

FAKULTÄT V MATHEMATIK UND NATURWISSENSCHAFTEN

Integration on Riemann surfaces - Computation of period matrices

Christian Neurohr - University of Oldenburg - General case: Maple (Deconinck/Patterson/van Hoeij), Python/Sage (Swierczewski), Matlab Suppose *g* :]*a*, *b*[→ C admits an analytic continuation to ∆^τ = { tanh(sinh(R ± *it*)) | *t* < τ } → using Magma's function fields **Analytic continuation via simultaneous root approximation methods** Let $p\in \mathbb{C}[z]$ be a squarefree monic polynomial of degree $N\geq 2.$ Suppose $z_{1}^{(0)}$ $\hat{z}_1^{(0)}, \ldots, z_n$ initial approximations of the zeros of *p*. Under initial conditions that only depend on *p* and the *z* (0) $\hat{y}^{\mathrm{(U)}}_j$, the *Durand-Kerner* method given by the formula *z* (*m*+1) $\hat{i}^{(n+1)}_{i} = z$ (*m*) $\hat{p}_i^{(m)}-p(z)$ (*m*) $\int\limits_{i}^{(m)})/\prod(z)$ $j \neq i$ (*m*) $\hat{i}_i^{(m)}-z$ (*m*) $j^{(m)}$ $(m \ge 0)$ converges quadratically, providing explicit error bounds in each step. **Canonical homology basis** Taking the local monodromies as input, the Tretkoff algorithm computes a canonical basis, purely combinatorially. The output consists of a generating set of cycles $\{c_j\}_{1\leq j\leq 2g}$ for $H_1(X,\mathbb{Z})$ and a syr transformation $S \in GL(2g, \mathbb{Z})$. The cycles are given as finite sums $c_j = \sum_k \tilde{\gamma}_k$ of lifted paths. **Integration of holomorphic differentials** Let $\omega \in \Omega^1(X)$ be represented as $h(x,y) \, \mathrm{d}x$, where $h \in \mathbb{C}(X)$ and $\tilde{\gamma} \in H_1(X,\mathbb{Z})$. In order to compute R and A , we have to compute integrals of the form Z $\widetilde{\gamma}$ $\omega =$ \int_0^1 −1 $h(\gamma(t), \tilde{\gamma}(t))\gamma'(t) dt$. **Theorem: Double-exponential integration [\[2\]](#page-0-1)** for some $0 < \tau < \frac{\pi}{2}$ $\frac{\pi}{2}$ and that $|g| < M$ on $\Delta_{\tau}.$ Then for all $D>0$ there exist $n,h>0$ such that $\begin{array}{c} \hline \end{array}$ \mathbf{I} \vert \int^b *a* $g(t) dt - \sum$ *n k*=−*n* $g(t_k)dt_k$ $\overline{}$ $\leq e^{-D},$ where $n \sim$ $D \log(D)$ $\frac{\log(D)}{2\pi\tau}$ and $t_k = \frac{b+a}{2} + \frac{b-a}{2}$ $\frac{-a}{2}$ tanh(sinh(kh)). **Advantages of the DE-integration** - For prescribed precision, integration parameters can be computed prior to the comp - Taking advantage of the integrand's holomorphicity makes integration rigorous. \cdot Suitable for arbitrary precision integration due to fast computation of integration pa **Timings** Computation of the period matrix associated to the algebraic curves given by • $f_k = (x + y)^{k-1} + x^k y^2 + 1$ up to 20 significant digits. k 2 3 4 5 6 7 8 9 10 *g* 1 2 6 10 14 21 28 35 45 t_{maple} 2.1s 6s 39s 2m 10s error 6m 45s 12m 58s - error $t_{\text{self},g}$ | 0.7s | 1.8s | 8.6s | 33s | 1m 29s | 4m 45s | 11m 33s | 27m 25s | 57m 27s • $f_k = y^N - (x^d + x^{d-1} + \cdots + x + 1)$ up to 200 significant digits. $\big|(N, \, d)\big|$ $(2, 3)\,$ $\big|$ $(2, 5)\,$ $\big|$ $(3, 5)\,$ $\big|$ $(5, 5)\,$ $\big|$ $(7, 5)\,$ $\big|$ $(7, 8)\,$ $\big|$ $(11, 8)\,$ $\big|$ $(11, 11)\,$ $\big| (11, 21)\,$ g | 1 | 2 | 4 | 6 | 12 | 21 | 35 | 45 | 100 | 300 *t*maple 1m 46s 3m 11s 6m 51s 22m 24s 1h 46m 2h 52m - - - $t_{\textsf{self},q}$ 6s | 15s | 23s | 36s | 1m 9s | 3m 20s | 6m 20s | 11m 20s | 1h 8m $t_{\mathsf{self},s}$ $1.2s$ 2.6s 1.6 2.1s 3s 8.7s 13.3s 26s 1m 50s Here, $\,t_{\sf self,g}$ refers to the general algorithm and $\,t_{\sf self,s}$ to the special algorithm for the superelliptic case. Computations were done on an Intel $Xeon(R)$ CPU E3-1275 V2 3.50GHz proces **Outlook (work in progress)** - Abel-Jacobi map: Need to evaluate the integrand at above branch points \rightarrow approx using Puiseux series - Integration: Need to 'bound' holomorphic differentials \to choice of M -Integration: Value of τ strongly dependent on the constructed paths, especially on \arcs/c ircles \rightarrow optimization

Basic definitions

Let *X* be a compact Riemann surface of genus g , $\{\omega_i\}_{1\leq i\leq g}$ a basis of the holomorphic $\operatorname{differentials} \, \Omega^1(X)$ and $\Set{c_j}_{1\leq j\leq 2g}$ a basis of the homology group $H_1(X,\mathbb{Z}).$ Then, we call

> $C = ($ Z *cj* $\omega_i)$ *i*,*j* $\in \mathbb{C}^{g \times 2g}$ a (big) period matrix of X.

The *Jacobian* of X is the complex torus $\mathrm{Jac}(X):=\mathbb{C}^g/\Lambda$, where Λ is the lattice generated by the columns of *C*.

The Abel-Jacobi map on X, w.r.t. $P_0 \in X$, is given by

where $A = \begin{pmatrix} 1 \end{pmatrix}$ $\int_a^b \omega_j$ 1≤*i*,*j*≤*g* and $B = \bigcup$ \int_{b_i} ω_j $\big)$ 1≤*i*,*j*≤*g* .

Fast and rigorous computation of R and A to high precision for compact Riemann surfaces given by polynomials $f \in \mathbb{Q}[x, y]$ using Magma. Following a mixed approach, symbolic and numerical methods are being used.

$$
\mathcal{A}: X \to \text{Jac}(X), P \mapsto \left(\int_{P_0}^P \omega_1, \dots, \int_{P_0}^P \omega_g\right)^T \mod \Lambda.
$$

In case of a *canonical homology basis* $\set{a_j,b_j}_{1\leq j\leq g}$, i.e. a basis satisfying $a_j \circ a_k = 0$, $b_j \circ b_k = 0$, $a_j \circ b_k = \delta_{jk}$, we call

$$
\mathcal{R}=A^{-1}B\in\mathfrak{H}_g\subset\mathbb{C}^{g\times g}\quad \text{a (small) period matrix of}\;X\,,
$$

General case: Goals

Existing work

- (Frauendiener/Klein)
- Hyperelliptic case: Magma (van Wamelen), pari/gp (Molin), Matlab (Frauendiener/Klein)

Applications in number theory

- Computation of theta functions
- Canonical heights: local heights at archimedean places
- Computation of the real period of the Jacobian (BSD conjecture)
- Computation of endomorphisms and isogenies of the Jacobian
- Numerous other applications in physics (e.g. integrable PDEs)

- Suppose we know the ordered fiber $y(x_1)$ above $x_1 = \gamma(t_1)$. How do we find $y(x_2) = y(\gamma(t_2))$? - Idea: Use the values in *y*(*x*1) as approximations of the *N* simple roots of the univariate polynomial $f(x_2, y) \in \mathbb{C}[y]$.
- Use efficient root approximation methods to determine the ordered fiber $y(x_2)$ to desired precision, while employing a 'divide & conquer' strategy.

Setup and notation

Let $f \in \mathbb{Q}[x, y]$ be geometrically irreducible. Denote by

- $-$ *X* the Riemann surface of genus g associated to the compactified, desingularized curve \mathcal{C}_f defined by *f* ,
- $y(x)$ an N -sheeted algebraic covering of \mathbb{P}^1 defined by f , where N is the degree of f in y , $-\mathfrak{B} = \{ x \in \mathbb{P}^1(\mathbb{C}) \mid \#y(x) < N \}, \; \; \mathfrak{b} = \# \mathfrak{B}.$

Outline of the algorithm

Picking up the approach of [\[1\]](#page-0-0), we can summarize the algorithm in the following steps:

- Compute a basis ω_1,\ldots,ω_g of Ω^1
- Compute generators $\gamma_1,\ldots,\gamma_{\mathfrak{b}}$ of $\pi_1(\mathbb{P}^1$ \rightarrow see Stefan Hellbusch's poster
- Compute parameters for DE-integration $D,$ $n,$ $h,$ $\tau,$ $T =$ $\{t_k\}_{|k| \leq n}$.
- Analytically continue $y(x)$ along each γ_i in order to determine
- \rightarrow the local monodromy σ_{γ_i} of γ_i \rightarrow see Stefan Hellbusch's poster \rightarrow the lifts $\tilde{\gamma_i}$, represented by the fibers above $\gamma_i(t)$ for $t\in$ $T.$
- Compute a symplectic transformation S and cycles c_1,\ldots,c_{2q} generating $H_1(X,\mathbb{Z})$.
- Compute a period matrix *C* using DE-integration.
- $-$ Obtain a small period matrix $\mathcal{R} = A^{-1}B$ with $(\,A \, B \,) = C \cdot S.$

Continuing the fibers along paths

