Constructing ray class fields of a real quadratic field using elliptic curves

Takashi Fukuda (Nihon University, fukuda.takashi@nihon-u.ac.jp) Kiichiro Hashimoto (Waseda University, khasimot@waseda.jp) Keiichi Komatsu (Waseda University, kkomatsu@waseda.jp)

How to construct ray class fields ?

• It is well known that ray class fields of an imaginary quadratic field are generated by special values of j-function, Weber function, Weierstrass σ -function or Siegel

tunction.

It is difficult to construct ray class fields of a real quadratic field.
 We have no definite methods. We know two trials.

Stark Units

still conjectual
 often gives correct ray class field

Torsion Points of Abelian Varieties Few examles Potential ability

Ray Class Field $k = \mathbb{Q}(\sqrt{p})$, p:prime number $\equiv 1 \pmod{12}$ $\psi : (\mathbb{Z})$ Assumption: h(k) = 1 $f \in S$ ε : fundamental unit of k, $G(k/\mathbb{Q}) = \langle \delta \rangle$ normal

 $\mathfrak{p}_{\infty}, \mathfrak{p}'_{\infty}$: infinite places of k(3) = $(\pi)(\pi')$ $\pi\pi' = -3$

$\begin{array}{c} & \text{Elliptic Curve} \\ \psi: (\mathbb{Z}/p\mathbb{Z})^{\times} \longrightarrow \{\pm 1\} : \text{ even char.} \\ f \in S_2(\Gamma_0(p), \psi) : \text{ wt 2, level } p, \text{ nebentype } \psi \\ \text{normalized common eign form of all Hecke op.} \\ \underline{\sim} \end{array}$

 $\pi = a + b\sqrt{p} \quad (2a, 2b \in \mathbb{Z})$ $\mathfrak{a}_n = (3)^n \mathfrak{p}_\infty \mathfrak{p}'_\infty$ $k(\mathfrak{a}_n) : \text{ray class field}$ Is there a systematic construction of $k(\mathfrak{a}_n)$? **Known Results and Questions** Known : $k(\mathfrak{a}_1) \subset k(E_3)$ Question : $k(\mathfrak{a}_n) \subset k(E_{3^n})$? $f(z) = \sum_{n=1}^{\infty} a_n \exp(2\pi i n z)$ Assumption : $\mathbb{Q}(\{a_n \mid n \ge 1\}) = \mathbb{Q}(\sqrt{-3})$ A: abelian variety attached to f by Shimura $\exists \ \theta : \mathbb{Q}(\sqrt{-3}) \longrightarrow \operatorname{End}_{\mathbb{Q}}(A)$: isom. $\exists \ \mu \in \operatorname{Aut}(A)$: rational over k s.t. $\mu^2 = 1, \ \mu \theta(a) = \theta(\overline{a})\mu, \ \mu^{\delta} = -\mu$. $E = (1 + \mu)A$: Shimura's elliptic curve $E_n = \{P \in E \mid nP = 0\}$

Theorem

Assume that $\varepsilon^2 \equiv 1 \pmod{9}$, $a \not\equiv \pm 1 \pmod{9}$ and there exists a prime number ℓ which splits in $k(E_3)$ and satisfies one of the following conditions: (1) $\ell \equiv 1 \pmod{27}$ and $a_\ell \equiv 11 \pmod{27}$,

(2) $\ell \equiv 10 \pmod{27}$ and $a_{\ell} \equiv -7 \pmod{27}$,

(3) $\ell \equiv 19 \pmod{27}$ and $a_{\ell} \equiv 2 \pmod{27}$.

Then we have $k(\mathfrak{a}_2) \subset k(E_9)$.

Example $(\omega = (1 + \sqrt{p})/2)$ When p = 109 and 997, we have $k(\mathfrak{a}_2) \subset k(E_9)$ with $p = 109, \ E: y^2 + \omega xy = x^3 - (1 + \omega)x^2 - (245 + 58\omega)x - (2944 + 630\omega)$ $p = 997, \ E: y^2 + y = x^3 + x^2 - (125389 + 8202\omega)x - (24602589 + 1609311\omega)$

ANTS-XII Poster Session 2016.8.30 (Kaiserslautern, Germany)