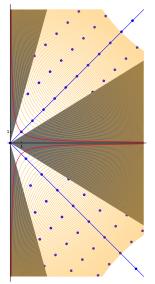


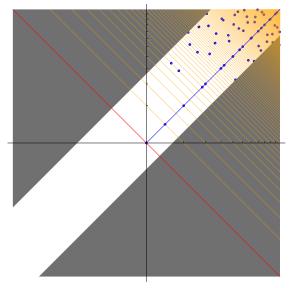
Decoding cosets $\mathbf{h} + \boldsymbol{\Lambda}$ into various fundamental domains of $\boldsymbol{\Lambda}.$



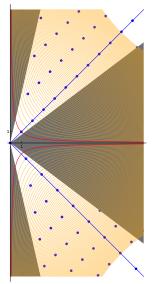


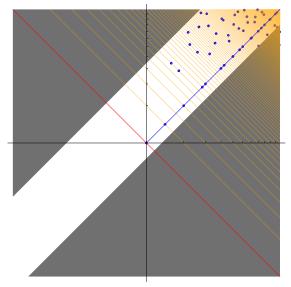
Decoding cosets $\mathbf{h} + \boldsymbol{\Lambda}$ into various fundamental domains of $\boldsymbol{\Lambda}.$





Decoding cosets $\mathbf{h} + \Lambda$ into various fundamental domains of Λ .



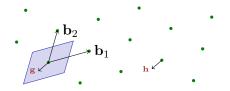


Round-Off Decoding

The simplest lattice-decoding algorithm:

 $\operatorname{ROUND}(\mathbf{B},\mathbf{h})$ for a basis \mathbf{B} of Λ and $\mathbf{h}\in\mathbb{R}^n$

• Return $\mathbf{B} \cdot \operatorname{frac}(\mathbf{B}^{-1} \cdot \mathbf{h})$, where $\operatorname{frac}: \mathbb{R}^n \to [-\frac{1}{2}, \frac{1}{2})^n$.

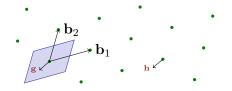


Round-Off Decoding

The simplest lattice-decoding algorithm:

 $\operatorname{ROUND}(\mathbf{B},\mathbf{h})$ for a basis \mathbf{B} of Λ and $\mathbf{h} \in \mathbb{R}^n$

• Return $\mathbf{B} \cdot \operatorname{frac}(\mathbf{B}^{-1} \cdot \mathbf{h})$, where $\operatorname{frac}: \mathbb{R}^n \to [-\frac{1}{2}, \frac{1}{2})^n$.



Behavior is characterized by the 'offset' and the *dual basis* $\mathbf{B}^{\vee} = \mathbf{B}^{-t}$.

Trivial Fact Suppose $\mathbf{h} = \mathbf{g} + \mathbf{u}$ for some $\mathbf{u} \in \Lambda$. If $\langle \mathbf{b}_j^{\vee}, \mathbf{g} \rangle \in [-\frac{1}{2}, \frac{1}{2})$ for all j, then ROUND $(\mathbf{B}, \mathbf{h}) = \mathbf{g}$.

1 Obtain a "good" basis **B** of the log-unit lattice $\Lambda = \text{Log } R^{\times}$.

★ For $K = \mathbb{Q}(\zeta_m)$, $m = p^k$, a standard (almost¹-)basis of Λ is given by

$$\mathbf{b}_j = \text{Log} \frac{1 - \zeta^j}{1 - \zeta}, \quad 1 < j < m/2, \ \text{gcd}(j, m) = 1.$$

 $^{^{1}\}mathrm{it}$ generates a sublattice of finite index $h^{+}\mathrm{,}$ which is conjectured to be small.

1 Obtain a "good" basis **B** of the log-unit lattice $\Lambda = \operatorname{Log} R^{\times}$.

★ For $K = \mathbb{Q}(\zeta_m)$, $m = p^k$, a standard (almost¹-)basis of Λ is given by

$$\mathbf{b}_j = \text{Log}\,\frac{1-\zeta^j}{1-\zeta}, \quad 1 < j < m/2, \, \operatorname{gcd}(j,m) = 1.$$

2 Prove that **B** is "good," i.e., all $\|\mathbf{b}_{i}^{\vee}\|$ are small.

¹it generates a sublattice of finite index h^+ , which is conjectured to be small.

1 Obtain a "good" basis **B** of the log-unit lattice $\Lambda = \operatorname{Log} R^{\times}$.

★ For $K = \mathbb{Q}(\zeta_m)$, $m = p^k$, a standard (almost¹-)basis of Λ is given by

$$\mathbf{b}_j = \text{Log}\,\frac{1-\zeta^j}{1-\zeta}, \quad 1 < j < m/2, \, \operatorname{gcd}(j,m) = 1.$$

2 Prove that **B** is "good," i.e., all $\|\mathbf{b}_j^{\vee}\|$ are small.

3 Prove that $\mathbf{g} = \text{Log } g$ from KEYGEN is sufficiently small, so that $\langle \mathbf{b}_i^{\lor}, \mathbf{g} \rangle \in [-\frac{1}{2}, \frac{1}{2})$ and round-off decoding yields \mathbf{g} .

¹it generates a sublattice of finite index h^+ , which is conjectured to be small.

1 Obtain a "good" basis **B** of the log-unit lattice $\Lambda = \operatorname{Log} R^{\times}$.

★ For $K = \mathbb{Q}(\zeta_m)$, $m = p^k$, a standard (almost¹-)basis of Λ is given by

$$\mathbf{b}_j = \text{Log}\,\frac{1-\zeta^j}{1-\zeta}, \quad 1 < j < m/2, \, \operatorname{gcd}(j,m) = 1.$$

2 Prove that **B** is "good," i.e., all $\|\mathbf{b}_j^{\vee}\|$ are small.

3 Prove that $\mathbf{g} = \text{Log } g$ from KEYGEN is sufficiently small, so that $\langle \mathbf{b}_{i}^{\vee}, \mathbf{g} \rangle \in [-\frac{1}{2}, \frac{1}{2})$ and round-off decoding yields \mathbf{g} .

Technical Steps

▶ Bound $\|\mathbf{b}_{j}^{\vee}\| = \tilde{O}(1/\sqrt{m})$ using Gauss sums and Dirichlet *L*-series.

▶ Bound $|\langle \mathbf{b}_i^{\vee}, \mathbf{g} \rangle| \ll \frac{1}{2}$ via subexponential random variables.

¹it generates a sublattice of finite index h^+ , which is conjectured to be small.

Part 2:

Bounds for Generators of Arbitrary Principal Ideals

• Cryptanalysis of KEYGEN exploited the promise that the public principal ideal has a 'quite short' generator g (for BDD on $g + \Lambda$).

Cryptanalysis of KEYGEN exploited the promise that the public principal ideal has a 'quite short' generator g (for BDD on g + Λ).
 How (a)typical are such principal ideals?

- Cryptanalysis of KEYGEN exploited the promise that the public principal ideal has a 'quite short' generator g (for BDD on g + Λ).
 How (a)typical are such principal ideals?
- Recall that breaking Ring-LWE implies (quantumly) solving approx-SVP, usually for small poly factors, on any ideal in the ring.

- Cryptanalysis of KEYGEN exploited the promise that the public principal ideal has a 'quite short' generator g (for BDD on g + Λ).
 How (a)typical are such principal ideals?
- Recall that breaking Ring-LWE implies (quantumly) solving approx-SVP, usually for small poly factors, on any ideal in the ring.
 Do log-unit attacks apply to this problem? To Ring-LWE itself?

- Cryptanalysis of KEYGEN exploited the promise that the public principal ideal has a 'quite short' generator g (for BDD on g + Λ).
 How (a)typical are such principal ideals?
- Recall that breaking Ring-LWE implies (quantumly) solving approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings $R = \mathbb{Z}[\zeta_m]$ of prime-power conductor m:

- Cryptanalysis of KEYGEN exploited the promise that the public principal ideal has a 'quite short' generator g (for BDD on g + Λ).
 How (a)typical are such principal ideals?
- Recall that breaking Ring-LWE implies (quantumly) solving approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings $R = \mathbb{Z}[\zeta_m]$ of prime-power conductor m:

Upper Bound [CDPR'16]

Given any generator of a principal ideal \mathcal{I} (e.g., via quantum PIP algorithm), we can efficiently solve $2^{O(\sqrt{m \log m})}$ -approx SVP on \mathcal{I} .

- Cryptanalysis of KEYGEN exploited the promise that the public principal ideal has a 'quite short' generator g (for BDD on g + Λ).
 How (a)typical are such principal ideals?
- Recall that breaking Ring-LWE implies (quantumly) solving approx-SVP, usually for small poly factors, on any ideal in the ring.

Do log-unit attacks apply to this problem? To Ring-LWE itself?

In cyclotomic rings $R = \mathbb{Z}[\zeta_m]$ of prime-power conductor m:

Upper Bound [CDPR'16]

Given any generator of a principal ideal \mathcal{I} (e.g., via quantum PIP algorithm), we can efficiently solve $2^{O(\sqrt{m \log m})}$ -approx SVP on \mathcal{I} .

Lower Bound [CDPR'16]

For "most" principal ideals, their shortest generators are only $2^{\Omega(\sqrt{m}/\log m)}$ SVP approximations. (Assuming $h^+ = 2^{O(m)}$.)

Theorem

Given any generator of a principal ideal \mathcal{I} (e.g., via quantum PIP algorithm), we can efficiently solve $2^{O(\sqrt{m \log m})}$ -approx-SVP on \mathcal{I} .

Theorem

Given any generator of a principal ideal \mathcal{I} (e.g., via quantum PIP algorithm), we can efficiently solve $2^{O(\sqrt{m \log m})}$ -approx-SVP on \mathcal{I} .

(Cf. average case from KeyGen, where we solve SVP exactly.)

Theorem

Given any generator of a principal ideal \mathcal{I} (e.g., via quantum PIP algorithm), we can efficiently solve $2^{O(\sqrt{m \log m})}$ -approx-SVP on \mathcal{I} .

(Cf. average case from KeyGen , where we solve SVP exactly.)

For principal ideal hR, the generators have log-embeddings $Log h + \Lambda$.

Theorem

Given any generator of a principal ideal \mathcal{I} (e.g., via quantum PIP algorithm), we can efficiently solve $2^{O(\sqrt{m \log m})}$ -approx-SVP on \mathcal{I} .

(Cf. average case from KeyGen , where we solve SVP exactly.)

- For principal ideal hR, the generators have log-embeddings $Log h + \Lambda$.
- ► Make ℓ_{∞} norm of $\operatorname{Log} g \in \operatorname{Log} h + \Lambda$ small to get a short-ish generator. (Note: $\langle \operatorname{Log} g, \mathbf{1} \rangle = \log \operatorname{N}(\mathcal{I})$ for all generators g.)

Theorem

Given any generator of a principal ideal \mathcal{I} (e.g., via quantum PIP algorithm), we can efficiently solve $2^{O(\sqrt{m \log m})}$ -approx-SVP on \mathcal{I} .

(Cf. average case from KeyGen , where we solve SVP exactly.)

- ► For principal ideal hR, the generators have log-embeddings $Log h + \Lambda$.
- ► Make ℓ_{∞} norm of $\operatorname{Log} g \in \operatorname{Log} h + \Lambda$ small to get a short-ish generator. (Note: $\langle \operatorname{Log} g, \mathbf{1} \rangle = \log \operatorname{N}(\mathcal{I})$ for all generators g.)
- A simple randomized round-off algorithm using the "good" (almost-)basis B of Λ yields

$$\|\operatorname{Log} g\|_{\infty} \le O(\sqrt{m \log m}) + \frac{1}{n} \log \operatorname{N}(\mathcal{I}).$$

Theorem

Given any generator of a principal ideal \mathcal{I} (e.g., via quantum PIP algorithm), we can efficiently solve $2^{O(\sqrt{m \log m})}$ -approx-SVP on \mathcal{I} .

(Cf. average case from KeyGen , where we solve SVP exactly.)

- For principal ideal hR, the generators have log-embeddings $Log h + \Lambda$.
- ► Make ℓ_{∞} norm of $\operatorname{Log} g \in \operatorname{Log} h + \Lambda$ small to get a short-ish generator. (Note: $\langle \operatorname{Log} g, \mathbf{1} \rangle = \log \operatorname{N}(\mathcal{I})$ for all generators g.)
- A simple randomized round-off algorithm using the "good" (almost-)basis B of Λ yields

$$\|\operatorname{Log} g\|_{\infty} \le O(\sqrt{m \log m}) + \frac{1}{n} \log \operatorname{N}(\mathcal{I}).$$

• Therefore, $||g|| \leq 2^{O(\sqrt{m\log m})} \cdot \mathcal{N}(\mathcal{I})^{1/n} \leq 2^{O(\sqrt{m\log m})} \cdot \lambda_1(\mathcal{I}).$

Theorem

For "most" principal ideals, their shortest generators are only $2^{\Omega(\sqrt{m}/\log m)}$ SVP approximations. (Assuming $h^+ = 2^{O(m)}$.)

Theorem

For "most" principal ideals, their shortest generators are only $2^{\Omega(\sqrt{m}/\log m)}$ SVP approximations. (Assuming $h^+ = 2^{O(m)}$.)

So returning a generator yields $2^{\hat{\Omega}(\sqrt{m})}$ SVP approx, in the worst case.

Theorem

For "most" principal ideals, their shortest generators are only $2^{\Omega(\sqrt{m}/\log m)}$ SVP approximations. (Assuming $h^+ = 2^{O(m)}$.)

So returning a generator yields $2^{\hat{\Omega}(\sqrt{m})}$ SVP approx, in the worst case.

For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ||g||₁/(2n), so ||g|| ≥ exp(s).

Theorem

For "most" principal ideals, their shortest generators are only $2^{\Omega(\sqrt{m}/\log m)}$ SVP approximations. (Assuming $h^+ = 2^{O(m)}$.)

So returning a generator yields $2^{\hat{\Omega}(\sqrt{m})}$ SVP approx, in the worst case.

- For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ||g||₁/(2n), so ||g|| ≥ exp(s).
- Therefore, we care about the ℓ_1 covering radius:

$$\mu_1(\Lambda) := \max_{\mathbf{h} \in \operatorname{span}(\Lambda)} \min_{\mathbf{g} \in \mathbf{h} + \Lambda} \|\mathbf{g}\|_1.$$

Theorem

For "most" principal ideals, their shortest generators are only $2^{\Omega(\sqrt{m}/\log m)}$ SVP approximations. (Assuming $h^+ = 2^{O(m)}$.)

So returning a generator yields $2^{\hat{\Omega}(\sqrt{m})}$ SVP approx, in the worst case.

- For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ||g||₁/(2n), so ||g|| ≥ exp(s).
- Therefore, we care about the ℓ_1 covering radius:

$$\mu_1(\Lambda) := \max_{\mathbf{h} \in \operatorname{span}(\Lambda)} \min_{\mathbf{g} \in \mathbf{h} + \Lambda} \|\mathbf{g}\|_1.$$

In the worst case, a shortest generator approximates SVP to only a $\exp(\Omega(\mu_1(\Lambda)/n))$ factor.

Theorem

For "most" principal ideals, their shortest generators are only $2^{\Omega(\sqrt{m}/\log m)}$ SVP approximations. (Assuming $h^+ = 2^{O(m)}$.)

So returning a generator yields $2^{\Omega(\sqrt{m})}$ SVP approx, in the worst case.

- For any g = Log g ∈ span(Λ), some coordinate is ≥ s = ||g||₁/(2n), so ||g|| ≥ exp(s).
- Therefore, we care about the ℓ_1 covering radius:

$$\mu_1(\Lambda) := \max_{\mathbf{h} \in \operatorname{span}(\Lambda)} \min_{\mathbf{g} \in \mathbf{h} + \Lambda} \|\mathbf{g}\|_1.$$

In the worst case, a shortest generator approximates SVP to only a $\exp(\Omega(\mu_1(\Lambda)/n))$ factor.

Bound $\mu_1(\Lambda) \ge \Omega(m^{3/2}/\log m)$ using volume argument.

1 Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]

- 1 Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]
- **2** Extend to proposed non-cyclotomic number fields, e.g., $R = \mathbb{Z}[X]/(X^p - X - 1)$. [Bernstein'14] Seems sufficient to find a 'good' full-rank set in $\Lambda = \log R^{\times}$.
 - It's easy to find several 'good' units; full rank is unclear.

- 1 Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]
- 2 Extend to proposed non-cyclotomic number fields, e.g., $R = \mathbb{Z}[X]/(X^p - X - 1)$. [Bernstein'14] Seems sufficient to find a 'good' full-rank set in $\Lambda = \log R^{\times}$. It's easy to find several 'good' units; full rank is unclear.
- **3** Circumvent the $2^{\tilde{\Omega}(\sqrt{m})}$ SVP approx barrier for generators. Find a short generator of a cleverly chosen ideal \mathcal{IJ} ?

- 1 Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]
- **2** Extend to proposed non-cyclotomic number fields, e.g., $R = \mathbb{Z}[X]/(X^p - X - 1)$. [Bernstein'14] Seems sufficient to find a 'good' full-rank set in $\Lambda = \log R^{\times}$. It's easy to find several 'good' units; full rank is unclear.
- **3** Circumvent the $2^{\hat{\Omega}(\sqrt{m})}$ SVP approx barrier for generators. Find a short generator of a cleverly chosen ideal \mathcal{IJ} ?
- Apply or extend any of these techniques against NTRU/Ring-LWE. Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

- 1 Extend to non-principal ideals. [CramerDucasWesolowski'16, preprint]
- **2** Extend to proposed non-cyclotomic number fields, e.g., $R = \mathbb{Z}[X]/(X^p - X - 1)$. [Bernstein'14] Seems sufficient to find a 'good' full-rank set in $\Lambda = \log R^{\times}$. It's easy to find several 'good' units; full rank is unclear.
- **3** Circumvent the $2^{\overline{\Omega}(\sqrt{m})}$ SVP approx barrier for generators. Find a short generator of a cleverly chosen ideal \mathcal{IJ} ?
- Apply or extend any of these techniques against NTRU/Ring-LWE. Ideal-SVP is a lower bound for Ring-LWE; is it an upper bound?

Thanks!