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Basic definitions
Let X be a compact Riemann surface of genus g, {ωi}1≤i≤g a basis of the holomorphic
differentials Ω1(X ) and { cj }1≤j≤2g a basis of the homology group H1(X ,Z). Then, we call

C =
( ∫

cj
ωi
)
i,j ∈ Cg×2g a (big) period matrix of X .

The Jacobian of X is the complex torus Jac(X ) := Cg/Λ, where Λ is the lattice generated by
the columns of C .
The Abel-Jacobi map on X , w.r.t. P0 ∈ X , is given by

A : X → Jac(X ) ,P 7→
( ∫ P

P0
ω1, . . . ,

∫ P

P0
ωg
)T mod Λ .

In case of a canonical homology basis { aj , bj }1≤j≤g, i.e. a basis satisfying
aj ◦ ak = 0, bj ◦ bk = 0, aj ◦ bk = δjk , we call

R = A−1B ∈ Hg ⊂ Cg×g a (small) period matrix of X ,

where A =
( ∫

ai
ωj
)
1≤i,j≤g and B =

( ∫
bi
ωj
)
1≤i,j≤g .

General case: Goals
Fast and rigorous computation of R and A to high precision for compact Riemann surfaces
given by polynomials f ∈ Q[x , y] using Magma. Following a mixed approach, symbolic and
numerical methods are being used.
Existing work
- General case: Maple (Deconinck/Patterson/van Hoeij), Python/Sage (Swierczewski), Matlab

(Frauendiener/Klein)
- Hyperelliptic case: Magma (van Wamelen), pari/gp (Molin), Matlab (Frauendiener/Klein)

Applications in number theory
- Computation of theta functions
- Canonical heights: local heights at archimedean places
- Computation of the real period of the Jacobian (BSD conjecture)
- Computation of endomorphisms and isogenies of the Jacobian
- Numerous other applications in physics (e.g. integrable PDEs)

Setup and notation
Let f ∈ Q[x , y] be geometrically irreducible. Denote by
- X the Riemann surface of genus g associated to the compactified, desingularized curve Cf

defined by f ,
- y(x) an N -sheeted algebraic covering of P1 defined by f , where N is the degree of f in y,
- B = { x ∈ P1(C) | #y(x) < N }, b = #B.

Outline of the algorithm
Picking up the approach of [1], we can summarize the algorithm in the following steps:
- Compute a basis ω1, . . . , ωg of Ω1(X ) → using Magma’s function fields
- Compute generators γ1, . . . , γb of π1(P1(C) \B) → see Stefan Hellbusch’s poster
- Compute parameters for DE-integration D, n, h, τ,T = {tk}|k|≤n .
- Analytically continue y(x) along each γi in order to determine
→ the local monodromy σγi of γi , → see Stefan Hellbusch’s poster
→ the lifts γ̃i , represented by the fibers above γi(t) for t ∈ T .

- Compute a symplectic transformation S and cycles c1, . . . , c2g generating H1(X ,Z).
- Compute a period matrix C using DE-integration.
- Obtain a small period matrix R = A−1B with ( A B ) = C · S .

Continuing the fibers along paths
Suppose we know the ordered fiber y(x1) above x1 = γ(t1). How do we find y(x2) = y(γ(t2))?
- Idea: Use the values in y(x1) as approximations of the N simple roots of the univariate

polynomial f (x2, y) ∈ C[y].
- Use efficient root approximation methods to determine the ordered fiber y(x2) to desired

precision, while employing a ’divide & conquer’ strategy.

Analytic continuation via simultaneous root approximation methods
Let p ∈ C[z ] be a squarefree monic polynomial of degree N ≥ 2. Suppose z(0)

1 , . . . , z(0)
N are

initial approximations of the zeros of p.
Under initial conditions that only depend on p and the z(0)

j , the Durand-Kerner method given
by the formula

z(m+1)
i = z(m)

i − p(z(m)
i )/

∏
j 6=i

(z(m)
i − z(m)

j ) (m ≥ 0)

converges quadratically, providing explicit error bounds in each step.
Canonical homology basis
Taking the local monodromies as input, the Tretkoff algorithm computes a canonical homology
basis, purely combinatorially.
The output consists of a generating set of cycles { cj }1≤j≤2g for H1(X ,Z) and a symplectic
transformation S ∈ GL(2g,Z).
The cycles are given as finite sums cj =

∑
k γ̃k of lifted paths.

Integration of holomorphic differentials
Let ω ∈ Ω1(X ) be represented as h(x , y) dx , where h ∈ C(X ) and γ̃ ∈ H1(X ,Z). In order to
compute R and A, we have to compute integrals of the form∫

γ̃
ω =

∫ 1

−1
h(γ(t), γ̃(t))γ′(t) dt .

Theorem: Double-exponential integration [2]
Suppose g :]a, b[→ C admits an analytic continuation to ∆τ = { tanh(sinh(R± it)) | t < τ }
for some 0 < τ < π

2 and that |g| < M on ∆τ . Then for all D > 0 there exist n, h > 0 such that∣∣∣ ∫ b

a
g(t) dt −

n∑
k=−n

g(tk)dtk
∣∣∣ ≤ e−D ,

where n ∼ D log(D)
2πτ and tk = b+a

2 + b−a
2 tanh(sinh(kh)).

Advantages of the DE-integration
- For prescribed precision, integration parameters can be computed prior to the computation.
- Taking advantage of the integrand’s holomorphicity makes integration rigorous.
- Suitable for arbitrary precision integration due to fast computation of integration parameters.

Timings
Computation of the period matrix associated to the algebraic curves given by
• fk = (x + y)k−1 + xky2 + 1 up to 20 significant digits.

k 2 3 4 5 6 7 8 9 10
g 1 2 6 10 14 21 28 35 45

tmaple 2.1s 6s 39s 2m 10s error 6m 45s 12m 58s - error
tself,g 0.7s 1.8s 8.6s 33s 1m 29s 4m 45s 11m 33s 27m 25s 57m 27s

• fk = yN − (xd + xd−1 + · · · + x + 1) up to 200 significant digits.
(N , d) (2,3) (2,5) (3,5) (5,5) (7,5) (7,8) (11,8) (11,11) (11,21) (31,21)

g 1 2 4 6 12 21 35 45 100 300
tmaple 1m 46s 3m 11s 6m 51s 22m 24s 1h 46m 2h 52m - - - -
tself,g 6s 15s 23s 36s 1m 9s 3m 20s 6m 20s 11m 20s 1h 8m -
tself,s 1.2s 2.6s 1.6 2.1s 3s 8.7s 13.3s 26s 1m 50s 7m 29s

Here, tself,g refers to the general algorithm and tself,s to the special algorithm for the superelliptic
case. Computations were done on an Intel Xeon(R) CPU E3-1275 V2 3.50GHz processor.
Outlook (work in progress)
- Abel-Jacobi map: Need to evaluate the integrand at above branch points → approximations

using Puiseux series
- Integration: Need to ’bound’ holomorphic differentials → choice of M
- Integration: Value of τ strongly dependent on the constructed paths, especially on the radii of

arcs/circles → optimization

Special case: superelliptic curves
A superelliptic curve over C can be given by an affine model of the form

C : yN = f (x) =

d∏
l=1

(x − xl) ,

where f ∈ C[x ] is squarefree, N ≥ 2 and d ≥ 3.
Superelliptic case: Goals
The following approach was developed by Pascal Molin for hyperelliptic curves. We extend the
corresponding algorithm to the larger class of superelliptic curves. This is joint work in progress
with Pascal Molin.
Advantages in the superelliptic case
- As C defines a cyclic covering of P1, changing sheets corresponds to multiplication by a power

of ζ := e
2πi
N → local monodromy and analytic continuation easy

- Canonical basis for the space of holomorphic differentials (see Proposition below)
- Integration along line segments between branch points is possible
→ less integrals + can avoid arcs/circles

- Homology basis and intersection matrix are determined by the formula used for computing the
periods (see Theorem below) → easily obtain a period matrix C

Proposition: Holomorphic differentials
A basis of Ω1

C is given by the differentials

D =
{ x i

yj dx | −Ni + jd − gcd(N , d) ≥ 0, 0 ≤ i ≤ d − 2, 1 ≤ j ≤ N − 1
}
.

Theorem: Computation of periods
Let a = x1, b = x2 be branch points and and take a differential ω = x iy−jdx ∈ ΩC. Then the
integral computed with the formula∫

α(0)
ω =

(
b − a

2

)i+1−dj
N (√

ζ j −
√
ζ−j
)∫

R

(
tanh(t) + b+a

b−a

)i
dt∏d

l=3

(
tanh(t)− 2xl−b−a

b−a

) j
N cosh(t)2−

2j
N

a b

1

corresponds to the period of ω along a cycle α(0) ∈ H1(C,Z)

starting on a fixed, but undetermined sheet s(0) ∈ {1, . . . ,N},
encircling a and b (see picture to the right).
Using the transformation y 7→ ζky we obtain cycles
α(k) ∈ H1(C,Z), similar to α(0) except for starting
on sheet s(0) + k mod N . The corresponding periods are given by∫

α(k)
ω = ζ−jk

∫
α(0)

ω, k = 0, . . . ,N − 1 .

Homology: Maximal spanning tree
Graph of paths Construct a spanning tree w.r.t. maximal holomorphicity τ with

edges e1, . . . , ed−1 connecting the branch points. For an edge ei = [a, b]

we compute the periods
∫
α

(k)
i
ω with α(k)

i corresponding to a and b as above.

In total, for each ω ∈ D we obtain (d − 1)N > 2g periods,
corresponding to the cycles α(k)

i .
The intersection matrix can be determined by analyzing the geometry of the spanning tree in
the complex plane and has rank 2g, therefore proving that the set {α(k)

i } contains a basis for
H1(C,Z).
Computing and applying a symplectic transformation yields the small period matrix R.
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