CONSTRUCTING AND TABULATING DIHEDRAL FUNCTION
FIELDS

COLIN WEIR AND RENATE SCHEIDLER

ABSTRACT. We present algorithms for constructing and tabulating degree ¢ di-
hedral function fields over a finite field F; of odd characteristic with g congruent
to 1 modulo £. We begin with a Kummer theoretic algorithm for constructing
these function fields with prescribed ramification and fixed quadratic resolvent
field. This algorithm is based on the proof of the main theorem, which gives
an exact count for such fields. We then use this construction method in a tab-
ulation algorithm to construct all cubic function fields over Fy up to a given
discriminant bound, and provide tabulation data.

1. INTRODUCTION

Two important problems in algebraic and algorithmic number theory are the
construction of global fields of a fixed discriminant or prescribed ramification —
with its curve analogue of constructing Galois covers of fixed genus — and the
tabulation of global fields with a certain Galois group up to some discriminant or
genus bound. The latter problem goes hand in hand with asymptotic estimates
for the number of such fields; for example, estimates for cubic number fields were
first given in [DH71] and for quartics in [Bha05], to name just two. There is a
sizable body of literature on construction, tabulation and asymptotic counts of
number fields; a comprehensive survey of known results can be found in [Coh02],
and extensive tables of data are available at [Jon12].

Far less is known in the function field setting; only the asymptotic counts for
cubic [DW88] and abelian [Wri89] extensions have been proved. However, there
is a general programme described by Ellenberg and Venkatesh [VE10] for formu-
lating these asymptotic estimates for both number fields and function fields. In
particular, they point out the “alarming gap between theory and experiment” in
asymptotic predictions for number fields. In the case of cubic number fields, this
inconsistency led Roberts [Rob01] to conjecture the secondary term in the theorem
of [DH71]. His conjecture was later proved independently in [Tholl] and [BST10].
In the function field setting, however, there is practically no experimental data to
potentially identify a similar such gap. The only known algorithms to construct
or tabulate function fields are those of [JLSW12], [RS08] and [RJS12], all of which
pertain to only certain classes of cubic function fields.

This paper represents a next step toward function field tabulation. It first
presents a method for constructing all degree ¢ extensions of Fy(z) with prescribed
ramification whose Galois group is the dihedral group of order 2/ and ¢ = 1 mod /.
We utilize a Kummer theoretic approach inspired by the methods of Cohen [Coh00)]
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[CDyDOO02] for number fields. This construction method can be converted into a
tabulation algorithm in the usual manner via iteration. However, we are able to uti-
lize the automorphism group PGL(2, ¢) of Fy(z) to effect significant improvements.
Note that this technique is unique to the function field setting as there are no non-
trivial automorphisms on the rational numbers. Exploiting F,(z)-automorphisms
reduces the number of constructions by a factor of order ¢ compared to the naive
approach. We present our improved tabulation procedure along with numerical
data obtained from an implementation in MAGMA [BCP97]. It is important to
note that in the special case ¢ = 3, our algorithm generates complete tables of
non-Galois cubic function fields over F,(z) up to a given bound.

2. PRELIMINARIES

Let ¢ be an odd prime and [, a finite field of characteristic different from 2 and ¢.
We denote by K the rational function field over F,. Throughout this paper, we
denote a degree i extension of K as K;, and make the common abuse of language
by saying a function field K; has Galois group G, when we are in fact referring to
the Galois group of its Galois closure. We will also always assume an extension F
of a function field K has absolute constant field I,,.

Let P(F') denote the set of places of a function field F/K, and let e(P’|P) and
f(P|'P) denote the ramification index and relative degree of a place P’ € P(F)
lying over P € P(K), respectively. The norm of a place P’ € P(F) is

N/ (P') := f(P'|P)P.
and the co-norm of P € P(K) is

Conpyx(P):= Y e(P'|P)P'
P/|P
Then Ng g (Cong/k(P)) = [F : K]P. These definitions extend additively to divi-
sors. In another abuse of notation, we will also use Ng/x to denote the norm map
on elements of F'. This is reasonable by Proposition 7.8 in [Ros02]: the norm of a
principal divisor (a) of F'is the principal divisor (Np/k(a)) of K. Restricting to
the cases where the characteristic is different from 2 and ¢ guarantees that there
are no wildly ramified places. Thus, the different of F/K is

Diffp/rc:= Y Y (e(P'|P)—1)P".

PeP(K) P'|P

The discriminant divisor of F/K is defined as

Ak =Np(Diffpc) = Y Y (e(P'|P) - 1)f(P'|P)P.
PEP(K) P'|P

When K = F,(x), we drop K from the notation and simply write Ar. Note that the
discriminant divisor is not the principal divisor of the discriminant as they differ at
the infinite places. The discriminant divisor provides the ramification information
at all places. Notice too that deg(Ap/K) = deg(DiffF/K). Hence, one can replace
Diffp, ¢ by Ap/k in the Hurwitz genus formula ([Sti00, Theorem 3.4.13]). For these
reasons, we will henceforth describe the ramification of a function field in terms of
its discriminant divisor.

Consider the diagram of function fields given in Figure 1. Here, the field Koy is
the Galois closure of K, with Galois group Dy, the dihedral group with 2¢ elements.
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FIGURE 1

Koy
/ X
K, Ky
X /
K

K5 is the fixed field of the unique index 2 subgroup C, of Dy and K is the fixed field
of an element of order 2 in D,. We note that there are ¢ such elements in D, which
give £ conjugate subfields Ky of Ko. The field K5 is called the quadratic resolvent
field of Ky. Let 7 be a generator of Gal(K2/K) and o a generator of Gal(Kzy/K3).

Our goal is to count the number of dihedral degree ¢ function fields with a given
discriminant divisor and quadratic resolvent field. There is a one-to-one correspon-
dence between non-conjugate dihedral degree ¢ function fields K, and their Galois
closures Ko¢. Consequently, instead of counting degree ¢ dihedral extensions, we
count the number of dihedral Galois fields K5y. We do so via construction: given a
quadratic field K3 and discriminant divisor A, we construct all degree ¢ cyclic ex-
tensions Koy of K5 such that Gal(Kz¢/K) = D, and all conjugate index 2 subfields
K, of Ky have discriminant divisor Ag, = A.

3. DESCRIPTION OF ALL DEGREE { DIHEDRAL FIELDS

We count dihedral fields K, with fixed quadratic resolvent field K5 by counting
the cyclic degree ¢ extensions of Ky as described above. As ¢ = 1 mod ¢, all
cyclic £ extensions are Kummer extensions. The next subsection describes Kummer
extensions, and shows they are of the form K ({/a) for some a € K5\ (K,)¢. We
then give necessary and sufficient conditions on « such that K (/) has Galois
group Dy. In the subsequent subsection, we decompose K,/(K5)* via virtual
units to determine the elements « that correspond to non-isomorphic dihedral fields.
With this information, we compute the discriminant divisor of K, C Ky(/a) in
terms of (a) and Ag,. We conclude this section with a constructive proof of the
main theorem; an exact count of the number of dihedral degree ¢ extensions of K
with a given quadratic resolvent field K5 and discriminant divisor.

3.1. Kummer Theory. Let K> be a quadratic field with ¢ =1 mod 2¢. Hence,
all cyclic degree ¢ extensions of Ky are Kummer extensions, which are completely
described by the following theorem (see [VS06, Theorem 5.8.5 and Proposition
5.8.7]).

Theorem 3.1. Let F be an algebraic function field containing a primitive {-th
root of unity, with £ > 1 and ¢ relatively prime to the characteristic of F'. Let
a € FX\ (FX)'. Define the Kummer extension F' = F(0) with 0° = o. Then the
following hold.

(1) The polynomial T* — v is the minimal polynomial of . The extension F'|F
has degree [F' : F| = { and its Galois group is Cy.
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(2) Let P € P(F') and P’ € P(F") lie over P. Then
v
ged(l,vp(a))’

(3) Ewvery cyclic extension F'|F of degree £ is a Kummer extension.
(4) Let F' = F(Y/a) and F" = F({/B). Then F' = F" if and only if a = B7~*
for somey e F* and j€Z,1<j</{-1.

e(P'|P) =

We construct dihedral degree ¢ fields with a given quadratic resolvent field Ks
by starting with the quadratic field K5 and constructing, via Kummer’s theorem,
cyclic degree £ extensions of K5 that are Galois with Galois group Dy. It remains to
classify the degree £ Kummer extensions of Ky that are dihedral extensions of K.

Proposition 3.2. Let Ky/K be a quadratic field and K(0) an extension of Ko
where 0° = o € K;' . Then Ky(0)/K is Galois with Gal(K2(0)/K) = Dy if and
only if a € K, o & (K5)*, and Ny, rc (o) =~* for some v € K.
Proof. By abuse of notation, let 7 denote any lift of the non-trivial Galois automor-
phism of Ky/K to K2(0)/K. Suppose that Gal(K3(0)/K) = Dy. Then Ky(0)/ K>
is a nontrivial Kummer extension and hence o ¢ (K5)¢. By Theorem 3.1, Ko()/K
is Galois, so 7() € K5(0) and 7(0)¢ = 7().

Suppose towards a contradiction that a € K, i.e. that 7(a) = a. Let ¢ € K be
a primitive ¢-th root of unity and o a generator of Gal(K3(6)/Kz). Then

T(G)Z =7(a) == o,

and thus 7(6) = (0 for some i. However, as o(f) = ¢’6 for some j, it follows that
7 and o commute; a contradiction. Furthermore, as o € Ko,

Ng,/k(a) = ar(a) = (67(0))".

Conversely, suppose that a ¢ K and N, /k(a) = v¢ for some v € K. Then
6y~! € K(0). Moreover,

(071" = aNg, k(@)™ = 7(a).

As a ¢ (KJ)', Ki(0)/Ks is a degree £ Kummer extension. By Theorem 3.1,
the mlmmal polynomial of § over K, is T* — a and by applying 7 we have the
minimal polynomial of 7(8), T* — 7(a). Therefore, K() is the splitting field of
(T* — a)(T* — 7(a)) € K[T] and is Galois over K with Galois group D,. O

Elements in K5 whose norm is an ¢-th power in K have specific types of divisors,
described below.

Proposition 3.3. Let o € K;. If Ng,/x(a) = + for some v € K*, then the
principal divisor of « takes the form

(e=1)/2
_€D€+Z /(D) — (D)),

where D},i =1,2,...,(£—1)/2 are square-free effective divisors of Ko with pairwise
disjoint support. Consequently, each D} is only supported at places of Ko which are
split over K.
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Proof. Let P' € supp((«)) and set np = vp((«)). Then by the division algorithm
we can uniquely write np = gf 4 r for some ¢, € Z with |r| < (¢—1)/2. Repeating
this for all places P’ € supp((«)), we see that the divisor of a can be written

uniquely as
(=1)/2
(@) =Dy + Y i(D;— DLy,
i=1
where for all i € Z, |i| < (£ —1)/2, all the D} are square-free effective divisors with
disjoint support. Applying the norm map N,k to (a) we obtain
(-1)/2
(Niey (@) = (r(@) + (a) = D} + Y i(Dj = DLy +7(D}) = 7(DL,)).
i=1

As Ny, x(a) =+, we see that
D, —D",+7(D))—71(D"_,))=0forall 1 <i<({—1)/2.

For 1 <i < (¢ —-1)/2, D; and D’ are effective. Moreover, as D} and D’ , have
disjoint support, it follows that D; = 7(D’ ;). Therefore, the divisor of « is as
claimed. 0

3.2. Virtual Unit Decomposition. Kummer’s Theorem 3.1 states that elements
of K in the same coset of K /(K )’ produce the same Kummer extension. We
wish to construct distinct dihedral fields by constructing distinct Kummer exten-
sions of K. To that end, we decompose the group K. /(K;)* using a function
field definition of virtual units as inspired by H. Cohen’s work on number fields

[Coh00]. In particular, we establish a one-to-one correspondence between cosets of
X

certain groups of divisors and cosets a(K;)¢, where N, /i (a) € (K*)~.
Consider the following exact sequence:

(1) 1 — Vo/(K)" — Ky (KY) — Ky Ve — 1,
where

Vi ={a € K5 : (o) =D’ for some D' € Div(K3)}.
The elements of V; are called the (¢-)virtual units of the field K,. Define the set V/
as

V), ={D' € Div(K>) : {D" € Prin(K>)}.

The map ¢ : V; — V/, where ¢(a) = D', yields the exact sequence

1 — FY By — Vi /(KX)" — V{0 Prin(K3) — 1.
Now consider the natural map ¢ : V; — Pic’(K3)[¢], where

Pic’ (K»)[(] = Pic®(K>) /0 Pic’ (K>)

is the /-torsion of the degree 0 divisor class group of Ky. Then ker(v) = £ Prin(K>),
and thus (3.2) implies

1 —FY/(F) — Vi/(K5)" — Pic®(K)[(] — 1.
Returning to the sequence in (1), consider the group

I, == {D' + ¢ Div(K>) € Div(K;)/¢Div(K>) : [D'] € (Pic®(K>)},

where [D'] denotes the divisor class of D’. We define the map ¢ : K5 — I, such
that ¢(a) := (o) + ¢ Div(K3). Then ¢ is surjective by definition of I,, since for all
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D' + (Div(K>) there exists an element a € K5 such that (o) = D’ — ¢E’ for some
E' € Div(K>,). Hence, p(a) = D' + £ Div(Ks3). Moreover, ker(¢) = Vp. Therefore,
K /V, = I,. This yields the diagram of exact sequences depicted in Figure 2.

FI1GURE 2. Virtual Unit Decomposition

1 —— FJ(F)) ——— ) (F))f ————1

1 ——=V/(KS) ———— K [(K)) ———— K} [Vi ——1

1 —— Pic"(Ky)[(] — Prin(K>) /¢ Prin(K>) I 1

Using the sequences in Figure 2, we see that cosets a( Ky )¢ correspond to cosets

of Prin(K3) /¢ Prin(K>) up to a choice of constant in F* /(F)*. However, by Propo-
sition 3.2, Kummer extensions K (/a) of Ko such that Gal(Ky(V«a)/K) = D,
correspond to cosets (K5 )" such that Ny, x(a) € (K*)*. We now describe the
correspondence between cosets of this type and their divisors.

Proposition 3.4. Let H be the group
H={a€KJ: Ng,x(a)e (K*)},
and let (H) be the group of divisors of elements in H. Then
1— (F)'—H— (H) —1
is an exact sequence.

Proof. The map sending an element of H to its divisor is clearly surjective. The
kernel of this map is the set H NFy. Let k € F; and suppose N, (k) €
(K*)¢. Then N,k (k) = kr(k) = k* € (K*)*. As squaring is an isomorphism of
Fx/(FX)*, we have k € (F)". O

The following two corollaries follow directly from Propositions 3.3 and 3.4, and
Figure 2.

Corollary 3.5. For every coset (3)4-£ Prin(K2) such that Nk, i ((8)) € £ Prin(K),
there is a unique lift a(K5)* such that (o) = (8) and Ng, x(a) € (K*)*.
Corollary 3.6. Let U be the set
(-1)/2
U={Bel:B= Y i(D;—7(D))+Di(Ky)

i=1
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where D;, i =1,2,...,(£—1)/2 are square-free effective divisors with disjoint sup-
port. Let S the set of pairs (A, B) with A € Pic’(K3)[¢] and B € U. Then there is a
one-to-one correspondence between the cosets a(K5 ) such that N, k() € (K*)*
and the set S.

By Theorem 3.1, Ko({/a) = Ko(Vad) for all j € Z with 0 < j < ¢. Thus, to
construct distinct Kummer extensions, we define an equivalence relation ~ on the
set S by

(A, B) ~ (A’, B) if and only if A= jA" and B = jB’ for some j € Z, 0 < j < /.

We then obtain the following theorem:

Theorem 3.7. There is a one-to-one correspondence between Kummer extensions
Koy/Ks such that Gal(Ka¢/K2) = Dy and the set of non-trivial equivalence classes
of S, denoted S/~.

3.3. The Discriminant Divisors of D, Extensions. Now that we have estab-
lished the correspondence of Theorem 3.7 for D, Kummer extensions Koy = Ko (/)
of Ky, it remains to compute the discriminant divisor of K, C K5(/«). In partic-
ular, we compute the discriminant divisor Ag, of K, in terms of () and Ag,. We
begin by describing the discriminant divisor Ag,, k., -

Lemma 3.8. Let Ky be a quadratic field over K. Suppose that Koy = Ko (/) is
a Kummer extension of Ko such that Kop/K is Galois with Galois group Dy. Then
(e—1)/2
AK%/Kz =(-1) Z D; + T(D;)’

i=1
where the D} arise from the representation of () as described in Proposition 3.5.
Proof. By Theorem 3.1, for all places P’ € supp(D}) where 1 < i < (¢—1)/2, there

is a unique place P” of Ky lying over P’ such that e(P”|P’) = £. Furthermore, all
other places of K5 are unramified in Ko/ K>. O

We now compute the degree of the discriminant divisor Ag,, which will in turn
allow us to compute Ak, itself. To that end, we examine the characters of D,. For
subgroups G of Dy, let U(G) denote the induced character of Dy obtained from the
trivial character of G (see [Ser77, Ch. 3]). The fields K, Ko, K; and Ky of Figure 1
are the fixed fields of the four subgroups Dy, Cy, C2, and 1, respectively. The induced
characters of these groups are linearly dependent and satisfy the relation

V(1) + 29(Dy) = 2W(Cq) 4+ ¥(Cy).

Since the Artin L-function of an induced character ¥(G) is the (-function of the
fixed field of G (see [Gos98, Ch. 8]), we obtain

CK21{ (S)C?((S) = CIQQ (S)CKQ (S)
From the functional equation of the (-function, we have
deg(Ak,,) +2deg(Ax) = 2deg(Ak,) + deg(Ak,),
(2) deg(AKzz) = 2deg(AKz) + deg(AKz)'
By Corollary 3.4.12 (a) of [Sti00], Diffx,, = Cong,,,, (Diffx,) + Diffx,, /K,
Applying norms yields
Ak, = [Kae s Ko]Ar, + Niy k(B /1,)-
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By Lemma 3.8, we obtain
(£-1)/2
AK2Z/K2 =(-1) Z D; +T(D;)
i=1

Define the divisor M as
(e-1)/2)
M= > > P
i=1  Pesupp(D;)
Then Ny, /x(Axk,,/k,) = 2(f —1)M, and equation (2) can be rewritten as
ldeg(Ak,) +2(¢ — 1) deg(M) = 2deg(Ak,) + deg(Ak,).

Thus,
-1
deg(Ark,) = —5— deg(Ax,) + (€ — 1) deg(M).

Using this information we can now compute the ramification divisor of K.

Theorem 3.9. Using the notation above, Ak, = SEAy, + (£ — 1)M.

Proof. Let E = 52 Ay, + (¢ — 1)M. First note that the only places of K ramified
in Ky are those lying over places in M and Ag, as Koy/K5/K is only ramified at
these places. Moreover, for all places P € supp(M) and all P” € P(Ky) lying over
P, e(P"|P) = ¢. Similarly, for all places P € supp(Ak,) and all P” € P(Ky) lying
over P, e(P"|P) =2.

As [Kop : Ky =214, all places P’ € P(Kj) lying over M must have e(P’|P) = ¢.
Also, for all P’ € P(Ky) lying over Ag,, e(P’|P) < 2. Applying

> e(P'|P)f(P'|P) =t

P'|P
to any place P € supp(Ak,) allows at most (¢ — 1)/2 places P’|P to be ramified.
Thus, Ak, divides E. Since both divisors have the same degree, they must be
equal. O

We note that the above proof in fact gives the complete decomposition of the
ramified places of Ky/K.

3.4. The Number of D, Function Fields. We now prove the main result, The-
orem 3.10, providing the number of non-conjugate degree ¢ dihedral extensions K
of K with fixed discriminant divisor Ax, = A and quadratic resolvent field K. We
use the correspondence of Theorem 3.7 between dihedral degree ¢ extensions and
certain divisor classes, and the discriminant divisor result of Theorem 3.9. First,
we require some more notation.

Let M € Div(K) be a square-free effective divisor such that every place P in
supp(M) splits in K5 as Pj+ P{. We then define

Po(M) = > nPlin €Z,0<n; < (0—1)/2,j€{0,1}
Pesupp(M)
Let N = # supp(M). Then

#Pe(M) = (5_21)N 2N = (¢ - 1),
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Theorem 3.10. Let K, be a quadratic function field over K = Fq(x) with dis-
criminant divisor Ag,, with ¢ odd and ¢ = 1 mod £. Let r denote the £-rank of
Pic®(K3) and M a sum of distinct places of K, i.e. M =Y, P, with P; # P;,
supported away from D. Let A = %AKQ +(-1)M.

(1) If M = 0, then there are exactly (" — 1)/(£ — 1) non-conjugate dihedral
degree { fields with discriminant divisor Ax, = A and quadratic resolvent
field K.

(2) If M # 0, then consider the set

Ty ={E € Py(M): E' —7(E') € £ Pic"(K>)}.

If all P € supp(M) split in Ko as P = PJ + P{, then there are exactly
(" (#Ty)/ (L — 1) non-conjugate dihedral degree ¢ fields with discriminant
divisor Ak, = A and quadratic resolvent field Ko. Otherwise, there are no
degree € dihedral fields with discriminant divisor A, = A and quadratic
resolvent field K.

Proof. For ease of notation, set Ty = {0} if M = 0. Using the correspondence of
Theorem 3.7, the number of non-conjugate dihedral degree £ fields with discriminant
divisor Ag, = A and quadratic resolvent field Ky is the number of non-trivial
equivalence classes of pairs (A, B), with A a class of Pic’(K3)[(] and B = {E’' +
¢Div(Ks) : E € Ty} C I,.

In case (1), B is only the trivial coset. There are £ — 1 non-trivial elements of A,
so there are (" —1)/(£ — 1) non-trivial equivalence classes, and thus (/" —1)/({—1)
distinct fields.

In case (2), as #Pic’(K3)[(] = 7, there are £"(#T;) nontrivial pairs (4, B),
and therefore £"(#7Ty)/(¢ — 1) non-trivial equivalence classes. Thus, this is also the
number of distinct fields as specified above. O

4. ALGORITHMS AND DATA

4.1. Construction Algorithm. The correspondence of Theorem 3.7 is explicit,
and the proof of Theorem 3.10 is constructive, which naturally leads to Algorithm 1.
This algorithm which takes as input a quadratic function field K5 and an effective
square-free divisor M of K and outputs all non-conjugate degree £ dihedral fields
with discriminant divisor Z_TlAKz +(—-1)M.

Note that there are exactly two quadratic fields with a fixed discriminant divisor;
they are in fact twists of each other. This leads to Algorithm 2, which on input a
pair of effective square-free divisors D and M of K utilizes Algorithm 1 to generate
all non-conjugate degree ¢ dihedral fields with discriminant divisor K_TlD—i— (—1)M.

Let K5 and K be the two fields with discriminant divisor D. Then, as K5 and
K are twists of each other, a place P ¢ supp(D) splits in K> if and only if it is
inert in K% and vice versa. In order for any degree ¢ dihedral fields K, to exist, all
the places in the support of M must be split over the quadratic resolvent field of
K. Thus, if M is non-zero, only one of K5 and K needs to be considered.

Algorithm 1 is precisely the construction in the proof of Theorem 3.10 and thus
gives all elements « such that Ky(4/«) is a Galois dihedral function field. The
equivalence relation ~ in step 7 is that of Theorem 3.7 but restricted to only one set.
Notice that the REPEAT loops in steps 13 and 18 will halt, as by Proposition 3.4,
there is a unique B € Ky such (8) = B’ — 7(B’) — (E" and N(B) € (K*)*; similarly
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Algorithm 1 Constructing Dy Fields From Their Quadratic Resolvent

1: INPUT: (Kl M)

2: OUTPUT: Ly = {K;: Ak, = S52Ak, + ({ — 1)M, QuadRes(K;) = K>}

5 set BE={hIo={LL={}, =1}, V={}

4: for P € supp(M) do

5: ensure P = P[+ P| in Div(K>,), return FE on failure

6: L=LU{(Pj,P{)}

7: compute a basis {Aj,...,A.} of Pic’(K3), an /-th root of unity ( €
Fy, Pe(M) from L, and Ty ={B' —7(B’): B’ € P¢y(M)}, and Ti/~

8: [Compute function of divisors in Ty C I,]

9: for B’ —7(B') € Ty /~ do

10: if B’ —7(B’) € {Pic’(K3) then

11: compute E’ such that B’ — 7(B’) = (F’

12: find 8 € Ky such that (8) =B’ —7(B’) — (F .

13: repeat 3 = (B until N(3) € (K*)*

14: Ty =Ty U {ﬂ}

15: [Compute Virtual Units]
16: for ¢ from 1 to r do

17: find +; € K3 such that (v;) =(A;
18: repeat y; = (y; until N(v;) € (K*)*
19: V=Vu {'Yz}

20: [Create the defining equations]
21: if M =0 then

22: set To = {7} and remove 7; from V

23: for f €1y do

24 for [z] € (2/02)*" do

25: compute a:= B[] o o

26: compute the resultant R(X) = Resy (Y’ —a, (X —Y)’ —7(a))
27: factor R(X) and let C(X) be a factor of degree /(.

28: L2 :LQU{C(X)}

29: return F

for . It remains to show that steps 25-27 indeed find a defining equation for a
degree { subfield of Ky (/).

Let § € Ky be such that 8¢ = a of step 25 and let §; = (*6, where ¢ € Fy,
is an £-th root of unity. The roots of R(X) are all of the form 6; + 7(¢;), for all
0 <1,j, < £—1 where 7 denotes a lift to Koy of the non trivial Galois automorphism
of K3/K. Let o be a generator of Gal(K2(0)/Ks3). Then consider the ¢ polynomials

-1 4
Q; = [I(x = a'(6; +7(6))))
k=0

for 0 < j < £. Notice that Q; is clearly stable under o. Moreover, as 707 = o~ !,

Q; is stable under 7 as well. Consequently Q; € K[X].

We claim that @Q; is the minimal polynomial of 6; 4+ 7(#;) which is an element
of some index 2 subfield of K(6). As 6; + 7(6;) is invariant under 7, it lies in its
fixed field. However, as it is not invariant under o, it does not lie in K. Thus, as
¢ is prime, 6; + 7(0;) € K, for some K5(0)/K,;/K with [K5(0) : K;] = 2. Hence,
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6; + 7(0;) has a degree ¢ monic irreducible minimal polynomial m; € K[X]. As
0; + 7(8;) is a root of @), m; divides @;. However, ); is also a monic polynomial
of degree ¢, and therefore m; = ();. So there are £ possible choices of irreducible
factors of R(X), each one corresponding to a conjugate subfield of K (a).

Remarks 4.1. There are several ways to perform Algorithm 1 more efficiently.

(1)

(2)

For any value of ¢ one can compute the minimal polynomial of the fixed
field of Ky({/a) by 7 directly by symbolically expanding Q. For example,
when ¢ = 3, K3 has equation X® — 33/N, x(a) X — Trg,/k(a). This
avoids having to compute and factor a resolvent polynomial.

As we have a basis for Pic’(K5), we can easily check if an element D’ is in
Pic?(K>3)[¢] by writing it in terms of the basis elements, and obtain E’ such
that {[E'] = [D’] as required in line 11. Suppose

D] = EB di A,
i=1

If the order of A; is divisible by ¢, then check that ¢ | d;, as otherwise D’ is
not an f-scalar multiple. If this is the case, set e; = d;/¢. If the order of A;
is not divisible by ¢, then compute £~ mod ord(4;) and set e; = £~1d;.
Then return E’ such that £[E’] = [D’], where

E/ = é eiAi-
i=1

As K, is a quadratic field, it corresponds to a hyperelliptic curve y? =
f(z). One can often take advantage of faster arithmetic available for the
Jacobians of hyperelliptic curves, denoted Jac(K3), instead of the slower
generic arithmetic in PicO(Kg). For example, in MAGMA, such packages
are available as long as the infinite place of K is not inert K5. This faster
arithmetic utilizes the Mumford representation for Div®(K5). One should
compute Jac(Ky) using Mumford representations instead of Pic®(K5) and
map all calculations to and from Jac(K3).

Mapping the divisors in 77/~ of step 10 and 11 into Jac(K3) can be
done quite efficiently as we know the support of all ¢ € T7. For example, if
the infinite place P, of K is ramified in Ko, say Po, = 2P/, then we can
rewrite ¢ as

t= S np(P - deg(P)PL)
P’esupp(t)

' ; thus, all P’ € supp(t)

are finite. Finding the Mumford representation Jp, of P’ — deg(P’)P., is
quite simple, and so we can use the fast arithmetic of Jac(K3) to compute
> presupp(r) P TP efficiently.
The coefficients of R(X) and C(X) can easily become very large if Algo-
rithm 1 is run as stated. To avoid this, after line 25, given the element «
one may wish to look for an element o/ such that Ky(/a) = Ko(v/'). The
element o viewed as an element of K (z)[y] should be chosen such that it
has integral coefficients of small degree. One can search for such an element
by considering various powers of « and factoring out common ¢-th powers
from the coefficients.

In our algorithm ¢ is supported away from P/ ;
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Algorithm 2 Constructing All D; Fields from Divisors

1: INPUT: ¢ and square-free effective divisors D and M
2: OUTPUT: Lo = {K;: Ak, = G Ak, + (- 1)M}

3: if deg(D) is even then

4: construct Ky, K} with discriminant divisor D
5: else

6: return "NOT A QUADRATIC DISCRIMINANT DIVISOR"
7: if M # 0 then

8: pick P € supp(M)

9: if P = P{+ P{ in Div(K3) then

10: set Ké/ = Ko

11: else

12: set K =KJ

13: get L from Algorithm 1 with input KY, ¢, M

14: else

15: get Ly from Algorithm 1 with input Ky, ¢, M

16: get Lo from Algorithm 1 with input K5, ¢, M

17: set L=L1ULs>.

18: return L

Note that in Algorithm 2, all finite places P of K correspond to irreducible
polynomials fp(z) € F,[z]. Therefore, in step 4, we can easily construct K» as the
function field of the hyperelliptic curve

v= ]I fe@.
Pesupp(D)
P finite
4.2. Tabulation Algorithm. Algorithm 1 for constructing all degree ¢ dihedral
fields with a given discriminant divisor and quadratic resolvent field can easily
be adapted, via iteration, to a procedure for tabulating all such extensions whose
discriminant divisor has degree below a fixed input bound B > 0. However, in this
context, we can utilize the automorphism group of K to significantly reduce the
number of quadratic fields that need to be considered.

Recall that Aut(K) = Aut(F,(z)) = PGL(2, q), the group of fractional linear
transformations of z. Given any ¢ € Aut(K), ¢ lifts to a map on Koy, and hence
to all its subfields. Consequently, ¢ also lifts to a map on the corresponding divisor
groups. Moreover, ¢(Ak,) = Ayk,). Therefore, instead of applying Algorithm 1
to all suitable K5 and M, we only need to consider a representative from each
orbit of Aut(K) acting on the set of suitable quadratic fields K5. Moreover, for
each field K5 we need only consider representatives of the action of the stabilizer
Stab(K3) C PGL(2,¢) on the set of suitable M.

This is captured below in three algorithms. The first (Algorithm 3) finds orbit
representatives for the set of suitable quadratic fields. The second (Algorithm 4)
constructs minimal polynomials for all dihedral fields with ramification divisors
L Ak, +(¢—1)M for representatives K and M. The third (Algorithm 5) reapplies
Aut(K) to each of the constructed minimal polynomials to obtain the full list of
degree ¢ dihedral fields whose discriminant divisor has degree bounded by B.

Recall that every quadratic field K3 can be expressed as K (y) where y? = f(x)
with f(z) € Fy[z] square-free and deg(f) is either 2¢g + 1 or 2¢g + 2, where g is
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the genus of K. The action of ¢ € PGL(2,¢q) on Ky does not necessarily preserve
the degree of f(z), but ¢(Ks) has the same genus as Ks, or equivalently, the
discriminant divisors of Ky and ¢(K3) have the same degree, namely 29 + 2. We
further note that deg(Ag,) = 2[deg(f)/2].

Algorithm 3 List K3 Orbit Representatives Under PGL(2, ¢) Action

1:
2:

»ow

© 0o N o o

10:
11:
12:
13:
14:
15:

INPUT B,/ q

OUTPUT: R = {(f,Stabpgr(2,q)(f))}, the list of orbit representatives
and their stabilizers

compute a primitive element g € [,

set L(f) =0 for all f € F,[x]

for h(z) € Fylz] such that 2[deg(f)/2] < {%J do
if L(f) =0 then
for ¢ = ‘Z;”_ts € PGL(2,q) do
/(@) = (e + 219/ g(f(a))
for ¢ from 1 to (¢—1)/2 do
f/ — h2f/
L) =1
if f'=f then
5 =5uU{¢}
R=RU{(},5)}
S=0
: return R

Algorithm 4 Tabulate Dihedral Fields under PGL(2, q) with deg(Ag,) < B

e T e
o O W N

© 0 N O U W N

ey
o

INPUT: B,{,q
QUTPUT: L = {({K},Ak,,Stabpg (2. (Ak,)) : QuadRes(K;) = K, € R}
get R={(f,S)} from Algorithm 3
for (f,S) € R do
set Mg, :={}, K, =K(z)[y]/(y*> — f) and compute Ak,
compute By = |B/(¢ —1) —deg(f)/2]
compute lists L; = {P € K :deg(P) =j} for j < By
for ¢ from 0 to Bjys do
for every partition p=[ny,.,n,] of i do
generate M, ={Y;_, Py: Py € Ly}
My = M;U M,
compute M/S = {(E/S(FE),Stabg(FE)): E € M}
for (M,Stabgs(M)) € M/S do
get Ly, from Algorithm 1 on (Ko, ¢, M)
L=LU{(Lk,, 5*Ak, + (£ —1)M,stabs(M))}
: return L

4.3. Numerical Results. Our algorithm was implemented in MAGMA [BCP97].
In Table 1, we provide tabulation data for the case of all even bounds B > 4 and
odd primes ¢ and odd prime powers ¢ = 1 mod ¢ such that ¢2B/(¢=D+1 929,
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Algorithm 5 Reapply PGL(2, q) to the Dihedral Fields

1: INPUT: Ry = {({K,}, Ak,,Stabpgr(2,q)(Ak,))} from Algorithm 4
2: OUTPUT: LZ{(K@,AK[) :deg(AKz) SB}
3: set L=1{}
4: for ({K¢},A,S) € Ry do
5: for ¢ € PGL(2,q)/S do
6: for F € {K,;} do
7 L= LU{(6(F), 6(A))}
8: return L
TABLE 1. Field counts for all ¢, ¢ with q%+1 <22 for B >4
(g [BIKy/~[Ky/r] K | T [ T [ Ts | R |
3| 7| 4 30 16 2,352 2.73 0.33 1.27| 25.6
6 749 471 117,264 87.9 9.31 | 47.34| 21.6
8| 34,228 | 18,138 | 5,762,064 | 4,861.1 | 653.92 | 2,254.2 | 28.2
13| 4 58 32 28,392 47.7 0.58 15.35 | 19.9
6| 4,589 | 2,563 | 4,824,456 | 5510.2 | 66.89 | 1869.0 | 19.6
19| 4 78 40 | 129,960 273.2 0.74 70.4 | 14.69
25| 4 106 56 | 390,000 | 1,203.4 1.38 | 233.5 | 14.96
31| 4 126 64 | 922,560 | 2,851.4 1.56 | 507.7 | 13.81
37| 4 154 78 | 1,822,176 | 7,076.5 1.60 | 955.6 | 10.8
43 | 4 174 86 | 3,337,488 | 14,119.2 1.70 | 1893.4 | 8.43
49 | 4 202 102 | 5,644,800 | 32,406.2 2.41|6,743.1 | 7.24
5111 8 42 8 6,660 20.2 0.45 3.30 | 46.38
12 2813 948 | 1,058,640 1774.2 47.1 | 514.49 | 26.6
31| 8 126 32 | 446,400 | 2851.8 1.71| 272.0|16.28
41| 8 166 42 1 1,308,720 | 11269.6 2.10 | 802.1| 11.9
7129 |12 118 18 219,240 2114.4 1.72 | 126.47 | 18.68
43 | 12 174 26 | 1,006,544 | 14119.2 2.34 | 644.0 | 12.59
1123 |20 90 7 48,576 659.9 1.94 28.2 | 34.1
13|53 | 24 214 18 | 1,190,592 | 41962.8 10.4 | 1147.2 | 35.89
23 | 47 | 44 186 8| 415,104 | 31542.1 12.2 | 419.0 | 39.5

The column entitled K5/ ~ represents the number of quadratic fields generated
by Algorithm 3. The number of cubic fields constructed by Algorithm 4 is under
the column K,/ ~ , and the total number of non-Galois fields whose discriminant
divisor has degree at most B is under column K,. The running time in seconds
of Algorithms 3, 4, and 5 are listed under 77, T>, and T3, respectively. For each
q and B, we also computed R = (¢> — q)T»/(T} + T» + T3), which estimates the
approximate improvement factor obtained by our tabulation method relative to
simply iterating Algorithm 1 over all possible quadratic fields.

Notice that the improvement factor R is highly varied. For fixed ¢ and B, R
tends to decrease as ¢ increases although the improvement still remains significant.
Why this decrease occurs is unclear; it may be due to the fact that R is not a
sufficiently refined estimate for the actual run time improvement. Overall, the
run time of Algorithm 1 is dominated by the construction of the set Py(M) and
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obtaining functions for the principal divisors in steps 12 and 17. Data suggests that
as B grows, finding the generators of these principal divisors will tend to dominate
the run time.

The entries of columns 4 and 5 of Table 1 differ by a factor that is very close to
¢ — 1. This seems to suggest that the size of the moduli space of Galois D, curves
under PGL(2, ¢q) is approximately 1/(¢ — 1) times the size of the corresponding
space for hyperelliptic curves. We also notice that the total number of D, fields for
a fixed B and ¢ is always divisible by ¢® — ¢, the order of PGL(2,q), despite the
existence of non-trivial stabilizers.

5. CONCLUSIONS AND FUTURE WORK

It is interesting that the number of degree ¢ dihedral function fields with a given
discriminant divisor A = %D + (¢ — 1)M behaves quite differently depending on
whether or not M is trivial. We see from Theorem 3.10 that when M = 0, the
number of such fields with a given resolvent field Ky depends exclusively on the
{-rank, r, of K5. The probability that the divisor class group of K5 has a certain
£-Sylow subgroup is the focus of various Cohen-Lenstra type heuristics. These are
discussed further in [FW89], [Ach06], [Mal08], and [Garl2], and directly relate to
the number of D; fields with square-free discriminant divisor.

When M # 0, the number of degree ¢ dihedral function fields with given
quadratic resolvent field Ko depends additionally on the cardinality of the set
T, ={E € Py(M) | E'—7(E') € £Pic’(K>)}. One can show that every divisor class
of K5 contains an element whose norm is an /-th power in K*. The natural homo-
morphism from divisor classes whose norm is an ¢-th power to Pic”(K3)/¢ Pic’(K>)
is surjective, so a randomly chosen element is in the kernel of this map with prob-
ability (#(Pic’(K3)/¢Pic’(K3)))~' = £77. Thus, assuming that the set T =
{E' = 7(E") : E' € Po(M)} has the same distribution, the expected number of
degree ¢ dihedral fields with the given discriminant divisor A = 52D + (£ — 1)M
is #T,/(¢ — 1), which is independent of r. When deg(M) is sufficiently large, our
data seems to support this heuristic.

In the case when ¢ = 3, our algorithm tabulates all non-Galois cubic function
fields up to a given discriminant bound. As the number of Galois cubics is negligible
by comparison, it is reasonable to compare the number of non-Galois cubics to the
asymptotic estimate of [DW8S]:

. _ q
lim ¢~ & Z l=———.
e S N 6
deg A, =q"

This comparison is shown in Table 2. The above asymptotic estimate is given for
all computed values of ¢ and B in column 4. Column 5 provides the ratio of the
asymptotic estimate over the actual number of non-Galois cubic function fields. As
in the number field setting, the leading term of the asymptotic overestimates the
number of cubic fields. Thus, similar to the number field setting, this leads us to
believe that the secondary term has a negative coefficient. An explicit computation
of the secondary terms is currently underway by Yongqiang Zhao [Zha].

We also include, in the last column of Table 2, the number of cubic fields divided
by the order of PGL(2, q). As mentioned, in all cases ¢3 — ¢ divides the number of
Dy fields. Taking the quotient, we see that the number of non-Galois cubic fields
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TABLE 2. Cubic field counts compared to asymptotics for all g
with ¢B+t1 <229 B >4

¢ [B] #Ks [4¢°/((¢—1)¢(3)) | Ratio | #K3/(¢° —q) |
7] 4 2.352 2,736 | 1.163 7
6| 117,264 134,064 | 1.143 349
8 | 5,762,064 6,569,136 | 1.140 17149
13| 4| 28,392 30,744 | 1.083 13
6 | 4,824,456 5,195,735 | 1.077 2209
19| 4] 129,960 137,160 | 1.055 19
25| 4| 390,000 406,224 | 1.042 25
31| 4| 922,560 953,280 | 1.033 31
37| 41,822,176 1,924,776 | 1.056 36
43| 4| 3,337,488 3,498,264 | 1.048 42
49 | 4| 5,644,800 5,882,400 | 1.042 48

whose discriminant divisor is degree at most 4, is either q(¢®>—¢q) or (¢—1)(¢®>—q) for
the cases we computed. We are unsure why is this is the case. Perhaps additional
data and further analysis will shed more light on these patterns.

For larger primes ¢, no asymptotic estimates are known; it may be possible to ob-
tain such estimates by generalizing the work of [CM11] or adapting the programme
of [VE10] to the case ¢ = 1 mod ¢ by utilizing results [EVW], [Mal08] and [Garl12].
It would be very interesting to see if the “gaps” for the number field setting referred
to in Section 1 occur here as well. This is research in progress by the authors and
several others.

We also note that our work is readily extendable to relative extensions where
F,(x) is replaced by a higher degree function field K. This should be relatively
straightforward if one restricts to cases where Pic”(K)[/] is trivial. Work is also in
progress to extend our algorithms to the cases when ¢ Z 1 mod ¢. As in [CDyDO02],
one can construct cyclic fields by adjoining the ¢-th roots of unity to K, then apply
Kummer theory to the extension field, and finally take a fixed field by the Frobenius
automorphism of F -1 /F,. We expect that one can combine this technique with
the work above to construct Dy fields when ¢ Z 1 mod #.
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