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Root Extraction Algorithms in IF,

Finding 7-th root in IF, has many applications in computational
number theory and many other related areas.

Two standard algorithms for computing r-th root in finite field:

@ Tonelli-Shanks square root algorithm

- Adleman-Manders-Miller r-th root algorithm
@ Cipolla-Lehmer type algorithms

- Miiller square root algorithm

- Nishihara cube root algorithm

Adleman-Manders-Miller algorithm : straightforward generalization
of Tonelli-Shanks square root algorithm

Miiller square root algorithm : Cipolla-Lehmer + Lucas Sequence
Technique

Nishihara cube root algorithm : Cipolla-Lehmer + Efficient
Irreducibility Test for Cubic Polynomial
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Complexity of Tonelli-Shanks and Cipolla-Lehmer over F,

for Cube Root Extraction

Tonelli-Shanks:

best case O(log® q) when v3(q — 1) is small
worst case O(log? q) when v3(q — 1) is large

where v = v3(q — 1) means 3"|q — 1, 3"*! Jg—1

Cipolla-Lehmer:
average case O(log® q) : does not dependent on v = 13(q — 1)

extension field arithmetic € IFqg is a bottleneck

Hence, refinement of Cipolla-Lehmer is desirable.
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Cipolla-Lehmer Algorithm

Input: A cubic residue a in F,
Output: A cube root of a

Step 1: Choose an element b in F, at random.

Step 2: Check f(z) = 2 + bx — a is irreducible over F,.
If not, go to Step 1.

Step 3: Return (@ t4+D/3 (mod f(z)).

Nishihara's method :
Cipolla-Lehmer + Dickson'’s irreducibility criterion for cubic
polynomial

Dickson's irreducibility criterion for f(x) = 23 + bz —a : f(z) is
irreducible over [, iff the following two conditions are satisfied;
Q@ D = —(4b3 + 27a?) is nonzero quadratic residue in F,,
@ ;(a+37%/=3D) is a cubic non-residue in F,
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Muller's square root algorithm with Lucas sequences

Let ) be a quadratic residue in [Fy.

Assume

Q ¢=1 (mod 4),

Q@ f(z) =2%— Pz +1 with P=(Q — 2 is irreducible.
Letting o, &' be roots of f, we find a square root of Q as

Tr(a'5) =, = (a@ D/ 4o @D/
4

= alta+2=P+2=Q

— a_la(Q+1)/2 + aa_(lI‘f'l)/Q + 2

The cost of computing s4—1 is small because it comes from
4
22 — Pz + 1 not from 22 — Pz + Q.
Our Contribution : Extended Miiller’s result for » = 2 to the

general case - cubic, quintic, ---. Our method applies to any
r-th residue with r prime but the cubic case will be discussed

here for simplicity.
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The Third Order Linear Recurrence Sequences

Let f(z) = 2% — ax® + bxr — ¢, a,b,c € I, be irreducible over F,,.

A third-order linear recurrence sequence {sj} with characteristic
polynomial f(z) is defined as

Sk = aSg_1 — bSp_o + cSp_3, k> 3.

If {sx} has the initial state sy = 3,51 = a, and sa = a® — 2b, then
{sk} is called the characteristic sequence generated by f(z).
Letting f() = 0, we denote such s; = a* + a*q + a*? as
Sk’(f) or Sk(aa b, C) or Sk(Oé)

The sequence s satisfies

Q sy, = 5,% —2c"s_y,

Q Ssutm = SnSm — C"Spn_mS—m +"Sp_om
The above computation becomes simple when ¢ = 1.
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Complexity of Computing s, for f(z) = 23 — az® + ba® — 1

Let k= >_!_, k2" be a binary representation of k, and let
zZ0 = /‘JO %O,Zj = kj+22j—1, j = 1727... T

Then z,. = k and s; can be computed as
When k; =0,
Q s:m1 =55 185 -1 —bs—; , + 5 111
Q Sz = ng,l — 25_31.71
Q Sz41 =5z 15z 141 —aS—z;  +S_(5;_-1)
When k; =1,

o Sijl = 82

Zj—1 - 2S*Zj—l

e SZj — Sijlst71+1 - as*ijl + 5—(2’]'_1—1)

_ 2
Q 5541 =85, 11— 25(—z_1+1)

Thus, the complexity of computing both of s; and s_; is 9log, k

F,-multiplications on average.
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Our method : polynomial choice, f(a) = 0,a = 3°

Let f(z) = 2® — 32% 4+ bx — 1 be irreducible over F, with f(a) =0
and ¢ =1 (mod 3). The norm of f or the product of all the

conjugates of « is
2
a1+q+q =1

Classical result of Hilbert Theorem 90 or direct calculation over the
finite field extension s /I, says that there exists 3 € F s such
that 33 = a. That is, using the property a!*974° =1, one can
show that

al+a+a™)=14+a+ o't

Therefore letting 8 = (1 + a + al*9) 5%, we get

B =(1+a+at)"1=q
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Our method : properties of «

Let h(z) = 23 + (b — 3)x — (b — 3).
Then h(1 — «) = 0. More precisely, h(1 —z) = —f(x).
The irreducibility of f implies the irreducibility of h. Thus

(1 — a)l+ete = (b - 3) (1)

On the other hand, from
0=h(l—a)=(1-a)®+ (b-3)(1—-a)—(b—3), we get

(1-a)’=(b-3)a (2)
By taking %—th power to both sides of the above expression,

14g+¢®  14g+d?
3

(L= = (b-3) "5 a (3)
Comparing two expressions (1) and (3), we get
2 2, _
1+q3+q _ (b—3)7q +3q 2 _ (b—?))*(q 1)3(q+2> -1 (4)

since g =1 (mod 3) and b —3 € F,.
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Our method : relation between o and (|

Since o = 33, we may rewrite the equation (2) as

(1-a)’=(b-3)8° (5)
Assume b — 3 = ¢? for some c in F. Then from (1 — a)® = 333,
we get
(1—-a)=wcp (6)

for some cube root of unity w in [F,.
Now letting g(z) = 2% — a’z? + b'z — ¢ (d',V/,c € F,) be the
irreducible polynomial of 3 over [y,
weTr(B) = Tr(wef) =Tr(1 — a)
=(1-a)+(1-a)+(1-a) (7)
=3—(a4a’+a?)=0
Therefore, assuming ¢ # 0, we get o' = Tr(8) = 0. Also we have

1+q+q> 2
l=a s =pitiate = ¢,
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Our method : relation between o and (Il

Using the following simple identity

(A+B+C)? = A*+B3+C*4+3(A+B+C)(AB+BC+CA)-3ABC
with A = B+, B = gat¢® ¢ = B1+9° | we get

(51+q + 5q+q2 + 51+q2)3 _

QMg It 4 o g g(glta g grte 4 gley (g 4 g9 4 g7) — 3
(8)

which can be expressed as
V3=b+3ba —3=b-3 (9)

For given irreducible polynomial f(z) = 23 — az? + bz — 1 with
f(a) =0, recall the sequence sy is defined as

sk = sp(a) = sp(f) = Tr(a®) = o* + a® + al’k,

11/16



Our method : s,2., ,()
9

We have

2, 0 o 2.,
sq2+3q,2 (@)= (a5 +ai" 5 f 4ot

—(a ' 4+a a7 (10)

= (aq+q2 + ot 4 T3 = 5.11(0)® = b?
Now we are interested in the following two irreducible polynomials
flx)=a3 =322+ bz —1, g(x)=2a+bx

with f(a) =0,9(8) =0 and a = 3.
Assuming ¢ = 1 (mod 9), we get ¢> +¢—2 =0 (mod 9) and

a?+q-2

Sg2eg2 (@) =Tr(a s ) =Tr((5%)
’ > (11)
= TT(/B 3 ) = Sq2+3q—2 (ﬁ)

Q+q2
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Our method : Cube root of () as a closed formula

Therefore from the equation (10) and (9),

Sq2+9q72 (05)3 = sq2+3q72 (5)3 = 3q+1(6)3 =b°=b-3 (12)

Now using the polynomial f(z) = x* — 322 + bz — 1, we can find a
cube root for given cubic residue ) in I, as follows;
For given cubic residue @ € Fy, define b = Q + 3. If f(z) with
given coefficient b is irreducible, then s 2., ,(f) is a cube root of
Q. That is, ’

5«12+Tq—2(f)3 =b-3=0Q.

If the given f is not irreducible over F,, then we twist @) by
random ¢ € F,, until we get irreducible f with b = Qt3 + 3. Then

Sq2+9q72 (f)s =b—-3= Qt37

which implies t71s 2., _, (f) is a cube root of Q.
9
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Suggested Cube Root Algorithm

New Cube Root Algorithm for F, with ¢ =1 (mod 9)

Input: cubic residue Q # 0 € F;,, Output: s satisfying s> = Q
Qv+ Q+3, flr)+2®-322+br—1
@ While f(x) is reducible over [,
choose random t € I,
b Qt?+3, f(x) < 2% —322 +br — 1
End While
Q s+ Sm(f> St
The output sgis indeed a cube root of () because

3 =50, ,(f) t3=03 t3=Q.
9

When ¢ #1 (mod 9) : 1. If ¢ =2 (mod 3), a cube root of @ is
given as QQqs_l. 2 If g =4 (mod 9), a cube root of cubic residue
Q is given by Q 3. If ¢ =7 (mod 9), a cube root of cubic
residue @) is given by Q 5.
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Complexity Estimation

Randomly selected monic polynomial over [F, of degree 3 with
nonzero constant term is irreducible with probability % Even if our
choice of f is not really random, experimental evidence implies
that one third of such f is irreducible.

Computing sq2+9q,2 : 9log, (12+qu2 ~ 18log, q¢ F4-multiplications.

Irreducibility testing : Using Dickson's formula, 4 log, ¢q
F,-multiplications at most.

Total cost : 4 -3 + 18 = 30logy ¢ multiplications in [,
Speed up can be achieved if better irreducibility testing is used.

The complexity of Adleman-Manders-Miller cube root algorithm
costs O(log, g + t?) multiplications in F, with 3||q — 1.
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Conclusion

@ We proposed a new Cube Root Algorithm using linear
recurrence relation arising from a cubic polynomial with
constant term —1.

@ The related linear recurrence is easy to compute and has low
computational complexity.

o Complexity estimation shows that proposed algorithm is
better than Adleman-Manders-Miller when t is sufficiently
large, but the implementation is needed to verify which t is a
threshold value.

@ Our idea can be generalized to the case of r-th root
extraction : We obtained a closed formula for r-th root for
any odd prime r.

@ Bottleneck of our approach is the irreducibility testing of a
polynomial f of degree r : efficient irreducibility testing is
needed.
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