
Even Faster Polynomial Multiplication
Oisín Robinson
ICHEC, Dublin

Introduction

Multiplication of polynomials can be translated to
multiplication of integers via ‘Kronecker-Schönhage’
(KS) substitution [1]. In this approach, each poly-
nomial is encoded as an integer by packing the coef-
ficients together, with enough zero-padding to allow
for the size of any output coefficient. This is equiv-
alent to evaluating each polynomial at base powers.
The base (e.g. 10, or 2k) is chosen so that we may
assume its arithmetic is trivial.

Harvey [2] improved the substitution method by
showing the original amount of zero-padding was un-
necessary - in fact, the coefficients may be packed in
half the space, with two half-size multiplications, or
even 1/4 the space, with four 1/4-size multiplications.
The output may be perfectly recovered with novel re-
construction algorithms, named KS2, KS3 and KS4.

In this work, we show how we can pack coefficients
even more efficiently, and re-use the KS2 and KS3
methods to reconstruct the output, with 12 multipli-
cations of 1/8 size. In fact the new idea generalizes
and in principle can reduce the operation to 4 (2n − 1)
multiplications of 1/2n+1-th size, at increasing expense
of extra additions.

KS2

f = 41x3 + 49x2 + 38x + 29,

g = 19x3 + 23x2 + 46x + 21.

Then
f (102) = 41493829,

f (−102) =−40513771,

g(102) = 19234621,

g(−102) =−18774579.

Packed with alternating signs — still linear time.
Two half-sized integer multiplications:

h(102) =
h(−102) =

f (102)g(102) =
f (−102)g(−102) =

798118074653809,

760628994227409.

If h(x) = h0(x2) + xh1(x2), then
h0(104) = 1

2

(
h(102) + h(−102)

)
= 779373534440609

102h1(104) = 1
2

(
h(102)− h(−102)

)
= 18744540213200

KS3, KS4

KS3 is a variation of KS2 which packs the coefficients
in reversed order. It also leads to two half-size multi-
plications. In fact, KS2 and KS3 are ‘orthogonal’, in
that they may be cascaded. This is KS4, and recon-
structs the output from four 1/4-size multiplications.

KS5

KS5 is a variation of KS4 which also cascades KS2
and KS3, but which uses 12 multiplications of 1/8-
th size. When using KS4 (the faster of the three)
we recall that the packing operation is equivalent to
evaluating the polynomial at e.g. 10 and -10 (KS2),
or 1/10 and -1/10 (KS3). The new insight here is to
evaluate f and g at

√
10,
√
−10,

√
1/10 and

√
−1/10

and use the same cascading idea as KS4. The differ-
ence is that when we evaluate at these points, we get
an integer in a quadratic number field and must then
multiply four such integers. This can be done with
12 componentwise multiplications.

f = 41x3 + 49x2 + 38x + 29.

Then 102f (
√
− 1

10) = 241 + 339
√
− 1

10.

290
−49 +
241

380
−41 +
339

Note that h(
√

10) = h0(10) + h1(10)
√

10. We have
12 multiplications of 1/8th the size, which precede
the LHS below.

h0(10)
h0(−10)

 KS2−−→

h1(10)
h1(−10)

 KS2−−→

h0(1
10)

h0(− 1
10)

 KS2−−→

h1(1
10)

h1(− 1
10)

 KS2−−→

h00(102)
h01(102)h10(102)
h11(102)h00(10−2)
h01(10−2)h10(10−2)
h11(10−2)

h00(102)
h00(10−2)

 KS3−−→ h00(104)

h01(102)
h01(10−2)

 KS3−−→ h01(104)

h10(102)
h10(10−2)

 KS3−−→ h10(104)

h11(102)
h11(10−2)

 KS3−−→ h11(104)

Complexity

We model the speedup over naive ‘schoolbook’ mul-
tiplication as

1
m
· k2

where m is the number of multiplications, and ordi-
nary KS uses integers k times as large. With this
notation, the speedup of KS4 over KS is 4×, and of
KS5 over KS is 51/3×.

Example

We would like to see if it really works, so here is an
example.

f = 41x3 + 49x2 + 38x + 29
g = 19x3 + 23x2 + 46x + 21.

h(
√

10) = f (
√

10)g(
√

10) = (519 + 448
√

10)(251 + 236
√

10)
= 1187549 + 234932

√
10 = h0(10) + h1(10)

√
10

h(
√
−10) = f (

√
−10)g(

√
−10) = (−461− 372

√
−10)(−209− 144

√
−10)

= −439331 + 144132
√
−10 = h0(−10) + h1(−10)

√
−10

103h(
√

1/10) = 10 · 10f (
√

1/10)10g(
√

1/10)

= 10 · (339 + 421
√

1/10)(233 + 479
√

1/10)

= 991529 + 2604740
√

1/10 = 103
(

h0(1/10) + h1(1/10)
√

1/10

)
103h(

√
−1/10) = 10 · 10f (

√
−1/10)10g(

√
−1/10)

= 10 · (241 + 339
√
−1/10)(187 + 441

√
−1/10)

= 301171 + 1696740
√
−1/10 = 103

(
h0(−1/10) + h1(−1/10)

√
−1/10

)

h0(10) = 1187549
h0(−10) = − 439331

}
KS2−−→

h1(10) = 234932
h1(−10) = 144132

}
KS2−−→

h0(1
10) = 991529

h0(− 1
10) = 301171

}
KS2−−→

h1(1
10) = 2604740

h1(− 1
10) = 1696740

}
KS2−−→

{
h00(102) = 374109
h01(102) = 813440{
h10(102) = 189532
h11(102) = 45400{
h00(10−2) = 64635
h01(10−2) = 345179{
h10(10−2) = 215074
h11(10−2) = 45400

374109
64635

}
KS3−−→ h00(104)

813440
345179

}
KS3−−→ h01(104)

189532
215074

}
KS3−−→ h10(104)

45400
45400

}
KS3−−→ h11(104)

This gives
h = 779x6 + 1874x5 + 3735x4 + 4540x3

+3444x2 + 2132x + 609.

Notice the upper and lower halves of coefficients ap-
pearing on the right (up to adjusting by carries which
it is possible to do)

Implementation

Harvey’s original implementation, zn_poly, was
adapted to add the new cascade method. It works
in practice and performance data is currently being
gathered.

Applications

One exciting application in particular is reducing the
memory requirement for stage 2 of the elliptic curve
method of integer factorization. This carries out
many large polynomial products, and requires up to
gigabytes of memory. At present, it is possible to
reduce required memory using the ’stage 2 blocks’
method, however the number of blocks required to
save more memory grows rapidly. With KS5, we have
a straightforward way to split the memory required by
eight, with 12 smaller computations for each product.
This might be improved even further if the general-
ized method was implemented.

References

[1] J. von zur Gathen and J. Gerhard, Modern computer
algebra.
Cambridge University Press, Cambridge, third ed., 2013.

[2] D. Harvey, “Faster polynomial multiplication via multipoint
Kronecker substitution,” J. Symbolic Comput., vol. 44,
no. 10, pp. 1502–1510, 2009.

[3] A. J. Devegili, C. ÓhÉigeartaigh, M. Scott, and R. Dahab,
“Multiplication and squaring on pairing-friendly fields,”
IACR Cryptology ePrint Archive, vol. 2006, p. 471, 2006.

Contact Information

•Web: http://www.ichec.ie
•Email: oisin.robinson@ichec.ie

http://www.ichec.ie
mailto:oisin.robinson@ichec.ie

