It is well known that ray class fields of an imaginary quadratic field are generated by special values of j -function, Weber function, Weierstrass σ -function or Siegel

Constructing ray class fields of a real quadratic field using elliptic curves

Takashi Fukuda (Nihon University, fukuda.takashi@nihon-u.ac.jp) Kiichiro Hashimoto (Waseda University, khasimot@waseda.jp) Keiichi Komatsu (Waseda University, kkomatsu@waseda.jp)

How to construct ray class fields ?

olt is difficult to construct ray class fields of a real quadratic field. We have no definite methods. We know two trials.

still conjectual ooften gives correct ray class field

Ray Class Field $\boldsymbol{k} = \mathbb{Q} ($ \sqrt{p}), p:prime number $\equiv 1 \pmod{12}$ Assumption: $h(k) = 1$ ε : fundamental unit of k , $G(k/\mathbb{Q}) = \langle \delta \rangle$ $\mathfrak{p}_{\infty}, \mathfrak{p}'_{\infty}$: infinite places of k $(3) = (\pi)(\pi') \quad \pi\pi' = -3$ $\pi = a + b$ \sqrt{p} $(2a, 2b \in \mathbb{Z})$ $\mathfrak{a}_n = (3)^n \mathfrak{p}_{\infty} \mathfrak{p}$ **∕**
∫ ∞ $k(\mathfrak{a}_n)$: ray class field Is there a systematic construction of $k(\mathfrak{a}_n)$? Known Results and Questions Known : $k(a_1) \subset k(E_3)$ Question : $k(\mathfrak{a}_n) \subset k(E_{3^n})$? Elliptic Curve $\psi: (\mathbb{Z}/p\mathbb{Z})^\times \longrightarrow \{\pm\;1\}$: even char. $f\in S_2(\Gamma_0(p),\psi)$: wt 2, level p , nebentype ψ normalized common eign form of all Hecke op. $f(z) =$ \sum ∞ $n=1$ $a_n \exp(2\pi i n z)$ Assumption : $\mathbb{Q}(\{a_n \mid n \geq 1\}) = \mathbb{Q}(\{a_n \mid n \geq 1\})$ √ $\boxed{-3}$ A : abelian variety attached to f by Shimura ∃ θ : Q(√ $(-3) \longrightarrow \mathsf{End}_{\mathbb{Q}}(A)$: isom. $\exists \mu \in \text{Aut}(A)$: rational over k s.t. $\mu^2=1,\ \mu\theta(a)=\theta(\overline{a})\mu,\ \ \mu^\delta$ $=-\mu$. $E = (1 + \mu)A$: Shimura's elliptic curve $E_n = \{P \in E \mid nP = 0\}$

I heorem

Assume that $\varepsilon^2 \equiv 1 \pmod{9}$, $a \not\equiv \pm 1 \pmod{9}$ and there exists a prime number ℓ which splits in $k(E_3)$ and satisfies one of the following conditions: (1) $\ell \equiv 1 \pmod{27}$ and $a_{\ell} \equiv 11 \pmod{27}$,

(2) $\ell \equiv 10 \pmod{27}$ and $a_{\ell} \equiv -7 \pmod{27}$,

(3) $\ell \equiv 19 \pmod{27}$ and $a_{\ell} \equiv 2 \pmod{27}$.

Then we have $k(\mathfrak{a}_2) \subset k(E_9)$.

Example $(\omega = (1 + \sqrt{p})/2)$ When $p = 109$ and 997, we have $k(\mathfrak{a}_2) \subset k(E_9)$ with $p = 109,\; E: y^2 + \omega xy = x^3 - (1 + \omega) x^2 - (245 + 58\omega) x - (2944 + 630\omega)$ $p=997,\; E: y^2+y=x^3+x^2-(125389+8202\omega)x-(24602589+1609311\omega)$

function.

Stark Units

Torsion Points of Abelian Varieties Few examles Potential ability

ANTS-XII Poster Session 2016.8.30 (Kaiserslautern, Germany)