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In our studies, we investigate the following problems;

• Let O = Z[
√

d] be the ring of integers of the real quadratic field Q(
√

d) and ε > 1 its fundamental unit. Defining O f = Z[ f
√

d]
for the order of conductor f , what can be said about the smallest positive integer n( f ) such that εn( f ) ∈ O f ?

• What can be said about n( f pk), where p is an odd prime and k is a positive integer?

Considering the questions above we compute best possible upper bounds for n( f ). We consider matrices A ∈ GL(2,Z) and we show
how the integers α of any quadratic field Q(

√
d ) can be embedded in GL(2,Z) where d = 4q + r ∈ N is square-free. Namely,

α = a + b
√

d, a, b ∈ Z if r = 2, 3, α = 1
2 (a + b

√
d), a, b ∈ Z, a + b ∈ 2Z if r = 1.

We find the n such that An = I or An = cI in the residue field Z/pZ where p is an odd prime and A is defined by

A =

(
a b

bd a

)
for r = 2, 3, A =

( 1
2 (a + b) b

qb 1
2 (a − b)

)
for r = 1.

Let s =det A and x =tr A, the trace of A. We derive formulas for all s , 0. As a tool we always use modified Chebyshev polynomials
tn(x; s) and un(x; s) which are monic polynomials with integer coefficients. We obtain some results for An and formulate these results
in terms of tn(x; s) =tr An. The Legendre symbol ` B ((x2 − 4s)/p) and the values of n with An ≡ I (mod p) are connected with p − 1
if ` = +1 and with p + 1 if ` = −1. We also prove that if s = 1 and x2 − 4 . 0 then t p−`

2
(x) ≡ 2((x + 2)/p) and we generalize this

result. We determine the first n = (p− `)/2m with tn(x) ≡ 2 mod p in terms of a chain of Legendre symbols. We also consider the more
complicated case s = −1 and prove similar results.[BiPo]
For the second question we consider the sequence n( f pk), k ≥ 0 for a fixed f and any odd prime p. We consider the case p±1

2 in detail
and we always investigate the properties modulo p. We allow any norm N(α) , 0. We can write the powers as

αn =

 1
2 tn(2a) + un−1(2a)b

√
d if r = 2, 3

1
2 tn(a) + 1

2 un−1(a)b
√

d if r = 1.

Finally, we compute the frequencies of k =
p±1

2n(p) for N(α) = +1 and k =
p±1
n(p) for N(α) = −1. Our numerical results suggest that the

frequencies should have a limit as the ranges of d and p go to infinity.[Bir]
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