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Abstract
In a recent paper, Byrnes et al. have developed some recurrence relations for the hypergoemetric zeta functions. Moreover, the authors presented, in the same paper, two conjectures on arithmetical properties of the denominators of the
reduced fraction of the hypergeometric Bernoulli numbers. In this poster, we point out our steps in proving of these conjectures using some recurrence relations. Furthermore, we observe that the above properties hold for both Carlitz and
Howard numbers.

Introduction
The classical Bernoulli numbers Bk can be defined in a
number of ways. One of the most common and useful
methods is using the generating function
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In 1961, Carlitz extended the above notion and intro-
duced the coefficients, βk as
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and stated that nothing is known about them. And more
generally, in 1967, Howard defined the numbers Ak,r by
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From this definition, by applying the Cauchy product
formula for infinite series, one can obtain the following
recurrence relation:
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)
Ak,r = 0, for n > 0

with Ak,0 = 1.
In this poster, we consider hypergeometric Bernoulli
numbers generated by the reciprocal of Φ1,b(z) where
Φa,b(z) is the Kummer’s function defined by

Φa,b(z) := 1F1

(
a

a+ b

∣∣∣z) , for a, b ∈ R.

Definition 1. Let b be a natural number. The hypergeometric
Bernoulli numbers Bn(b) are defined by
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These are precisely the numbers Ab,n studied by
Howard. One can observe that the special case b = 1
corresponds to the Bernoulli numbers Bn = Bn(1).
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The numbers Bn(b) are also expressed in terms of the
hypergeometric zeta function ζH1,b(s) as

Bn(b) =


1 for n = 0,

−1/(1 + b) for n = 1,

−n!ζH1,b(n)/b for n ≥ 2.

Where the hypergeometric zeta function ζH1,b(s) is given
by

ζH1,b(s) :=

∞∑
k=1

1

zsk;1,b
, <(s) > 1

with zk;1,b is the sequence of complex zeros of the func-
tion Φ1,b(z).

Preliminaries and Motivations
It is well known that the Bernoulli numbers of odd in-
dices vanish exceptB1 = −1/2, leavingB2n = N2n/D2n

in reduced form. One of the basic arithmetic properties
of D2n is the following:

Theorem 1 (von Staudt-Clausen Theorem). The Denomi-
nator of the Bernoulli number B2n is given by

D2n =
∏

(p−1)|2n

p.

From this theorem, one can easily see that the denom-
inator of B2n is divisible by 6 and square free. In the
case of hypergeometric Bernoulli numbers, as indicated
in [1] computer experiment suggest an extension of these
properties.
Let D(b) = (denominator of the reduced fraction (Bn(b)) :
n ≥ 0). Then some of the examples given in [1] were

D(2) = (1, 3, 18, 90, 270, 1134, 5670, 2430, ...),

D(3) = (1, 4, 40, 160, 5600, 896, 19200, 76800, ...),

D(4) = (1, 5, 75, 875, 26250, 78750, 918750, ...).

Based on data like these, it was conjectured in [1] that

Conjecture 1. Every prime p dividing the the denominator
of the reduced fraction for Bn(b) satisfies p ≤ n+ b.
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Conjecture 2. Let α(b) be the number of odd terms at the beginning of D(b). Then

α(b) = 2v2(b)

where v2(b) is the highest power of 2 that divides b.

According to [1] these two conjectures have been verified up to b = 1000.

Main Results
Lemma 1. Let a, b : N→ C, a(0) = b(0) = 1. Then(
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a(k)qk
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if and only if
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By using the above lemma we can obtain

Bn(b) = −
n∑

k=1

n(n− 1) · · · (n− k + 1)

(1 + b)k
Bn−k(b), for n ≥ 1.

Proposition 1. Let α(b) be the number of odd terms at the beginning of D(b). Then for b 6≡ 0 (mod 4), we have α(b) =
v2(b) + 1.

Lemma 2. Let m,n ∈ N and let

Pn,m(b) :=

m∏
k=0

n− k
1 + k + b

with m < n ≤ 2v2(b) − 1 and b a multiple of four. Then the denominator of the reduced fraction for Pn,m(b) is an odd integer.

Theorem 2. Let α(b) be the number of odd terms at the beginning of D(b). Then the function α is completely multiplicative,
that is

α(b) = 2v2(b).

Theorem 3. Let vp(n, b) be the largest prime that divides the denominator of the reduced fraction for Bn(b). Then vp(n, b) ≤
n+ b.

It is easy to see that the Carlitz coefficients βn can be expressed as βn = 2Bn(2). The numbers βn are rational and
satisfy the following property: a prime pwhich divides the denominator of the reduced fraction for βn is at most n+2.
Similarly, if a prime p divides the denominator of the reduced fraction for Howard numbers Ab,n, then p ≤ n+ b.
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